
Vectors

August 3, 2018

Vectors are introduced both physically and also al-
gebraically. The dot product and the cross product
are introduced, and their properties derived.
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1 Physical introduction

Vectors are introduced from a physical point of
view — which, like learning arithmetic in childhood
by playing with toy blocks, is not entirely logical,
nor satisfactory to mathematicians, but pedagogi-
cally useful.

1.1 The prototype vector and naive
definition

Prototype vector
The displacement from one point A to another
point B, i.e., the directed or signed line segment
AB is the prototype vector (Figure 1). Thus, the
naive definition of a vector is a quantity having di-
rection as well as magnitude.1

Notation
Vectors are indicated as, for example, ~a or a.2 Bold
letters are typically represented in handwriting by
a wavy underline.

1This definition found in most dictionaries is really non-
sense, because what is “direction”?

2Especially when, in relativity, 3-vectors a in space and
4-vectors ~a in spacetime have to be distinguished.
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The length or magnitude of ~a is indicated in any
of the following ways:

magnitude = |~a|, ‖~a‖, or simply a

1.2 Addition of vectors

If a particle moves from P to Q (displacement ~a),

and then from Q to R (displacement ~b), the net
result is to move from P to R (displacement ~c);
see Figure 2. Therefore, following displacements
as the prototype, vectors are added by the triangle
rule illustrated by this figure.

Subtraction is the same as addition of the nega-
tive vector (Figure 3)

~a−~b = ~a+
(
−~b
)

where the latter is defined as multiplication by −1
(see below), i.e., reversing the direction.

1.3 Multiplication by a scalar

If ~a is a vector and s is scalar, i.e., a real number,
then s~a is a vector in the same (opposite) direction
if s > 0 (s < 0) but with |s| times the magnitude
(Figure 4). Division is the same as multiplication
by the reciprocal.

Expected properties such as 2~a = ~a + ~a are ob-
viously satisfied.

1.4 Building other vectors from the
displacement

Since displacement (say ∆~r) is a vector, the follow-
ing, constructed by addition/ subtraction and/or
multiplication by a scalar, must also be vectors.

• Division by ∆t gives the velocity:

~v =
∆~r

∆t

• Multiplication by the mass m gives the mo-
mentum:

~p = m~v

• The change in momentum ∆~p during a time
interval ∆t is also a vector, and therefore also
the force:

~F =
∆~p

∆t

By this process, different vectors are constructed,
starting from a prototype.

2 Algebraic formulation

The algebraic treatment is useful for numerical ac-
curacy, computerization, and problems in higher
dimensions. It is assumed a Cartesian coordinate
system is set up, with the x, y and z axes mutually
perpendicular.

2.1 Components

Definition
A vector ~a can be specified by its projections
ax, ay, az on the three axes; the case of 2D (i.e.,
omitting az) is shown in Figure 5. These projec-
tions are called the components of the vector.

We can say that a vector in 3D is the ordered
triple3

~a = (ax, ay, az) (1)

Magnitude and direction
The length or magnitude of such a vector is given
by Pythagoras’ theorem as

a = |~a| =
√
a2x + a2y + a2z

The direction can be specified by angles (one an-
gle for 2D and two angles for 3D) defined in the
same way as the polar coordinates for specifying a
point in space.

Addition
Consider the addition of two vectors

~c = ~a+~b

by the triangle rule. By projecting each of these
onto one axis (say the x axis, as shown in Figure
6), it is obvious that the components simply add:

cx = ax + bx (2)

and likewise for the other components. This then
provides an algebraic way of adding vectors, with-
out having to draw diagrams.

3It is sometimes convenient to think of these triples as
column vectors; but because columns are cumbersome to
display, this alternate notation will be ignored until there is
a good reason to adopt it.
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Multiplication by a scalar
If the length of a vector is multiplied by a scalar
s, then obviously each component is multiplied by
the same factor. In other words, if ~c = s~a, then

cx = s ax etc.

So again, we have an algebraic way of doing scalar
multiplication.

Problem 1
A person starts from a point O walks 30.0 m along
the compass direction 30o, and then 40.0 m along
the compass direction 60o. Find the distance and
compass direction of the final position from O. §

The above problem can be solved (to some accu-
racy) graphically, but not the next one.

Problem 2
Warship A directs its radar in compass direction
45o and elevation 30o from the horizontal. It finds
the radio pulse reflected after 40.0 µs, from an en-
emy plane P . The captain of warship A conveys
this information to his colleague on warship B,
which is 7.00 km due east (i.e., compass direction
0o). In what direction (compass direction and ele-
vation) should warship B point its radar in order
to locate P? Speed of light is 3.00 × 108 m s−1.
Ignore the curvature of the ocean surface. §

Generalization
This formulation leads to a natural generalization
to N -dimensional vectors. See Appendix A.

2.2 Basis vectors

Introduce three basis vectors î, ĵ and k̂ along the x,
y and z directions, each with unit length; the hat
symbol denotes a unit vector. The representations
of these basis vectors in the manner of (1) would
be

î = (1, 0, 0)

ĵ = (0, 1, 0)

k̂ = (0, 0, 1) (3)

2.3 Expression in terms of basis vec-
tors

It then follows trivially that

~a = axî+ ay ĵ + az k̂ (4)

Vector addition and scalar multiplication follow
the “obvious” rules of arithmetic, e.g.,

~c = ~a+~b

=
(
axî+ ay ĵ + az k̂

)
+
(
bxî+ by ĵ + bz k̂

)
= (ax+bx) î+ (ay+by) ĵ + (az+bz) k̂ (5)

from which (2) follows immediately.

2.4 Improved notation

Systematic labelling
Call the x, y, z axes the 1-axis, 2-axis, 3-axis re-
spectively, and relabel the components as

ax, ay, az 7→ a1, a2, a3

Moreover, call the basis vectors ê1, ê2 and ê3; in
other words

î, ĵ, k̂ 7→ ê1, ê2, ê3

Then (4) can be written more neatly as

~a = a1ê1 + a2ê2 + a3ê3

=

3∑
i=1

aiêi (6)

Any number of dimensions
Obviously, the corresponding formula in N dimen-
sions is

~a =

N∑
i=1

aiêi (7)

Summation convention
Such sums occur so often that the following con-
vention is often adopted: If the same index occurs
twice in the same term, it is understood to be a
dummy index to be summed over. Thus

aiêi means

N∑
i=1

aiêi

Therefore

~a = aiêi

In those rare cases when we do not want to sum,
that should be indicated explicitly. But in the rest
of this module, for the benefit of beginning stu-
dents, the summation signs will be kept explicitly.
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3 Dot product

3.1 Physical motivation

The following concept is familiar: If a force ~F
moves an object through a displacement ~s, the work
done is (Figure 7)

W = F‖ s = F s cos γ (8)

where F‖ is the component of ~F parallel to the dis-

placement, and γ is the angle between ~F and ~s; the
component of ~F perpendicular to the displacement
does no work.

One is then motivated to define the dot product,
also called the scalar product, between two vectors
~a and ~b as

~a ·~b = a b cos γ (9)

where a, b are the respective magnitudes, and γ is
the angle between the two vectors (Figure 8).

Similar to (8) the dot product can also be written
as

~a ·~b = a‖ b (10)

where a‖ is the component of ~a along ~b. We can

also project ~b along ~a.

3.2 Main properties

Invariance
The definition (9) makes no reference to the coor-
dinate axes. So the dot product remains the same
when the axes are rotated.

Symmetry
The definition (9) is symmetric under the inter-
change of the two vectors:

~a ·~b = ~b · ~a (11)

Linearity
Linearity means two properties. First, if s is a
scalar, then

(s~a) ·~b = s (~a ·~b) (12)

which is obvious from (9) because the magnitude
of s~a is of course s a.

Second, given vectors ~a1 and ~a2,

(~a1 + ~a2) ·~b = ~a1 ·~b+ ~a2 ·~b (13)

To prove this statement refer to Figure 9, in which
~a = ~a1 + ~a2. From (10), each dot product can

be expressed in terms of a projection along ~b: in
obvious notation

~a1 ·~b = a1‖ b

~a2 ·~b = a2‖ b

~a ·~b = a‖ b

while one sees from the diagram that the projec-
tions add:

a1‖ + a2‖ = a‖

which then proves (13).

Putting (12) and (13) together, we have

(s1 ~a1 + s2 ~a2) ·~b = s1 (~a1 ·~b) + s2 (~a2 ·~b) (14)

In (13) and (14), the + sign on the LHS denotes
vector addition; the one on the RHS denotes scalar
addition.

The property of linearity or additivity can like-
wise be written for the second factor.

Dot product among basis vectors
Since the basis vectors are orthogonal unit vectors,

î · î = ĵ · ĵ = k̂ · k̂ = 1

î · ĵ = ĵ · k̂ = k̂ · î = 0

or, using the the notation introduced in Section 2.4:

êi · êj = δij (15)

3.3 Expression in terms of compo-
nents

Next, we want to express ~a·~b in terms of the compo-
nents of the two vectors. Here the relevant formula
is derived in a special case, and the more general
proof is given in Appendix A.

Figure 10 shows vectors ~a and ~b in the x–y
plane, making angles α and β with respect to the
x axis; the angle between the two vectors is (up to
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an irrelevant sign) γ = β − α. From (9),

~a ·~b = ab cos(β − α)

= ab (cosβ cosα+ sinβ sinα)

= (a cosα)(b cosβ) + (a sinα)(b sinβ)

= axbx + ayby (16)

It is easy to guess the corresponding formula in
3D:

~a ·~b = axbx + ayby + azbz

or in the compact notation introduced

~a ·~b =
∑
i

aibi (17)

3.4 Algebraic formulation

We now reformulate the dot product in algebraic
terms. Define the product ~a·~b to be symmetric (see
(11)) and linear (see (14)), and moreover with the
dot product between basis vectors given by (15).
Then, for any two vectors

~a ·~b

=

(∑
i

ai êi

)
·

∑
j

bj êj


=

∑
ij

aibj (êi · êj)

=
∑
ij

aibj δij =
∑
i

aibi

proving (17). The above has been deliberately writ-
ten to be valid in any number of dimensions.

Problem 3
Find the angle γ between the following vectors. ~a =
3̂i+ 4ĵ and ~b = 5ĵ + 6k̂. §

Problem 4
The radius of the earth is 6370 km, and the posi-
tions of Hong Kong (H) and Buenos Aires (B) are
as follows:4 H = 22.4 oN, 114.1 oE; B = 34.6 oS,
58.4 oW. (a) Find the angle between OH and OB,
where O is the center of the earth. (b) Find the
shortest flying distance from H to B, assuming the
flight altitude is negligible. §

4See a corresponding Problem in the module on Coordi-
nates.

3.5 Logic of the definition

The heuristic approach adopted so far suggests the
following chain of logic. (a) The perpendicular
component of force does no work. (b) Therefore
work is defined in terms of the parallel component,
and the dot product involves projecting one vector
onto the other. (c) The dot product so defined is
linear (i.e., additive).

But this logic is wrong — even though it might be
pedagogically suggestive. How do we know that the
perpendicular component of force does no work?

The actual logic is the other way round. (a) We
want a definition of dot product and of work that
is additive. Otherwise the sum of the work done by
several forces (adding up several scalars) would not
be equal to the work done by the net force (adding
up several vectors). (b) The dot product is defined
to be additive. Therefore we define work using this
dot product. (c) As a result of this definition, the
perpendicular component of force does no work.

To emphasize this point, suppose we define work
to be the product of the magnitudes: W ′ = Fs.
Consider two forces ~F1 = î, ~F2 = −î and a
displacement ~s = ĵ. The individual values are
W ′1 = 1, W ′2 = 1. But the total force ~F = 0 gives
W ′ = 0 6= W ′1 +W ′2 . You can of course define work
this way, but the resultant concept would not be of
much use.

4 Cross product

4.1 Physical motivation

Turning moment
It is well known that the turning moment or torque
due to a force ~F is given by

torque = moment arm× force

as shown in Figure 11a. More generally, if the
force and the moment arm are not perpendicular,
then only the component of force perpendicular to
the moment arm contributes; see Figure 11b.

So, in general, the torque has a magnitude

τ = r F⊥ = rF sin γ (18)

where r is the moment arm, F⊥ is the component
of ~F perpendicular to the moment arm, and γ is
the angle between the moment arm and the force.
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Since we are talking about the magnitude, in the
above we should take γ to be positive.

Torque as a vector
It is convenient to regard the torque as a vector. In
Figures 11a, 11b imagine the moment arm ~r and
the force ~F to be in the x–y plane. The resultant
torque tends to rotate the object about the z-axis,
and that is the direction assigned to ~τ as a vector.

The sense of ~τ is defined by the right-hand rule
convention: If the thumb of the right hand points
along ~τ , then the body tends to rotate in the direc-
tion described by the other fingers.

Definition in terms of cross product
Therefore the cross product ~τ = ~r× ~F is defined to
have these properties. In general, given two vectors
~a and ~b,

~c = ~a×~b

is defined as follows.

• Its direction is given by the right-hand rule:
When the fingers of the right hand curl from
the first vector ~a to the second vector ~b, the
thumb gives the direction of ~c.

• The magnitude is given by

c = ab sin γ (19)

where γ is the angle measured from the first
vector to the second.

4.2 Main properties

Invariance
The definition above makes no reference to the co-
ordinate axes. In any coordinate system, the result
is the same vector. So the cross product remains
the same when the axes are rotated.

Antisymmetry
In applying the right-hand rule, the fingers go from
the first vector to the second vector. So if the two
vectors are interchanged, the direction of the cross
product is reversed:

~a×~b = −~b× ~a (20)

Linearity
Linearity means two properties. First, if s is a

scalar, then obviously

(s~a)×~b = s (~a×~b) (21)

Second, given vectors ~a1 and ~a2,

(~a1 + ~a2)×~b = ~a1×~b+ ~a2×~b (22)

To prove this statement, at least in the special case
where all the three vectors lie in one plane, refer
to Figure 12, in which ~a = ~a1 + ~a2. The cross
products are all perpendicular to the page, with
magnitudes given in obvious notation as

|~a1 ×~b| = a1⊥ b

|~a2 ×~b| = a2⊥ b

|~a×~b| = a⊥ b

while from the diagram it is obvious that the pro-
jections add:

a1⊥ + a2⊥ = a⊥

which then proves (22).
Combining (21) and (22) gives

(s1 ~a1 + s2 ~a2)×~b = s1 (~a1×~b) + s2 (~a2×~b) (23)

The property of linearity also applies to the sec-
ond factor.

Cross product among basis vectors
The cross products among the basis vectors are
given by

î× î = 0 , ĵ × ĵ = 0 , k̂ × k̂ = 0

î× ĵ = k̂ , ĵ × k̂ = î , k̂ × î = ĵ (24)

Right-handed coordinate system
In writing î × ĵ = k̂ and not −k̂, etc., we are as-
suming that the coordinate system is right-handed :
If the x and y axes are as shown (Figure 13), then
the z axis must point out of the page and not into
the page. A common choice is the x axis points
east, the y axis points north, and the z axis points
up.

Levi-Civita symbol
The Levi-Civita symbol εijk is defined as follows:

ε123 = ε231 = ε312 = 1

ε321 = ε213 = ε132 = −1
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while εijk = 0 if any two indices are equal. Then
denoting the basis vectors as êi as usual, we see
that (24) can be summarized as

êi × êj =
∑
k

εijkêk (25)

It is easy to see that for a 3 × 3 matrix A with
elements Aij ,

det A =
∑
ijk

εijk A1iA2jA3k (26)

Problem 5
Verify that εijk is cyclic: εijk = εjki = εkij and also
verify the formula (26). §

4.3 Expression in terms of compo-
nents

Next, express ~a × ~b in terms of the components.
Here the relevant formula is derived only in a spe-
cial case, and the more general proof is given in
Section 4.4.

Figure 14 shows vectors ~a and ~b in the x–y
plane, making angles α and β with respect to the x-
axis; the angle between the two vectors is γ = β−α.
From the figure, ~c = ~a×~b points in the z direction,
so cz in this case is equal to the magnitude, and
given by

cz = |c| = ab sin γ = ab sin(β − α)

= ab (sinβ cosα− cosβ sinα)

= (a cosα)(b sinβ)− (a sinα)(b cosβ)

= axby − aybx

The general case is readily guessed:

cx = aybz − azby
cy = azbx − axby
cz = axby − aybx

which can be written compactly as

ci =
∑
jk

εijk ajbk (27)

The result can be remembered easily as:

~a×~b = det

∣∣∣∣∣∣
î ĵ k̂
ax ay az
bx by bz

∣∣∣∣∣∣ (28)

Problem 6
Using the above formula, verify that ~a×~b = −~b×~a.
§

Problem 7
Using (28), evaluate ~a ×~b if ~a = 3̂i + 4ĵ and ~b =

5ĵ + 6k̂. §

Problem 8
Consider a parallelogram with adjacent sides ~a and
~b. Show that its area is given by |~a×~b|. §

4.4 Algebraic formulation

The cross product can be reformulated in algebraic
terms. Define the product ~a×~b to be antisymmetric
(see (20)) and linear (see (23)), and moreover with
the cross product between basis vectors given by
(25). Then,

~c = ~a×~b

=

∑
j

aj êj

×(∑
k

bk êk

)

=
∑
jk

ajbk (êj × êk)

=
∑
jk

ajbk

(∑
i

εjki êi

)

=
∑
i

∑
jk

εjki ajbk

 êi (29)

The bracket multiplying êi should be identified as
ci, which then gives (27) upon using the cyclic prop-
erty of εijk.

4.5 Only in 3D

The essence of the cross product is contained in
the formula ê1× ê2 = ê3, i.e., the answer is the “re-
maining” basis vector. It is obvious that this idea
cannot be generalized to more than 3 dimensions.
Likewise, the Levi-Civita symbol is only defined for
3D. (However, in 4D there is the analogous object
with 4 indices εilk`, and likewise in higher dimen-
sions.)
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4.6 Use in physical laws

Many physical laws are formulated using either the
right hand or the left hand, for example, in mag-
netism:

• The magnetic force on a current-carrying wire
(in the old days often expressed by the Fleming
left hand rule).

• The EMF around a loop caused by a changing
magnetic flux (Faraday’s law).

• The magnetic field caused by a long wire (Am-
pere’s law) or by a short wire segment (Biot–
Savart law).

In advanced studies of physics, all such laws are
expressed using the cross product.

4.7 Parity

The laws of physics often involve the cross product,
and through it, the right-hand rule. Can we use the
left-hand rule instead?

Example in electromagnetism
Consider the following situation.

• A wire produces a magnetic field ~B:

~B =
µ0I

4π

∫
d~̀× ~r
r3

where d~̀ is an element of the wire carrying
current I, and ~r is the displacement from the
wire element to the observation point.5

• A charged particle moving at velocity ~v then
experiences a force

~F = q ~v × ~B

The right-hand rule is used once in each step. If we
were to use the left hand instead, the final answer
for ~F and for the resultant acceleration ~a = ~F/m
(which is observable) is unchanged. It is true that
~B changes sign, but ~B is not directly observable,
so that is alright.

In fact, in all of electromagnetism, we can use the
left hand instead. The same is true of the strong
interaction and gravity.

5Students do not have to know the details, except that
the cross product appears once.

Mirror world
Viewed in a mirror, the right hand becomes the left
hand. So an equivalent statement is: For the elec-
tromagnetic, strong and gravitational interactions,
the real world and the mirror world satisfy the same
laws of physics. Physicists say that in these cases
parity is conserved.

Non-conservation of parity in weak interac-
tions
The above statement seems so “obvious” that peo-
ple took it for granted as universally true. In trying
to resolve some puzzling experimental results, TD
Lee and CN Yang proposed in 1956 that perhaps
such is not the case for the weak interactions (e.g.,
β decays).

A sample of 60Co at very low temperatures is
placed at the center of a circular current coil in
the horizontal plane. The “up” and “down” direc-
tions are specified relative to the current loop by
the right-hand rule. The electrons emitted in the
β decay were observed, in a delicate experiment by
CS Wu et al. They found an up/down asymmetry
of electrons, proving that parity is not conserved.
Lee and Yang were awarded the 1957 Nobel Prize
in physics.

5 Some identities

Start with the following identity∑
i

εijkεimn = δjmδkn − δjnδkm (30)

This identity can be proved by simply checking the
finite number of possibilities. For example take the
case j = 2, k = 3, m = 2, n = 3.

LHS =
∑
i

εi23εi23 = ε123ε123 = 1

RHS = δ22δ33 − δ23δ32 = 1− 0

Another identity is∑
ij

εijkεijn = 2δkn (31)

Again this identity can be proved by simply check-
ing the finite number of possibilities. Or, starting
from (30), set m = j and sum over it.
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Consider the vector

~v = (~a×~b)× ~c

and denote ~d = ~a×~b. Then

vi =
∑
jk

εijkdjck

=
∑
jk

εijk

(∑
mn

εjmnambn

)
ck

=
∑
jkmn

εijkεjmnambnck

=
∑
jkmn

(δkmδin − δknδim) ambnck

= bi

(∑
k

akck

)
− ai

(∑
k

bkck

)
vi = (~a · ~c) bi − (~b · ~c) ai
~v = (~a · ~c)~b− (~b · ~c)~a

giving the identity

(~a×~b)× ~c = (~a · ~c)~b− (~b · ~c)~a (32)

Finally, with proof left as an exercise

(~a×~b) · ~c =
∑
ijk

εijkaibjck (33)

This identity also implies that the LHS of (33) re-
mains unchanged under cyclic permutation of the
three vectors.

Problem 9
A parallelepiped has adjacent sides ~a, ~b, ~c. Show
that its volume is given by (33) up to a sign. This
provides another proof that cyclic permutation of
the three vectors does not change this triple prod-
uct. §

6 Vectors under rotation

6.1 Rotation matrix

Let ~a = (ax, ay, az) be a displacement vector, say
the coordinates of a point A measured from the ori-
gin. If now the axes are rotated, the components

will change to ~a′ = (a′x, a
′
y, a
′
z).6 The new coor-

dinates are related linearly to the old ones, so the
most general relation is

a′i =
∑
j

Rij aj (34)

This relation can be expressed compactly if ~a is
regarded as a column vector

[a] =

 ax
ay
az

 =

 a1
a2
a3


and Rij as the elements of a matrix

[R] =

 R11 R12 R13

R21 R22 R23

R31 R32 R33


Then (34) is just matrix multiplication

[a′] = [R] [a] (35)

The matrix [R] is called the rotation matrix.

Example
Let ~a be a displacement vector in the x–y plane,
making an angle φ with the x-axis; thus

ax = a cosφ , ay = a sinφ

Now rotate the axes backwards by an angle α; or
equivalently rotate the vector forwards by an angle
α. The angle between the vector and the new x′

axis is

φ′ = φ+ α

Therefore the new components are

a′x = a cos(φ+α)

= a (cosφ cosα− sinφ sinα)

= cosα (a cosφ)− sinα (a sinφ)

= cosα ax − sinα ay

a′y = a sin(φ+α)

= a (sinφ cosα+ cosφ sinα)

= sinα (a cosφ) + cosα (a sinφ)

= sinα ax + cosα ay

6Strictly speaking, it is the same vector referred to new
axes x′ etc. So purists would write ax′ etc., but that is
usually regarded as too cumbersome.

9



which is an example of (35) with

[R] =

 cosα − sinα 0
sinα cosα 0

0 0 1

 (36)

in which the trivial transformation a′z = az has
been incorporated.

It is important to note (as is evident from this
example) that [R] depends only on the transfor-
mation (i.e., how the axes are rotated) and does
not depend on the particular vector ~a that is under
consideration.

6.2 Formal definition of a vector

Any three quantities [a] that transforms in the same
way as (35) is a vector. On the other hand, any one
quantity that remains unchanged under rotation of
axes is a scalar. This definition does not rely on any
notion of “direction”. Also, note that the quanti-
ties constructed in the manner of Section 1.4 are
guaranteed to be vectors in this sense.

6.3 Condition on rotation matrix

Not every 3 × 3 matrix [R] qualifies as a rotation
matrix. It must preserve dot products. Thus

a′i =
∑
m

Rim am

b′i =
∑
n

Rin bn

~a′ ·~b′ =
∑
i

a′ib
′
i

=
∑
mn

(∑
i

RimRin

)
ambn

But this must equal, as an identity,

~a ·~b =
∑
mn

(δmn) ambn

Hence the matrix [R] must satisfy∑
i

RimRin = δmn (37)

We can write, in terms of the transposed matrix
[RT]

Rim = RT
mi

so (37) becomes∑
i

RT
miRin = δmn

Multiplication and summation over neighboring in-
dices is just matrix multiplication, so (37) can be
written as the matrix equation

[RT] [R] = [I] (38)

where [I] is the identity matrix. A matrix [R] that
satisfies this condition is said to be orthogonal.

In this subsection, we have deliberately omitted
the upper limit of the summation over dummy in-
dices, and the entire formalism is valid in any num-
ber of dimensions.

Problem 10
Check explicitly that the rotation matrix in (36)
satisfies (38). §

Appendix

A Vectors in N-dimensional
space

Standard formulation
These appendices generalize the concept of vectors
and vector spaces. Here, we first generalize vectors
to N dimensions.

Consider the set of all ordered N -tuples of real
numbers:

~a = (a1, a2, . . . , aN ) (39)

Define addition and multiplication by a real num-
ber (a scalar) in the obvious way, component by
component.

The length or norm |~a| is defined by7

|~a|2 =
∑
i

|ai|2 (40)

which has the property that it is non-negative, and
zero only it ~a is identically zero. This norm is ob-
viously unchanged under a rotation of axes.

7The absolute value sign on the RHS is included only to
anticipate generalization to complex vectors.
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The dot product between two vectors is defined
by the equation

|~a+~b|2 = |~a|2 + 2~a ·~b+ |~b|2 (41)

Since the three terms with norms are unchanged
under rotation, so the dot product is also un-
changed under rotation.

By putting (40) into (41), it is easily shown that

~a ·~b =
∑
i

aibi

from which its linearity property follows trivially.

Problem 11
Show that the dot product is bounded by

−ab ≤ ~a ·~b ≤ ab

or in other words |~a ·~b|/ab ≤ 1. Hint: Consider

f(t) = |~a+ t~b|2

Since f(t) ≥ 0 for all t, there is a condition on the
discriminant of the quadratic. §

The angle γ between two vectors a and b is de-
fined by

cos γ =
~a ·~b
ab

By Problem 11, the RHS is between −1 and +1,
and can be identified as a cosine. How do we know
that this definition agrees with the usual notion of
the angle? Since dot products are invariant under
rotation of axes, we can perform a rotation to put
~a and ~b onto the x–y plane. Then go back to the
derivation of (16), which establishes the agreement
with the usual notion of angle.

Example 1
There are N students in a class, and they take an
examination with questions (a), (b), (c), ... . Let
ai, bi be the scores of student i on question (a),
(b) etc. Then all the scores can be encoded as the
vectors8

~a = (a1, a2, . . . , aN )

~b = (b1, b2, . . . , bN )

etc. These are vectors in N -dimensional space. The
teacher decides to compute the total score (t) by

8In fact, it is usual to remove the average value.

adding the questions with weights wa, wb, etc. This
is then expressed as a vector addition

~t = wa~a+ wb
~b+ . . .

One often defined a correlation between two
questions as, e.g.,

Cab =
~a ·~b
ab

which is essentially cos γ. By the results just
proved, this must lie in the range −1 to +1. If
the value is +1, it means the two vectors are per-
fectly aligned; the scores on question (a) and the
scores on question (b) are perfectly correlated —
the one predicts the other. §

Example 2
Consider the set of 3×3 matrices M , with addition
and scalar multiplication in the usual way. Define
the norm as9

‖M‖2 =
∑
ij

M2
ij = tr [MT] [M ]

where tr denotes the trace of a matrix. This is a
9-dimensional vector space. It is easy to generalize
to larger matrices. §

More general norm
Even more generally, we can define the norm as
follows:

|~a|2 =
∑
ij

gij ai aj

= [aT] [g] [a] (42)

where [g] is a fixed N ×N symmetric matrix with
the property that (42) is non-negative, and zero
only if ~a is identically zero.10

Everything in this Appendix is still valid. The
only amendment is that a rotation is now defined as
a linear transformation such as (35) which preserves
(42).

Problem 12
Find the condition on [R] in this case. §

Complex vector space
A further generalization is to go to complex vectors,

9In this case it is conventional to use the double vertical
bar.

10If you have studied linear algebra, this means that all
the eigenvalues of [g] have to be positive.
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i.e., N -tuples such as (39) where the components
are allowed to be complex numbers. Now we also
allow multiplication by complex scalars s. The dot
product is now defined as

~a ·~b =
∑
i

a∗i bi

where ∗ denotes complex conjugate. This is linear
in the second variable, but conjugate linear in the
first variable:

~a · (s~b) = s (~a ·~b)
(s~a) ·~b = s∗ (~a ·~b)

The ratio ~a · ~b/(ab) is now a complex number
whose magnitude is at most unity. Of course it can
no longer be interpreted as some cos γ for a real γ.

Apart from these modifications, everything goes
through as before. Proofs are left as exercises.

B Abstract linear space

We can go one step further. Let ψ be any set of ob-
jects which can be added and multiplied by scalars,
and for which a positive-definite norm can be de-
fined. As an example, let ψ be any function11 of a
continuous variable x on the interval say a ≤ x ≤ b,
say vanishing at the endpoints. They can be added,
and can be multiplied by a scalar in the obvious
way. The norm is defined as

‖ψ‖2 =

∫ b

a

|ψ(x)|2 dx (43)

This defines a linear space, with the dot product
between two functions:

〈φ|ψ〉 =

∫ b

a

φ(x)∗ψ(x) dx (44)

where we have introduced the Dirac notation for
writing the dot product — in this case more com-
monly called an inner product. Since the LHS of
(44) is a bracket,

• 〈φ| is called a bra vector.

• |ψ〉 is called a ket vector.

11Reasonably smooth, at least in the sense that (43) can
be defined.

C Wedge product

Motivation
The cross product ~a×~b has the following properties.

• The magnitude can be interpreted as the area
of the parallelogram with sides ~a, ~b. This is
a concept in the 2D plane of the two vectors,
and makes sense no matter how many other
dimensions there are.

• The direction is associated with the normal to
that plane. In 3D, the normal is unique (up
to a sign, which is fixed by the convention of
right-hand rule). But in N dimensions with
N > 3, the normal to a plane is not unique
— there are N−2 independent choices. For
example, in 4D, if the plane is defined by ê1
and ê2, then any linear combination of ê3 and
ê4 is normal to the plane. Therefore the cross
product cannot be defined for space of N di-
mensions when N 6= 3.

But suppose we think about such a product not
as a vector (i.e., another 1D object) but simply
as an area (i.e., a 2D object) in the plane of the
two vectors. Everything is referenced to that plane,
irrespective of how many other dimensions there
are.

With this in mind, we define a wedge product
between two vectors, denoted as ~a ∧ ~b, to denote
such as area. What properties should it have?

Linearity
Multiplication by a scalar is obvious and we only
consider the equality

(~a1 + ~a2) ∧~b = ~a1∧~b+ ~a2∧~b (45)

which would be a nice property to have. Let us
check the consistency with the interpretation in
terms of area. The two terms on the RHS are il-
lustrated by the two shaded areas in Figure 15a,
while the LHS is given by the shaded area in Fig-
ure 15b, in which ~a = ~a1 + ~a2. The equality of
area is obvious geometrically.

Antisymmetry
The area shown in Figure 16a is ê1 ∧ ê2. By a
continuous rotation in the plane, it must be equal
to the area in Figure 16b, which is (−ê2) ∧ ê1.
This shows that the wedge product should satisfy

~a ∧~b = −~b ∧ ~a (46)
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Thus these wedge products represent signed areas.
A corollary is

~a ∧ ~a = 0 (47)

which is consistent with the interpretation in terms
of area.

Representation in terms of a basis
Let

~a = a1ê1 + a2ê2 + a3ê3
~b = b1ê1 + b2ê2 + b3ê3

Using linearity, ~a∧~b can be expressed as the sum
of 9 terms such as a1b2 ê1 ∧ ê2. The three diagonal
terms vanish by (47) while the other six terms can
be combined in pairs using (46), giving finally

~a ∧~b
= (a1b2 − a2b1) ê1 ∧ ê2

+ (a1b3 − a3b1) ê1 ∧ ê3
+ (a2b3 − a3b2) ê2 ∧ ê3 (48)

The geometric interpretation is as follows. The
LHS represents a parallelogram in 3D. The RHS
represents the projections of this parallelogram
onto the 1−2, 1−3 and 2−3 planes, each projec-
tion itself being a parallelogram.

It is important to stress that the above is still
valid if there is a fourth dimension, so long as ~a
and ~b lie within the first 3 dimensions.

Problem 13
Consider the special case where ~a and ~b lie in the
1−2 plane, i.e., a3 = b3 = 0. Show that

~a ∧~b = (ab sin γ) ê1 ∧ ê2

where γ is the angle between the two vectors. This
formula means: The parallelogram formed by ~a and
~b is A times the unit square formed by ê1 and ê2,
where A = ab sin γ. §

Problem 14
Write out the analogous representation if the two
vectors also have the 4th dimension, i.e., including
terms a4ê4 and b4ê4. §

In N dimensions, any ~a∧~b can be represented as

~a ∧~b =
∑

1≤i<j≤N

(aibj − ajbi) êi ∧ êj (49)

where there are N(N−1)/2 terms.

Higher-order wedge products
In 3D space, three vectors ~a, ~b, ~c define a paral-
lelepiped, and it is convenient to define the triple
wedge product

~a ∧~b ∧ ~c

to represent the signed volume. The triple wedge
product is linear, and antisymmetric upon inter-
change of any two vectors. By using these proper-
ties, it is simple to show that

~a ∧~b ∧ ~c = V ê1 ∧ ê2 ∧ ê3

V = det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 (50)

• If the 3 vectors lie in 3D, the answer must
be expressible in terms of only one elementary
unit volume ê1 ∧ ê2 ∧ ê3.

• However, the above still holds if there are other
dimensions.

• The same idea can be generalized to the hyper-
volume associated with 4 vectors in 4D space,
etc.

Building up lines, surfaces and volumes
A curve can be thought of as being made up of
many short linear segments, each represented as a
vector ~a (Figure 17a). A surface can be thought
of as being made up of many small parallelograms,
each represented as ~a ∧ ~b (Figure 17b). A vol-
ume can be thought of as being made up of many
small parallelepipeds ~a ∧ ~b ∧ ~c (Figure 17c). In
all these cases, the vectors should be regarded as
infinitesimal.
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