Ellipses

February 20, 2018

Ellipses are described algebraically. Four different

approaches are related.
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1 Introduction

1.1 Motivation

Kepler orbits are ellipses, so a knowledge of ellipses
is important for studying planetary motion. This
module introduces the mathematics of ellipses from
an algebraic point of view. Calculus or advanced
mathematics is not needed.

1.2 Axes and foci

An ellipse is shown in Figure 1a. It is centered at
the origin O. Let the major azis AA’ (length 2a) lie
along the x axis and the minor azis BB’ (length

2b) lie on the y axis. An ellipse is characterized
by two foci F' and F’ along the major axis. The
eccentricity e (by convention > 0) is defined as

||
|AA|

Thus the coordinates of ' and F’ are Fc = Fea.
In other words, the points A, F, O, F’, A’ lie on the
x axis with coordinates —a, —ea, 0, ea, a.

1.3 Four ways to define an ellipse

There are four ways to define an ellipse.

1. An ellipse is the set of points P such that PF+
PF'is a constant. (If the two foci coincide, the
ellipse reduces to a circle.)

2. An ellipse is the set of points (x,y) such that
22/a® + y?/b?> = 1, which we refer to as the
canonical formula. (The case b = a reduces to
a circle.)

3. An ellipse is the intersection of the surface of a
cone with a plane. (The case where the plane
is parallel to the base reduces to a circle.)

4. An ellipse is the set of points P with polar co-
ordinates (r, ¢) measured from one focus (not
the center), satisfying r = a/(1+ecos¢). (The
case e = 0 reduces to a circle.)

2 Sum of distances from two
foci

2.1 Basic definition

We take the following to be the basic definition
(Figure 1b): Consider all points P such that



PF + PF' is a constant, say L. Take P to be A.
Then

L = AF+AF = AF+ AF =AA =2a

2.2 Minor axis

Now consider the point B. Consider the right-angle
triangle BF'O. Obviously the hypotenuse is BF =
BF’ = a. The base is OF = ea. Hence the height
b is given by b? = a? — (ea)?,

b=avy1—e?

(1)

3 Canonical formula

3.1 Derivation of canonical formula

The condition in Section 2 can be written as

VQ+VQ = 2 (2)

where

Q= (PF)
Q/ _ (PF/)2

x4ty
x—c)2+y2

—~~

3)

To get rid of the square roots in (2) requires
squaring twice:

Q+2/QQ +Q = da?
10 - (Q+Q) = 2/QQ
16a* —8a2(Q+ Q)+ (Q+Q)? = 4QQ’

160" —8(Q+ Q) +(Q-Q) = 0
We have

2($2+y2+02)
4cx

Q+Q =
Q- =
Note that in (Q — Q)% , the terms quartic in the

coordinates cancel, and we are left with a quadratic.
Specifically

16a* — 16a* (2 + y* + ) + 16c¢*2* = 0
2

x2+y2+c2—c—2x2 — g2
a

2
(12)x2+y2 — a2_c2
a

bZ
Fr Ay =

which leads to the canonical formula

(4)

Although the preceding calculation looks a bit
complicated, once you realize that (a) the formula
is quadratic, and (b) there are no cross terms xy,
then it must be reducing to a form such as (4).

3.2 Area of ellipse

Start with a circle

and scale the y coordinate by a ratio b/a. Obviously
the result is (4). This shows that the area of an
ellipse is

A = mab (5)

4 Conic section

4.1 General conic section

Historically, especially before the advent of coor-
dinate geometry, ellipses (as well as parabolas and
hyperbolas) were described as conic sections, i.e.,
the intersection of a cone with a plane. Start with
horizontal circles

22y = p?

where the radius is p = R for the base at z = 0
and decreases linearly to zero at the apex at z = H
(Figure 2a):

p = R(1—z/H)

Thus the surface of the cone is
2 +y? = R*(1-z/H)?

This is a quadratic, and importantly will remain a
quadratic in all the subsequent manipulations. The
surface makes an angle with the z axis given by

B = arctan(R/H)



Instead of intersecting this with an inclined
plane, we tilt the cone by an angle o about the
x axis, and then intersect it with the plane z = 0
(Figure 2b). This is achieved algebraically by

— Cy—Sz=Cy
H

z Cz+ Sy= Sy
(C,S) = (cosa,sina)
giving
o+ (Cy)* = R*(1-Sy/H)?
2+ Ay¥*+By = D (6)
where
R2
A == CQ - 52m (7)

4.2 Three cases

There are three cases depending on whether A is
positive, zero or negative. This in turns depends on
whether tana = S/C is smaller than, equal to or
larger than H/R, or in other words, whether a + 3
is smaller than, equal to or larger than 7/2. The
upper edge of the conic surface V'V’ is below, at or
above the horizontal in the three cases (Figure 3).

Ellipse
If A > 0, it is possible to get rid of the term linear
in y by a translation

Yy = Y—%Y

The term y? is unchanged by this shift, and (6)
becomes

for some D', and this can obviously be brought to
the standard form (4) for some choice of a and b.

Hyperbola
If A < 0, the term linear in y can again be elimi-
nated, resulting in

a? —|Aly* = D' (8)

Supposing D’ > 0, this can be case into the form

2 2
a b2

(9)

which is the equation for a pair of hyperbolas that
cross the x axis at © = +a and asymptotically ap-
proach straight lines y = +(b/a) .

Parabola
In the critical case A = 0, (6) becomes
D 1,
= =——-= 10
y 5~ 5% (10)

which is a parabola.

Note on the algebra

It is somewhat messy to write out the parameters
of the ellipse (say major and minor axes) in terms
of the parameters of the cone; but all we need for
our present purpose is that a section of a cone (for
a+ B < m/2) is equivalent to an ellipse with some
value of a and b.

5 Measured from one focus

Kepler’s first law (here taken as an empirical state-
ment) states that each planet moves in an ellipse
with the sun at one focus. So for planetary motion,
it is best to use one focus, say F’, as the origin,
and describe a point P by polar coordinates (7, ¢)
measured from F’ (Figure 4). The rectangular

coordinates referred to the center are then
r = rcos¢+c=rcoso+ea
y = rsing

If this is substituted into (4), we get a quadratic
equation for r, which can be solved in terms of a, e.

For dimensional reasons, the relationship must
take the form

A(r/a)® +2B(r/a) +C = 0

where A, B, C are dimensionless and therefore can
only depend on e, ¢. To work this out, we note that

a"?(rcos¢+ea)> + b %(rsing)? = 1
Multiplying by b = (1 — e?)a? gives
(1 — e?)(r? cos® ¢ + 2ear cos ¢ + e?a?)
+72(1 — cos? ¢) = (1 — 2

From the coefficients of 72, 2ra, a

e?)a

2 we read off

A = (1—-e*)cos’p+1—cos’p=1—e?cosd
B = (1-¢é*ecoso
C = (1-€)e?—(1-e%)=—(1-¢%?



It turns out to be more convenient to work with
the reciprocal:

C(1/r)*+2B(a/r)+A = 0
The discriminant is

D = B*-AC
(1 —e*)e? cos® ¢ + (1 — e? cos? p)(1 — e2)?

— (1 _ 62)2
Hence

a —-B++D

ro C
 —(1—e?)ecosp £ (1 —e?)
N —(1—e2)2
~ ecospF1

1—e2

Since 0 < e < 1 for an ellipse, the minus sign should
be discarded, and finally

To

"= 1+ ecoso¢

(11)

where

ro = a(l—e€?)

Sometimes the equation for an ellipse is written
as
70
1—ecoso

still with e > 0. This is obtained from (11) by
¢ — ¢ + m, in other words, orienting the z axis in
the opposite direction, or equivalently, measuring
from the other focus.
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