
Line integrals

October 3, 2015

The main topic is the integral of a vector function
along a path (such as the work done by a force):∫
~F (~r) · d~r. Such integrals are defined, and ways

to evaluate them are discussed: numerical methods
and reduction to ordinary integrals. The opportu-
nity is also taken to discuss other integrals over a
curve, e.g.,

∫
F (~r) ds, where s is the path length.

To be self-contained, some of the material on work
and energy is repeated in a more general language.
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1 Definition of line integral
and numerical evaluation

1.1 Definition

A line integral

I =

∫
γ

~F · ~r (1)

is defined for a vector function ~F which depends on
position (i.e., a vector field):

~F = ~F (~r)

= Fx(x, y, z) i + Fy(x, y, z) j + Fz(x, y, z) k (2)

and a path γ = γ(A,B) which is a curve with a
sense of direction (i.e., going from A to B rather
than the other way round). The representation in
Cartesian coordinates can be generalized to n di-
mensions, in an obvious manner. Most of the ex-
amples will be in 2D.

The integral is defined as∫
γ

~F · ~r = lim
∑

~F (~r) ·∆~r (3)

which is a shorthand for the following procedure
(Figure 1):

• Chop the path γ into short segments ∆~r, each
of which can be regarded as a vector along the
path, in the direction specified by the sense of
γ.

• Evaluate ~F at some point (ideally the mid-
point) in the segment. Calculate the dot prod-
uct

~F ·∆~r = Fx∆x+ Fy∆y + Fz∆z (4)

• Add up all the contributions.

• Repeat this procedure for shorter and shorter
segments and take the limit |∆~r| → 0.

In practice, a good answer will be obtained for some
small but finite ∆~r, and we often omit the symbol
lim in (3).
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1.2 Motivation

Such line integrals arise in elementary physics in at
least three contexts.

• ~F is the force, and the integral is the work
done.

• The line integral of the electric field ~E around
a closed loop is the EMF. Faraday’s law relates
EMF to the rate of change of magnetic flux.

• In time-independent situations, the line inte-
gral of the magnetic field ~B around a closed
loop γ is related to the current going through
the surface S bounded by γ; this is Ampere’s
law for magnetostatics.

1.3 Additivity

The following additivity properties are obvious.

Additivity in the integrand

∫
γ

(∑
i

αi ~Fi

)
· d~r =

∑
i

αi

∫
γ

~Fi · d~r (5)

where ~F1, ~F2, . . . are several vector fields. Note that
the sum on the LHS is a vector sum, whereas the
sum on the RHS is a scalar sum.

Additivity in the path
The additivity in the path arises because of the
additivity in ∆~r and can be expressed in an obvious
shorthand as ∫

γ1

+

∫
γ2

=

∫
γ

(6)

where γ1 = γ1(A,B), γ2 = γ2(B,C), and

γ = γ(A,C) = γ1(A,B) + γ2(B, c) (7)

is the composite path joining A and C (Figure 2).
Note that γ has to be the composite path, not any
other path joining A and C.

Doubling back
If γ2 = − γ1, i.e., the same path traversed in the
opposite direction, then the integrals will cancel,
because on the two paths, ~F are the same but ∆~r
are opposite.

1.4 Examples

The definition is illustrated by several examples,
which are basically the same as those used in the
module on work. The numerical schemes can be
found in the spreadsheet line.xlsx. Consider two
force fields ~F :

~F1(x, y) = 3x2 i + y2 j

~F2(x, y) = 3y2 i + x2 j (8)

and two paths linking the same endpoints A and B
(see Figure 3):

γ1 = arc of radius R from angle θA to θB

γ2 = straight line linking the points

A and B (9)

where

R = 2 , θA = 30o , θB = 60o

xi = R cos θi , yi = R sin θi (10)

i = A,B, so that specifically (xA, yA) = (
√

3, 1),
(xB , yB) = (1,

√
3).

Example 1
Calculate the line integral of ~F1 along γ1. This is
the same as an Example in the module on work.

Divide the path into small intervals between the
points θ = 30, 31, . . . , 59, 60 (all angles in degrees);
each interval is a short vector ∆~r. Calculate (4) for
each interval (but here without the z-component).

We choose arbitrarily to evaluate ~F at the beginning
of each interval. The calculation can be handled
conveniently using a spreadsheet (sheet1), giving
I = − 2.8952. A slightly better calculation, by
evaluating ~F at the midpoint of each interval (sheet
2), gives W = − 2.7974. The exact answer (see
below) is (2− 6

√
3)/3 = − 2.7974.

Note that in the spreadsheet we skip the last en-
try: The row for θ = 59 gives the integral for the
interval θ = 59 to 60. §

Problem 1
Using the same spreadsheet as a template, calculate
the line integral of ~F2 along γ1. §

Example 2
Calculate the work done by ~F1 along γ2.

A general point along the path is

x(t) = (1−t)xA + txB

y(t) = (1−t)yA + tyB (11)
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0 ≤ t ≤ 1. Take short intervals between the points
with say t = 0, 0.02, 0.04, . . . 0.98, 1.00, with ~F eval-
uated at the midpoint of each interval. The answer
is I = − 2.7974 (sheet 3), exactly as in Example
1. In this case, the integral is the same for the two
paths. (We cannot yet say that it is independent
of path, since that would require us to check every
path.) §

Problem 2
Using the same spreadsheet as a template, calculate
the line integral for ~F2 along γ2. It will be found
that in this case the integral is dependent on path.
§

2 Reduction to ordinary inte-
grals

Consider one term in (4) and take the limit. We
would have an integral of the form∫

γ

Fx(x, y, z) dx (12)

When we integrate over dx, y and z cannot be re-
garded as “other” (i.e., independent) variables, be-
cause on a given path the Cartesian coordinates
are related. We must reduce everything to only
one variable, by parametrization of a path.

2.1 Parametrization of path

Path
Formally, a path γ is a continuous set of points

~r(t) = x(t) i + y(t) j + z(t) k (13)

where x(t), y(t), z(t) are functions of a path param-
eter t, ranging from tA to tB . The sense of the path
is defined conventionally by increasing t.

Example 3
If a projectile is thrown at an angle, then its path
is, in obvious notation,

x(t) = u0t

y(t) = v0t− (1/2)gt2 (14)

where t is the time, say over the interval 0 ≤ t ≤
T = 2v0/g.

The path parameter need not be the time, and
indeed can be arbitrarily transformed. For exam-
ple, we can use the path parameter s = t2 and

x(t) = u0s
2

y(t) = v0s
2 − (1/2)gs4 (15)

The line integral etc. are all invariant under such
relabelling of the path parameter. §

Example 4
The path γ1 can be described by the path param-
eter θ:

x(θ) = R cos θ , y(θ) = R sin θ (16)

Except for the path parameter, all other variables
on the RHS (e.g., R) must be constants. §

Example 5
The path γ2 is described by (11) in terms of the
interpolating parameter t, with 0 ≤ t ≤ 1. §

Example 6
As an example in 3D, consider:

x(θ) = R cos θ

y(θ) = R sin θ

z(θ) = aθ (17)

where say 0 ≤ θ ≤ 6π. This describes a spiral with
3 turns and a pitch of p = 2πa. §

Tangent to the path
A tiny displacement ∆~r along the path is tangent
to the path. Since it is inconvenient to deal with
infinitesimal quantities, let us divide by ∆t where
t is the path parameter. Thus define

~V =
d~r

dt
(18)

which is a vector tangent to the path. A unit tan-
gent is obtained by

~v =
~V

|~V |
(19)

If t is the time, then ~V is the velocity.

Example 7
Find the tangent vector to γ1 at an arbitrary angle
θ.
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From the parametrization (16),

Vx = dx/dθ = −R sin θ

Vy = dy/dθ = R cos θ

|V | = R

vx = − sin θ

vy = cos θ (20)

Sketch this vector and understand the signs. §

2.2 Integration over path parameter

In the definition of the line integral, e.g. (1), divide
and multiply by dt (or in the discrete version by
∆t): ∫

γ

~F · d~r =

∫ tB

tA

~F · d~r
dt
dt

=

∫ tB

tA

(
Fx
dx

dt
+ Fy

dy

dt
+ Fz

dz

dt

)
dt

≡
∫ tB

tA

P (t) dt (21)

which is now expressed as an ordinary integral, with
the integrand P (t) being the expression in brackets.

If ~F is the force and t is the time, then P (t) is just

the power ~F · ~V , whose integral over time is the
total work done.

Once the path has been parameterized, line in-
tegrals are reduced to ordinary integrals — and all
the techniques for dealing with the latter can be
employed.

2.3 Examples

Example 8
Repeat Example 1 using a path parameter.

x = R cos θ

y = R sin θ

Vx = dx/dθ = −R sin θ

Vy = dy/dθ = R cos θ

Fx = 3x2 = 3R2 cos2 θ

Fy = y2 = R2 sin2 θ (22)

The integrand is

P (θ) = FxVx + FyVy

= (3R2 cos2 θ)(−R sin θ) + (R2 sin2 θ)(R cos θ)

= R3(−3 cos2 θ sin θ + sin2 θ cos θ) (23)

It is left as an exercise to evaluate
∫
P (θ) dθ. §

Problem 3
Complete the final step in the last example, for the
endpoints being those in Example 1. §

Problem 4
In a similar manner calculate the line integral for
F2 along the same path. §

Problem 5
In a similar manner (now using the parameter t),

calculate the line integral of ~F1 and ~F2 along γ2. §

3 Other integrals along a line*

* This part is not needed for dealing with work and
energy, and can be skipped.

In the line integrals defined above, the infinitesimal
element is d~r, a vector. The contribution of each
segment depends on the direction of that segment.
Other situations arise in which the infinitesimal el-
ement is ds, the length of the segment, which is a
scalar. In this case, if the path doubles back on it-
self, the two segments do not cancel: the integrand
is the same, and ds is also the same.

3.1 The path length

The commonest integral is the length of a path. A
small segment of path has a length

∆s =
√

(∆x)2 + (∆y)2 (24)

and upon taking the continuum limit, the total
length is given formally by

s =

∫
ds =

∫ √
(dx)2 + (dy)2 (25)

It may seem perplexing to have the differentials ap-
pearing in this manner. Divide and multiply by dt
(and remember that inside the square root we need
two powers of dt):

s =

∫ √(
dx

dt

)2

+

(
dy

dt

)2

dt

≡
∫
g(t) dt (26)

reduced to an ordinary integral.
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Example 9
Find the length of the path in (14) from t = 0 to
t = T ≡ 2v0/g. Take u0 = v0 = 5, g = 10.

We have T = 1 and

dx/dt = 5

dy/dt = 5 (1− 2t)

s = 5

∫ 1

0

√
1 + (1−2t)2 dt (27)

This ordinary integral can be handled in various
ways. §

Problem 6
Evaluate (27)
(a) numerically using a spreadsheet, and
(b) analytically.
Hint: Put τ = 2t− 1 and then τ = sinh θ. §

Problem 7
An ellipse with semi-major axis a and semi-minor
axis b is described by

(x/a)2 + (y/b)2 = 1 (28)

We can use a parameter θ such that

x = a cos θ

y = b sin θ (29)

Note that θ is not the polar angle.
(a) Express the circumference as an integral over θ.
(b) For a = 1, b = 2, evaluate the integral numeri-
cally. (It is enough to consider one quadrant.)
(c) Try to do the integral analytically, for general a
and b. Without loss of generality assume a ≤ b. §

Problem 8
Calculate the length of the spiral in Example 6. §

3.2 Another example

In the study of planetary motion, the usual start-
ing point is to consider the sun (assumed to be so
heavy that it does not move) and only one planet
(say Mercury) at a distance r. This problem is
readily solved, and gives Kepler orbits. But actu-
ally every other planet (say Uranus, mass m, at
distance R from the sun) produces a small addi-
tional effect. For long-term effects, take the other
planet of mass m to be “smeared out” into a ring
at radius R. What is the potential Φ (PE per unit

mass) experienced by the first planet at the point
P? See Figure 4.

The mass per unit length on the ring is λ =
m/(2πR), and the distance between a part of the
ring at X and the planet at P is q = XP . Thus
the potential is

Φ(r) = −
∫
G(λ ds)

q
(30)

which involves an integral over a line, in this case a
circle. Express everything in terms of the angle θ:

ds = Rdθ

q2 = (R cos θ − r)2 + (R sin θ2) (31)

Thus

Φ(r) = − Gm

R

∫ 2π

0

Rdθ√
r2 − 2rR cos θ +R2

≡ − Gm

R
I (32)

where it is easy to see that the integral I depends
only on the ratio

ξ =
r

R
(33)

Problem 9
Evaluate I numerically for ξ = 0.3. This integral
was also discussed in the module on Integration:
Part 1.1 §

1See KH Lo, K Young and BYP Lee, “Advance of Perihe-
lion”, Am. J. Phys., 81, 695 (2013). doi 10.1119/1.4813067.

5



03/10/2015 mm006 1

𝛾

𝐴

𝐵

Δ 𝑟

 𝐹

 
𝛾

 𝐹 ⋅ 𝑑  𝑟 = lim  𝐹  𝑟 ⋅ Δ 𝑟

Figure 1



03/10/2015 mm006 2

𝛾 𝐴, 𝐶 = 𝛾1 𝐴, 𝐵 + 𝛾2 𝐵, 𝐶

𝛾2𝐴

𝐵

𝐶

𝛾1

Figure 2



03/10/2015 mm006 3

𝑦

𝑥

𝐴

𝐵

𝛾1

𝑦

𝑥

𝐴

𝐵

𝛾2

Figure 3a

Figure 3b



03/10/2015 mm006 4

𝑆

𝑀

Planet mass 𝑚 at 𝑅
regarded as a smeared-out ring

𝑑𝑠

𝑞

𝑅

𝑟

𝜃

Figure 4a

Figure 4b


	MM016
	mm016 v05 figures

