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A systematic account is given of the concept and
the properties of the center of mass.
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1 Introduction

The center of mass (CM) is important in its own
right, and as preparation for some aspects of ro-
tations: (a) often we discuss rotations about the
CM, and (b) the moment of inertia I is described
in a formalism that is in some sense parallel. The
position of the CM involves sum of quantities such
as mx; the moment of inertia (see next module)
involves sums of quantities such as mx2.

This Section introduces the following properties
of the CM.

• The CM coordinates are the weighted average
of the particle coordinates.

• A uniform gravitational field appears to act
through the CM — the CM is the same as the
center of gravity (CG).

• The moment about the CM is zero.

• The CM of a system of particles (whether or
not constituted as a rigid body) behaves as a
point particle, with motion controlled by the
net external force.

2 Position of CM

2.1 Weighted average

We begin by reviewing the concept of average and
weighted average.

Suppose there are 3 students with heights (in me-
ters) x1 = 1.6, x2 = 1.7 and x3 = 1.8. Their aver-
age height, denoted as X, is given by

X =
1.6 + 1.7 + 1.8

1 + 1 + 1
(1)

The general formula for the average of N values
x1, x2, . . . , xN is given by

X =

∑
α xα∑
α 1

=

∑
α xα
N

(2)

where all sums are understood to be for α =
1, . . . ,N , where N is the number of individuals.

Next suppose there are 9 students with heights
1.6, 1.6; 1.7, 1.7, 1.7; 1.8, 1.8, 1.8, 1.8. We can
of course use (2) with N = 9 terms. It is how-
ever simpler to separate them into only 3 groups for
xα = 1.6, 1.7, 1.8, but with weights of mα = 2, 3, 4
attached to the three cases:

X =
2× 1.6 + 3× 1.7 + 4× 1.8

2 + 3 + 4
(3)
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In general,

X =

∑
αmαxα∑
αmα

(4)

All sums are understood to be over α = 1, . . . , N ,
where N is the number of groups. An average such
as (4) is called a weighted average.

Problem 1
Take the example above, and calculate X
(a) by summing over N = 9 individual cases as in
(2), and
(b) by summing over N = 3 groups with weights
as in (4). §

2.2 Definition of CM

Figure 1 shows three masses with mα = 2, 3, 4
(say in kg) at positions xα = 1.6, 1.7, 1.8 (say in
m). The coordinate X of the center of mass (CM)
is defined in exactly the same way as in (3). The
general definition is the same as (4). Generalizing
to 3D, the position of the CM is

~R = X î + Y ĵ + Z k̂ (5)

with each component given by a formula such as
(4), or combining them together,

~R =

∑
amα~rα∑
αmα

=
1

M

∑
α

mα~rα (6)

where

~rα = xα î + yα ĵ + zα k̂ (7)

is the vector position of mass α, and

M =
∑
α

mα (8)

is the total mass.

Problem 2
Three masses are at the corners of a triangle in the
x–y plane, as shown in Figure 2 and as summa-
rized in Table 1.

α mα xα yα
1 3 0 0
2 4 1 0

3 5 1/2
√

3/2

Table 1. Three point masses at three positions.

Find the position of the CM. §

Problem 3
An H2O molecule consists of an O atom (m = 16)
connected to two H atoms (m = 1) with bonds
of length R = 0.096 nm. The two bonds make
an angle of 2θ = 104.5o with each other. Find the
distance between the CM and the O atom. (Regard
the atoms, or strictly speaking the nuclei containing
most of the masses, as points.) §

Problem 4
A double decker bus including its passengers has a
mass of 15 000 kg. One passenger, of mass 60 kg,
goes from the lower deck to the upper deck, which
are 2.5 m different in height. By how much has the
CM of the system shifted upwards? §

Problem 5
Consider the sun and the earth. How far is the CM
of the system from the center of the sun? Look up
the necessary data. §

There is no assumption that the various masses
mi are connected (e.g., Problem 4) or that they
have no relative motion (e.g., Problem 5). However,
if the masses are parts of a rigid body, then the CM
is a fixed point on that body.

3 Continuous distribution

For many continuous distributions of mass, the po-
sition of the CM can often be determined (fully or
partially) by symmetry. So for the examples below,
we do not have to do a full calculation for all three
coordinates of the CM.

Example 1
Find the CM of an arbitrary triangular lamina of
uniform density.

Consider the triangle ABC in Figure 3a. Re-
gard it as the sum of thin strips as shown in Figure
3b. The CM of each strip (a thin rectangle) is at
its midpoint, so the whole lamina can be regarded
as a series of point masses on the line AP , where
P is the midpoint of BC; thus AP is a median. By
the same argument the CM must also lie on the
other median BQ (Figure 3c). Thus the CM is at
the centroid, where the medians meet. By the way,
this gives an indirect proof that the three medians
meet at the same point (Figure 3d). §
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Example 2
Find the CM of a uniform thin lamina in the shape
of a semicircle of radius R (Figure 4a).

By symmetry, the CM must lie on the line shown,
at a vertical coordinate Y = γR, where γ is a pure
number, with 0 < γ < 1. (In fact, since the lower
parts of the lamina are bigger, it is obvious that
0 < γ < 1/2.) Cut the lamina into strips as shown
(Figure 4b), and let the mass per unit area be ρ.
The mass of each strip is

∆m = ρ× area

= ρ (2x∆y) = 2ρ
√
R2 − y2 ∆y (9)

where x is the coordinate of the right boundary.
Then, using the standard formula

Y =

∑
∆m · y∑

∆m

=

∑
2ρ
√
R2 − y2 y∆y∑

2ρ
√
R2 − y2 ∆y

=

∫ √
R2 − y2 y dy∫ √
R2 − y2 dy

(10)

In the last step, we have cancelled a common factor
of 2ρ and converted the sum to an integral, under-
stood to be between the limits y = 0 and y = R.
In these expressions, the numerator always has an
extra factor of y.

It is convenient to change to the dimensionless
variable ξ by y = ξR. The rest of the calculation is
left as a problem.

Problem 6
Continue with this Example.
(a) Show that

γ =

∫ √
1− ξ2 ξ dξ∫ √
1− ξ2 dξ

(11)

where the integrals are over 0 < ξ < 1.
(b) Evaluate these integrals and find γ.
(c) Check that 0 < γ < 1/2. §

Problem 7
The CM of a uniform solid hemisphere of radius R
is a height Y = γ′R from the base.
(a) Without doing any calculations, would you say
γ′ is larger or smaller than γ in the last problem?
(b) Actually evaluate γ′. §

Problem 8
Go back to the triangular lamina of Example 1 and
supposeA is at a height h above the baseBC. If the
height of the CM is Y = γh, find the dimensionless
number γ. §

4 Equilibrium and the center
of gravity

4.1 Equivalent force

A number of masses mα are attached to a hori-
zontal massless rod, at coordinates xα, and placed
in a uniform gravitational field, so vertical forces
mαg act on the masses (Figure 5a). It is claimed
that the situation is equivalent to a single force
Mg acting through the CM (Figure 5b), where
M =

∑
αmα. Equivalence means that the net

force and the net torque are the same. The for-
mer is obvious, and we now verify the latter, about
an axis through the origin O and perpendicular to
the page.

The force mαg with moment arm xα produces a
torque τα = (mαg)xα; the total torque in Figure
5a is

τ =
∑
α

τα =
∑
α

mαgxα (12)

For the situation in Figure 5b, the total torque is

τ ′ = (Mg)X (13)

These two expressions are equal, by the definition
of X in (4).

The point through which gravity appears to act
is called the center of gravity (CG). In a uniform
gravitational field, the CG is the same as the CM.
The proof is readily generalized to masses not con-
fined to one axis.

Note that these results depend on two assump-
tions: (a) the gravitational mass is the same as
the inertial mass; and (b) The gravitational field
strength is uniform.

Problem 9
Check that the two ways of calculating the torque
still agree if the axis is taken to be at x = c rather
than the origin. §
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4.2 Conditions for equilibrium un-
der uniform gravity

It was shown in the last module that the condition
for rotational equilibrium is that the net torque is
zero. Here we apply it to equilibrium under uniform
gravity, i.e., where the acceleration due to gravity
has the same direction and the same magnitude g.

The condition can be stated very simply: A body
placed in a uniform gravitational field will be in
equilibrium if supported (e.g., hung or pivoted) at
the CM.

The proof is simple. The forces on the differ-
ent parts of the system can be replaced by a single
force Mg acting at the CG (= CM). Thus, if the
supporting force (e.g., due to a string or a pivot)
acts through the same point (Figure 6), the two
forces together will produce zero torque about the
CM, and hence also about the any other point.

Example 3
Two masses m1, m2 are placed at the ends of a light
rod AB of length `. The rod is supported at the
point P where AP = r1, PB = r2 (Figure 7a).
How should r1 and r2 be related if the system is in
equilibrium?

The solution is obvious, namely

m1r1 = m2r2 (14)

This trivial example is included to set the stage for
the next Section. §

Example 4
A rectangular block (not necessarily uniform verti-
cally) has a base AB = 2b, and its CG is a height h
(not necessarily half the total height) from the base
(Figure 8a). It is placed on a slope with an angle
θ (Figure 8b). Assume there is enough friction so
that the block does not slide down. What is the
maximum value of θ such that the block does not
topple?

On the point of toppling, the block will balance
on one corner A. To remove reference to the un-
known force F exerted at A (which is a combina-
tion of normal reaction and friction), we consider
the torque about this point. The gravitational force
must act along the a line passing through A — if
it passes “outside” the base, there will be a net
torque in the direction to cause the block to top-

ple. Therefore we get

tan θ =
b

h
(15)

for the limiting angle θ. If the CM is low, a large
angle is possible. §

Example 5
A double-decker bus has a base (distance between
the left and right wheels) of 2b = 2.4 m. Its CG is
a height h = 1.2 m from the ground. Its total mass
is M = 15 000 kg. It is travelling at a speed of 36
kph and making a left turn on a road with radius of
curvature r = 40 m. What are the normal reaction
forces N1 and N2 on the left and the right wheels
respectively, assuming there is enough friction so
that the bus does not slide sideways off the road?
Refer to Figure 9a. The front and rear wheels on
each side are considered together.

We first list the forces (Figure 9b).

• Gravity W = Mg acts through the CM.

• Because the bus is undergoing circular motion,
in the frame co-moving with the bus, there is
a centrifugal pseudo-force F = Mv2/r which
is horizontal and acting through the CM.

• There are reaction forces N1 and N2 at the two
sets of wheels.

• There is friction from the road, just enough
to cancel F . This is shown as G in the fig-
ure. The forces due to the two sets of wheels
are combined into one force, because they act
along the same line.

There are two conditions. The vertical forces
have to balance, so

N1 +N2 = Mg (16)

The total torque about the CM also has to be zero,
so

−N1b−Gh+N2b = 0 (17)

where counterclockwise torque is taken as positive.
Simplifying,

N2 −N1 = (h/b)G = (h/b)Mv2/r (18)

Hence we have

N2,1 =
1

2
Mg

(
1± h

b
· v

2

gr

)
(19)
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where the upper (lower) sign refers to N2 (N1). If
the bus is not moving (v = 0) or is travelling along
a straight road (r → ∞), or if the CG is very low
(h/b � 1), then each set of wheels supports half
the weight; otherwise the outside wheels take up
more weight. §

Problem 10
Put in numbers and evaluate N1, N2 §

Problem 11
In general, what is the maximum speed for such a
bus when it is going round a bend with a radius of
curvature r? §

5 Moments about CM

5.1 An example

Go back to Example 3 and Figure 7a. If we take
the point P to be the CM, then condition (14)
holds. Choose a new set of coordinates x′, mea-
sured from the CM (Figure 7b). Then taking care
of signs, x′1 = − r1, x′2 = r2, and the condition for
equilibrium becomes

m1x
′
1 +m2x

′
2 = 0 (20)

For many masses (Figure 7c), the condition is ob-
viously ∑

α

mαx
′
α = 0 (21)

This means (multiplying throughout by g) that
there is at much clockwise torque (negative terms)
as anticlockwise torques (positive terms). We say
that the net moment about the CM is zero.

5.2 General statement and proof

We now give the general statement in 3D and also
provide a formal proof. Consider masses mα at
positions ~rα measured from an arbitrary origin O.
The particles need not make up a rigid body; the
positions may change with time, and we are only
looking at the situation at one time.

The CM is the point P , at position ~R given by
(6). The position of particle α with respect to P is
~rα
′, with the relationship (Figure 10)

~rα = ~R+ ~rα
′ (22)

Now multiply by mα and sum:

∑
α

mα~rα =

(∑
α

mα

)
~R+

∑
α

mα~rα
′ (23)

The LHS is M ~R by (6). For the first term on the

RHS, ~R does not depend on α and has been taken
out of the summation, and the sum in brackets
gives M ; thus this term is the same as the LHS.
Hence the last term is zero, namely∑

αmα~rα
′ = 0 (24)

which is the result we want, generalizing (21).

5.3 Breaking up the KE

Consider a cylinder rolling down a slope (Figure
11a), or a bottle after it has been thrown (Figure
11b). We can describe such motions of a rigid body
by specifying at any one time (a) the position of the

CM, namely ~R, and (b) the position of each small
particle with respect to the CM, namely ~rα

′. The
change of the former is the motion of the CM; the
change of the latter is a rotational motion about
the CM.

We claim that the total KE is the sum of two
terms: (a) the KE of the CM, regarded as a point

mass M moving according to ~R(t), and (b) the ro-
tational KE about the CM. To prove this, differ-
entiate (22) with respect to time, and in obvious
notation

~vα = ~V + ~vα
′ (25)

Square to get

v2α = V 2 + 2~V · ~vα′ + vα
′2 (26)

Multiply by (1/2)mα and sum. The LHS is
the total KE. On the RHS, the first term gives
(1/2)MV 2, i.e., the KE of the CM. The last term
gives the KE of the motion about the CM; it can be
written as (1/2)Iω2 using the appropriate moment
of inertia. So our claim is equivalent to saying that
the cross term vanishes, namely

~V ·
∑
α

mα~vα
′ = 0 (27)

which is obvious by differentiating (24).
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Warning: This decomposition of the total KE
does not work for other axes.

Problem 12
A cylinder of mass M and radius R is rolling down
an incline, with linear velocity V for the center,
and angular frequency ω about the center (Figure
12). The moment of inertia is I = βMR2. (For
example, β = 1/2 for a solid cylinder, but we leave
β general below).
(a) What is the total KE in terms of M,V, I, ω?
(b) Let the point of contact on the cylinder be Q.
What is the velocity of Q with respect to the cen-
ter? Hence what is the velocity of Q respect to the
slope?
(c) If Q is instantaneously at rest with respect to
the surface with which it is in contact, we say there
is no slip. In this situation, relate V and ω.
(d) Hence express the total KE in terms of M,V
and β when there is no slip. §

6 Motion of the CM

Consider a collection of point masses mα, which
need not be parts of a rigid body. Newton’s second
law for each point mass gives

mα
d2~rα
dt2

= ~Fα = ~F eα +
∑
β

~Fαβ (28)

The total force ~Fα acting on α is the sum of an
external force1 ~F eα and internal forces ~Fαβ acting
on particle α due to particle β. The convention is
Fαα = 0 (a particle does not act on itself). Sum
the above equation over α.

LHS =
∑
α

mα
d2~rα
dt2

=
d2

dt2

(∑
α

mα~rα

)

=
d2

dt2
(M ~R) = M

d2 ~R

dt2
(29)

i.e., mass × acceleration for a hypothetical point
particle of mass M at ~R(t).

On the right hand side, the internal forces add
up to ∑

α

∑
β

~Fαβ = 0 (30)

1That is, external to the system.

by Newton’s third law, e.g., ~F12 + ~F21 = 0. That
leaves the net external force, i.e., the sum of the
external forces acting on each particle:

~F e =
∑
α

~F eα (31)

Therefore we recover Newton’s second law for the
motion of the CM:

~F e = M
d2 ~R

dt2
(32)

If an object is thrown, each part of it may have a
complicated motion; but if we put a dot on the CM,
that dot undergoes very simple motion, e.g., along
a parabola if the object is in a uniform gravitational
field (Figure 13).

Example 6
Two masses each of 1 kg lie on a smooth table; they
are not connected. A force of 1 N acts on one of
them (Figure 14). Find the acceleration of each
mass and the acceleration of the CM.

For the mass on which the force acts, the accel-
eration is 1 N / 1 kg = 1 m s−2. The other mass
remains at rest.

The CM (the mid-point between the two masses)
obeys Newton’s second law with net force F = 1 N
and total massM = 2 kg; so it has an acceleration 1
N / 2 kg = 0.5 m s−2. The purpose of this example
is to stress that the CM can be just a mathematical
point — there is nothing there. §

Problem 13
A uniform circular disk is thrown with the follow-
ing initial conditions: horizontal velocity of the CM
u0 = 3.0; vertical velocity of the CM v0 = 4.0
m s−1; angular velocity abut the CM ω0 = 1.5
s−1(Figure 15). The center of the disk is P and
the point initially at the top of the disk is Q. Find
the following after a time of 3.0 s:
(a) the coordinates of P relative to its initial posi-
tion P0;
(b) the coordinates of Q relative to P ; and
(c) the coordinates of Q relative to P0. §

The spreadsheet tumble2.xlsx shows the posi-
tions of P and Q as functions of time, and also plots
the trajectories. You should redo the spreadsheet
(by just changing one parameter) and see what hap-
pens for larger ω0, e.g., 10 times larger. For small
ω0, there is little rotation and the motions of Q
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looks very much like P , but for larger ω0, the mo-
tion of Q looks complicated, but is in fact a com-
bination of two simple motions.

Appendix

A Averages and moments

Many formulas and derivations can be simplified
through an abstract notation. Any quantity de-
pending on the index α will be denoted by a
lower case symbol, e.g., fα, and then the index is
dropped:

fα 7→ f (33)

The average is defined as

〈f〉 =

∑
αmαfα∑
αmα

(34)

for a given set of weights mα. Note that taking
average is a linear operation, and 〈1〉 = 1.

For a variable x, let

X = 〈x〉 (35)

and write

x = X + x′ (36)

Taking average, we see

〈x〉 = X + 〈x′〉 (37)

proving the last term is zero — namely the mo-
ments about the CM is zero.

The same formulas are useful in statistics (for
which uniform weights are the most common). It
is suggestive to write x′ as ∆x, the deviation from
the mean:

deviation = ∆x

= x−X
square deviation = (∆x)2

= x2 − 2xX +X2

mean square deviation ≡ σ2 = 〈(∆x)2〉
= 〈x2〉 − 2〈x〉X +X2

= 〈x2〉 −X2

= 〈x2〉 − 〈x〉2 (38)

The parameter σ is called the root mean square de-
viation or the standard deviation.
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