
Work: higher dimensions

October 2, 2015

The concept of work is introduced for n dimensions.
Line integrals are defined and the condition for a
force to be conservative is stated (with derivation
in a later module). Students should first review the
corresponding material for one dimension.
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1 Definition of work

1.1 Constant force

In terms of magnitudes
The work done by a constant force ~F in moving an
object through a displacement ~s is defined as

W = ~F · ~s
= F‖ s = Fs cosα (1)

where F‖ is the parallel component of ~F , i.e., the
component along the displacement, and α is the
angle between ~F and ~s (Figure 1).

Example 1
A mass m is subject to gravitational force mg. Find
the work done by an external force ~Fe in moving the

mass without acceleration (a) vertically upwards
by a height h from A to B; and (b) at 45o to the
vertical, from A to C at the same height as B (so
that the distance travelled is

√
2h); see Figure 2.

Choose coordinates such that x is horizontal and
+y points vertically upwards.

~F = −mg j (2)

(a) For the first case,

~Fe = − ~F = mg j

~s = h j

W = ~Fe · ~s = mgh (3)

(b) For the second case,

W = Fes cosα

= (mg)(
√

2h) cos 45o

= mgh (4)

Alternately we can evaluate the dot product using
Cartesian components:

W = ~Fe · ~s
= Fexsx + Feysy

= (0)(h) + (mg)(h) = mgh (5)

The two methods of course agree. §

In terms of Cartesian components
The displacement is the same as change of the po-
sition ~r:

~s = ∆~r

(sx, sy, sz) = (∆x,∆y,∆z) (6)

It is obvious, now generalizing to 3D and writing
the work as ∆W for a small displacement:

W = ~F ·∆~r
= Fx∆x+ Fy∆y + Fz∆z (7)
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The generalization of this formula (and others be-
low) to n dimensions is straightforward.

Example 2
A force ~F = 9.000 i + 1.000 j pushes a mass from
(x, y) = (1.7321, 1.0000) to (1.7143, 1.0301). Find
the work done.

We have ∆x = −0.0178, ∆y = 0.0301, so apply-
ing (7),

W = (9.000)(− 0.0178) + (1.000)(0.0301)

= − 1.2937× 10−1 (8)

Cartesian coordinates allow computation without
diagrams. However, sketch the force and displace-
ment and try to understand their directions. §

Example 3
A force which depends on position as

~F (x, y) = 3x2 i + y2 j (9)

pushes a mass along an arc of radius R = 2 from
θ1 = 30o to θ2 = 31o. The angles are measured
from the x-axis.

The displacement is small and we can regard the
motion as being along a straight line from ~r1 to ~r2,
with xi = R cos θi, yi = R sin θi. These positions
are exactly the same as those in Example 2. The
force may be approximated as constant over a short
interval, and if we evaluate at ~r1, then Fx = 3x2

1 =
9.000, Fy = y2

1 = 1.000, again as in Example 2. So
the work done is also exactly the same. §

Problem 1
Repeat Example 3 for the displacement between
θ1 = 50o to θ2 = 51o. §

1.2 Linearity

Linear property
Work is linear or additive in both the force and the
displacement. If there are several forces ~F1, ~F2, . . .,
then the work done by the net force ~F =

∑
i
~Fi is

given by W =
∑
iWi, where Wi is the work done

by the force Fi.
1 The same additive property will

also apply to potential energy. Other consequences
of linearity will be cited later.

Perpendicular component does no work
Why do we define work as in (1), in terms of a dot

1Note: The first sum here involves vector addition and
the second sum involves scalar addition.

product, i.e., considering only the parallel compo-
nent of the force? Beginning students may say:
“Because the perpendicular component does no
work”. This answer is wrong; it is circular reason-
ing. The perpendicular component does no work
because we have defined W by the dot product.

Suppose we define “work” as W ′ = F s, i.e., the
product of the magnitudes. Consider two forces
~F1 = i, ~F2 = − i and a displacement ~s = j. If we
calculate the individual values, W ′1 = 1, W ′2 = 1.

But the total force is ~F = 0, so using it to calculate
the total “work” would give W ′ = 0 6= W ′1 + W ′2.
You can of course define “work” this way, but the
resultant concept would not be of much use.

1.3 Variable force

Continue with Example 3 for a larger interval. It
is no longer legitimate to regard the force as con-
stant. The numerical calculations are all in the
spreadsheet work-b.xls.

Example 4
As in Example 3, find the work done in moving the
mass along the arc, from θA = 30o to θB = 60o. In
the following, all angles are expressed in degrees.

Repeat Example 3 for each small interval be-
tween the points θ = 30, 31, . . . , 59, 60. The con-
tribution for the first interval is just Example 3;
the contribution for the interval θ = 50 to 51 is
just Problem 1. The calculation can be handled
conveniently using a spreadsheet (sheet 1), giving
W = − 2.8952. A slightly better calculation, by
evaluating ~F at the middle of each interval (sheet
2) gives W = − 2.7974. The exact answer (if you
know calculus) is (2− 6

√
3)/3 = − 2.7974.

Note that in the spreadsheet we skip the last en-
try for the work: The row for θ = 59 gives the work
done for the interval θ = 59 to 60. §

This example leads to the following rule.

• Chop the whole path γ from A to B into short
intervals ∆~r.

• Calculate the work done in each interval by
(7), where ~F is evaluated anywhere in the short
interval (but optimally in the middle).

• Add it all up.

• Theoretically, repeat the calculation for
smaller and smaller ∆~r (which would involve
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more and more terms) until the answer con-
verges.

All this is summarized by the shorthand

W (γ) = lim
∆~r→0

∑
~F ·∆~r (10)

or less formally (with the limit understood) as

W (γ) =
∑ ~F ·∆~r (11)

In practice, this means using a finite but sufficiently
small ∆~r. Note that W is labelled not just by the
endpoints but by the path.

In general, “chop and add” is the only way of
calculating the work done.

Example 5
Calculate the work done by the same force as in
Example 4, for the same endpoints, but along a
straight line joining them.

The endpoints are (xA, yA) = (
√

3, 1) and
(xB , yB) = (1,

√
3), and a general point along the

path:

x(t) = (1−t)xA + txB

y(t) = (1−t)yA + tyB (12)

with t (0 ≤ t ≤ 1). Take short intervals between the
points with say t = 0, 0.02, 0.04, . . . 0.98, 1.00, and
evaluate the force at the middle of each interval
(sheet 3). The answer is W = − 2.7974, exactly
as in Example 4. In this case, the work done is the
same for both paths. §

Problem 2
Use spreadsheets to calculate the work done along
the two paths in Example 4 and Example 5, for the
force

~F (x, y) = 3y2 i + x2 j (13)

In this case that the work done along the two paths
are different. §

Linearity again
This limiting procedure only makes sense if W
is linear in ∆~r. Suppose the basic definition is
quadratic in the size of the interval. Then if each
interval is further chopped into two, there would be
2 times as many terms, each 1/4 the original value,
so the sum is reduced by 1/2 — the limit would not
exist.

Zitterbewegung*
(*This advanced diversion can be skipped.)
Consider a range L so small that the force can be
considered constant, and suppose a particle moves
from A to B (Figure 3). The displacement is

∆~r = ~rB − ~rA (14)

as shown by the thick arrow in Figure 3. The work
done is W = ~F ·∆~r.

But suppose the particle does not go along a
straight line, but has a “trembling motion” (in Ger-
man “Zitterbewegung”) with little zigzag segments
∆~r1, ∆~r2, . . . , as shown by the thin lines in Figure
3. Then the individual pieces of work done would
be

Wi = ~F ·∆~ri (15)

These add up to ~F ·∆~r, as if the particle had gone
along the straight path — because W is additive
in the displacement. So we do not need to know
the fine resolution of the path below the scale L.
Without linearity, we would have to know about
any “trembling motion” of the particle.

You would object: By Newton’s law, the parti-
cle cannot zigzag. But who says Newton is right?
At sufficiently small length scales, Newtonian me-
chanics breaks down, there is uncertainty in the
position, and in some sense (most precisely in the
sense of the Feynman path integral) the particle can
go along any possible path. Fortunately, because of
the above argument, we do not need to worry.

This point is mentioned to emphasize that the
concepts of work and potential energy go beyond
Newtonian mechanics. Quantum mechanics in-
volves the potential energy in an essential way. Lin-
earity allows us to define work and hence potential
energy independent of the fine details of the path.

1.4 Line integral

The limiting value of a sum such as (11) is called a
line integral. The work is defined for a path γ with
endpoints A and B:

W (γ(A,B)) =

∫
γ(A,B)

~F (~r) · d~r (16)

Consider a fixed starting point O (not necessarily
the origin) and allow the endpoint to be a variable,
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say ~r.

W (γ(O,~r)) =

∫
γ(O,~r)

F (~r ′) · d~r ′ (17)

Here, ~r is the endpoint or upper limit, with a def-
inite value, while in the integrand ~r ′ is a dummy
variable along the path. But when there is no dan-
ger of confusion, we can write in a slightly sloppy
way:

W (γ(O,~r)) =

∫
γ(O,~r)

~F (~r) · d~r (18)

Line integrals are discussed systematically in a
later module. Here we only need two properties:

• The definition in terms of the limit of a sum,
and the corresponding numerical method (the
simplest version).

• The fundamental theorem of calculus: integra-
tion is the reverse of differentiation. This will
be discussed formally in a later module, but
more physically here and in the next module
in terms of the relationship between potential
energy and force.

2 Reducing to ordinary inte-
gral

In this Section, we briefly sketch how a line inte-
gral can converted to an ordinary integral. A more
formal discussion is presented in a later module.

Take (11) and write out the dot product in Carte-
sian coordinates:

W =
∑

(Fx ∆x+ Fy∆y + Fz ∆z) (19)

Passing to the limit of small intervals and writing
out explicitly the dependence of the force fields on
position:

W =

∫
γ

Fx(x, y, z) dx+ Fy(x, y, z) dy

+ Fz(x, y, a) dz (20)

where we have indicated the integration as over a
path γ. How do we do such an integral?

When you do dx, you cannot regard y and z as
simply “other” variables. If the path is a part of a

circle of radius R in the x–y plane, then y is just a
shorthand for

√
R2 − x2. Thus the key is to reduce

everything to one single independent variable. We
illustrate with one example.

Example 6
Redo Example 3 by converting to an ordinary inte-
gral.

Obviously the angle θ is the most convenient in-
dependent variable. So we have

x = R cos θ

y = R sin θ

dx = −R sin θ dθ

dy = R cos θ dθ

Fx = 3x2 = R2(3 cos2 θ)

Fy = y2 = R2(sin2 θ) (21)

If we put all this into (20) we would get an expres-
sion of the form

W =

∫
G(θ) dθ (22)

between the limiting values θA and θB .

Problem 3
Finish the above calculation and verify the answer
(2− 6

√
3)/3 cited in Example 4. §

Problem 4
Find the work done in Example 5 analytically, using
the variable t as the independent variable. Verify
the answer (2− 6

√
3)/3 cited in Example 4. §

Problem 5
Repeat Problem 2 analytically, for the two paths.
§

The method presented here allows a line integral
to be converted to an ordinary integral, but does
not guarantee that the latter can be evaluated an-
alytically (even though we can do so in the sim-
ple examples above). But it is still often useful to
convert to an ordinary integral before resorting to
numerical methods.

3 Dependence on path?

The concept of potential energy (PE), and hence of
the conservation of energy, can only apply to con-
servative forces, i.e., those for which the work done
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is independent of path. In the discussion for 1D,
a necessary condition was pointed out: the force
depends only on position, ~F = ~F (~r), thus exclud-
ing for example magnetic force and friction. But
beyond 1D, there are additional conditions.

3.1 Reduction to closed loops

Figure 4a shows two paths γ1 and γ2, both go-
ing from A to B. The question we want to ask is
whether

W (γ1)
?
= W (γ2)∫

γ1

~F · d~r ?
=

∫
γ2

~F · d~r (23)

Define the closed path γ as (Figure 4b)

γ = γ1 − γ2 (24)

in other words, go along γ1 and then in the reverse
direction along γ2. Then (23) is the same as asking
whether

W (γ)
?
= 0∮

γ

~F · d~r ?
= 0 (25)

The little circle on the integral sign denotes a line
integral over a closed path. Since we need (23) to
hold for any pair of paths γ1 and γ2 that share the
same endpoints, the condition (25) must hold for
every closed loop.

3.2 Examples

Just to gain some familiarity with the concepts, let
us evaluate some closed loop integrals.

Example 7
Take the closed loop to be a circle of radius R and
the force to be

~F = x i + y j

= R (cos θ i + sin θ j) (26)

The line element is

~dr = dx i + dy j

= d(R cos θ) i + d(R sin θ) j

= R (− sin θ i + cos θ j) dθ (27)

and the integral is

W =

∫ 2π

0

~F · d~r

=

∫ 2π

0

R2(− sin θ cos θ + sin θ cos θ) dθ

= 0 (28)

We do not know yet whether the force (26) is con-
servative, since the present calculation does not
prove that the integral is zero for every closed path.
§

Example 8
For the same path, calculate the work done for

~F = y i− x j

= R (sin θ i− cos θ j) (29)

The expression for d~r is the same as in (27) and the
integral is

W =

∫ 2π

0

[R (sin θ i− cos θ j)]

· [R (− sin θ i + cos θ j) dθ]

= R2

∫ 2π

0

(
− sin2 θ − cos2 θ

)
dθ

= − 2πR2 6= 0 (30)

So the force (29) is not conservative. §

Problem 6
Sketch the force vectors at the positions (x, y) =
(1, 0), (0, 1), ( − 1, 0), (0, − 1) for both Example 7
and Example 8, and give a qualitative explanation
as to why one closed loop integral is zero and the
other is not. §

3.3 Condition for conservative force

To show that a force field is not conservative, it is
enough (as in Example 8) to find one closed loop
for which the work done is nonzero. But to prove
that the force field is conservative would require us
to check every closed loop; this is not possible. So
a better method is needed.

Here we only state the result and sketch the steps
of the proof; details are in the modules that discuss
line integrals more formally and mathematically.
The argument goes in two steps.
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First, every closed loop (Figure 5a) can be re-
garded as the sum of small rectangular loops (Fig-
ure 5b); the overlapping internal lines cancel. So
it suffices to check every small rectangular loop.

Second, consider a small rectangle, say in the x–y
(Figure 6). Here we sketch only the main ideas.

• For the two horizontal segments, only Fx is in-
volved. They are evaluated at different values
of y, and enter with opposite signs because the
segments are traversed in opposite directions.
Their difference is related to ∂Fx/∂y.

• By the same arguments, the two vertical seg-
ments give a result related to ∂Fy/∂x.

Putting these together and generalizing to other
planes, the condition for the closed loop integral to
be zero is (details in a later module)

(curl ~F )ij = 0 (31)

for any Cartesian indices i, j, and curl ~F is, e.g.,

(curl ~F )xy =
∂Fy
∂x
− ∂Fx

∂y
(32)

The object curl ~F is antisymmetric in its indices.
In n dimensional space it has n(n−1)/2 indepen-
dent components (respectively 0, 1, 3, 6, 10, . . . com-
ponents for n = 1, 2, 3, 4, 5, . . .). In 1D, it has no
nontrivial component and the condition (31) is vac-
uous. This slightly unfamiliar notation makes the
above concepts valid in any number of dimensions.

Notation for 3D
In 3D (and only in 3D), it is possible to adopt a sim-
pler notation using only one index: define a vector
Ω such that

Ωz = (curl ~F )xy (33)

etc., or more formally

Ωi =
1

2
εijk (curl ~F )jk (34)

where εijk is the totally antisymmetric Levi-Civita
symbol and the summation convention is adopted.
The factor 1/2 appears because the terms with jk
and kj are double counted. Obviously we can also
write ~Ω as a cross product:

~Ω = ~∇× ~F (35)

and the condition of conservative force is

~∇× ~F = 0 (36)

This notation is only possible in 3D. For example,
in (33), the indices on the RHS are x, y and the
index on the LHS is “the remaining index”. There
is no unique remaining index in say 4D.

Problem 7
Go back to Example 7 and calculate curl ~F . Thus
show that the work done is zero around any closed
loop. §

Problem 8
Go back to Example 8. Calculate curl ~F . Thus
show that the work done around a closed loop is in
general nonzero. §

Problem 9
This is to set the stage for the next Problem. Show
that

∂r

∂x
=

x

r
(37)

Hint:

∂r

∂x
=

∂r2

∂x

/
dr2

dr
(38)

This formula is useful in many contexts and should
be remembered. §

Problem 10
Show that any central force, i.e.,

~F = f(r) er = f(r)
~r

r

Fx = f(r)
x

r
(39)

is conservative. §

Problem 11
Suppose a force field is given in terms of a scalar
function (see next module) as

Fx(x, y, z) = − ∂U(x, y, z)

∂x
(40)

etc. Show that such a force field satisfies (31). §
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