
Coordinates

August 20, 2018

Common coordinate systems used in physics are de-
scribed. The corresponding formulas for distances,
areas and volumes are introduced.
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1 Introduction

In simple terms, mechanics is about the motion of
point particles, and of bodies (whether or not rigid)
made up of point particles. Motion, in turn, is the
change of position with time. Graphical represen-
tation of position becomes inadequate for high ac-
curacy, for computerization, and in higher dimen-
sions. In these circumstances, the position is best
represented by coordinates, reducing geometry to
algebra.

Historically, Newton’s work on mechanics in
Philosophiae Naturalis Principia Mathematica re-
lied a lot on pictures, but that would hardly be
adequate for the more complex problems we deal
with nowadays.

2 Cartesian coordinates

The systematic use of coordinates to deal with ge-
ometry was due to Rene Descartes,1 who intro-
duced rectangular or Cartesian2 coordinates.

2.1 Cartesian coordinates on a line

Position of a point
A straight line is labelled as the x axis (Figure 1a).
An arbitrary point O is chosen as the origin. The
coordinate x of a point P is the distance OP . The
sign convention is that x > 0 if P is to the “right” or
in a conventionally chosen positive direction. The

1In the family name, both occurrences of “s” are silent.
2The Latin version of his name, Renatus Cartesius, would

be rendered into an adjective this way.
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coordinates of different points P,Q, . . . can be de-
noted as xP , xQ, . . . or x1, x2, . . . if numerical labels
are assigned to the points.

Displacement
Figure 1b shows two points on the line, with co-
ordinates x1, x2. These can be two cities along a
straight road, or the position of a particle at two
times. The displacement of one with respect to the
other is

∆x = x2 − x1 (1)

which is a signed quantity: the displacement is pos-
itive (negative) if x2 is to the “right” (“left”) of x1
— we shall often use the shorthand “right” (“left”)
to mean “in the direction of the positive (negative)
x-axis”.

Automatic signs
The formula (1) automatically takes care of the
sign; it can (and should) be used “blindly”. For
example, Figure 2a shows two points at positions
x1 = 3, x2 = 7, with the displacement

∆x = (7)− (3) = 4

Figure 2b shows two points at positions x1 = −1,
x2 = 3, and the displacement is

∆x = (3)− (−1) = 4

In both cases the values of xi are enclosed in brack-
ets.

Translation of origin
In physics, we encounter an interesting problem:

• An origin is needed in order to talk about co-
ordinates.

• But the choice of origin is arbitrary, and
physics cannot depend on that choice.

We say that physics should be invariant with re-
spect to a shift or translation of origin.

Figure 2a and Figure 2b differ only by a shift
of origin. Physics can only depend on ∆x (but not
x1 and x2 individually), since only ∆x is invariant.
The same considerations in higher dimensions will
not be repeated.

2.2 Cartesian coordinates on a plane
and in space

Plane
For a plane in two dimensions (2D), again choose
an origin O and construct the x and y axes, which
are mutually perpendicular going through O. The
position of a point P is then specified by the coordi-
nates normally written as a pair (x, y); see Figure
3a. We can imagine the plane to be a piece of
paper with square grids drawn on it; the two coor-
dinates are then the number of grid steps (respec-
tively “horizontally” and “vertically”) to go from
O to P .

Space
For space in three dimensions (3D), again choose an
origin and construct the x, y and z axes, which are
mutually perpendicular throughO . The position of
a point P is specified by the coordinates, normally
written as a triple (x, y, z); see Figure 3b.

In particular, coordinates defined with respect
to such mutually perpendicular axes are said to be
rectangular or Cartesian.

Displacement
Given two points P = (x1, y1, z1) and Q =
(x2, y2, z2) in space, the displacement is

(∆x,∆y,∆z) = (x2−x1, y2−y1, z2−z1)

For 2D simply drop the last entry, or equivalently
constrain all zi to be zero.

Ordered N-tuple
In writing the coordinates as an ordered pair or
ordered triple, we are anticipating the general def-
inition of a vector as an ordered N -tuple, which is
deferred to a later module.

Orientation of axes
The “normal” convention is that the axes are cho-
sen such that

• the x axis points “east”;

• the y axis points “north”;

• the z axis points “up”.

The three directions are indicated in quotation
marks because they may be merely names, and the
directions need not be those encountered in geog-
raphy — for example if we are considering a point
particle in outer space.
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Figure 4 illustrates, in the case of 2D, two sets of
axes and the corresponding rectangular coordinates
(x, y) and (x′, y′). The case of 3D can be imagined.

In physics, we are faced with another interesting
problem:

• We need a set of axes in order to talk about
coordinates.

• But the choice of axes is arbitrary, and physics
cannot depend on that choice.

We say that physics should be invariant under a
rotation of axes.

3 Polar coordinates on a plane

3.1 Definition of polar coordinates

On a plane, a point P can be specified by its dis-
tance r from the origin O, and the angle φ between
OP and the +x axis, as shown in Figure 5a.3 Un-
less otherwise specified, angles are measured in ra-
dians.

The range is

0 ≤ r <∞
0 ≤ φ < 2π or − π < φ ≤ π

The range of φ can be shifted by any multiple of
2π.

Such polar coordinates can be associated with a
curvilinear grid on the plane (Figure 5b): circles
(linking points of constant r) and half straight lines
through the origin (linking points of constant φ).

3.2 Relationship with Cartesian co-
ordinates

To relate to Cartesian coordinates, refer to Figure
6:

x = r cosφ

y = r sinφ (2)

The reverse transformation is

r =
√
x2 + y2

φ = arctan (y/x) (3)

3In anticipation of the polar angle in 3D, the angle on
the plane is denoted as φ and not θ.

The formula for φ, as written above, is not
quite enough — there are two solutions for arc-
tan, differing by π. For example, if y/x = 1, then
φ = π/4, 5π/4. The former (latter) is chosen if y
and x are individually positive (negative).

Problem 1
Find the polar coordinates for a point (x, y) =
(3.0, 4.0). §

Problem 2
Find the Cartesian coordinates of a point (r, φ) =
(2, π/6). §

Example of use
Polar coordinates are obviously convenient for cir-
cular motion. Consider a point P in uniform circu-
lar motion on a circle of radius R. Then

r(t) = R

φ(t) = ωt (4)

Only one coordinate changes with time.

Problem 3
Continue with the above example. Find the x and y
coordinates of P as a function of time. Also find the
components of velocity vx, vy and the components
of acceleration ax, ay. §

4 Cylindrical coordinates

A point P in three-dimensional space can be de-
scribed by cylindrical coordinate (ρ, φ, z), as shown
in Figure 7.

• The coordinate z is the usual Cartesian coordi-
nate, i.e., the height of P above the x–y plane.

• Project P onto the x–y plane to give Q. The
coordinates (ρ, φ) are just the polar coordi-
nates of Q on this plane. We use the symbol ρ
rather than r, in anticipation of spherical co-
ordinates (next Section).

The relationship of cylindrical coordinates with
Cartesian coordinates follows trivially from (2) and
(3).

x = ρ cosφ

y = ρ sinφ

z = z (5)
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with the reverse transformation

ρ =
√
x2 + y2

φ = arctan (y/x)

z = z (6)

Again, the individual signs of x and y should be
used to select the two solutions of arctan.

5 Spherical coordinates

A point P in 3D can be specified by a distance and
two angles: (r, θ, φ).

5.1 Definition of spherical coordi-
nates

Radius
First, r is the distance to the origin O, i.e., the
length of OP .

Polar angle
Next, θ is the angle between OP and the z axis, as
shown in Figure 8a. The set of all points with the
same r and θ is a circle, shown as a broken line in
Figure 8b. The radius of this circle is

ρ = r sin θ (7)

The z coordinate is evidently

z = r cos θ (8)

Azimuthal angle
The circle of radius ρ formed by the broken line is
parallel to the x–y plane; it is shown in Figure 9.
Call its center O′. The position of P on this circle
is specified by an angle φ, measured from the x axis
to the line O′P .

In fact, (ρ, φ) constitute polar coordinates on this
2D plane, while (ρ, φ, z) would constitute cylindri-
cal coordinates.

Range of values
The allowed ranges are

0 ≤ r <∞
0 ≤ θ ≤ π
0 ≤ φ < 2π or − π < φ ≤ π (9)

Note that θ goes only up to π and not 2π.

5.2 Relationship to Cartesian coor-
dinates

Since x = ρ cosφ, y = ρ sinφ, from (7), we get

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (10)

and the reverse transformation is

r =
√
x2 + y2 + z2

θ = arccos (z/r)

φ = arctan (y/x) (11)

As before, the quadrant for φ depends on the indi-
vidual signs of x and y.

5.3 Relationship to latitude and lon-
gitude

Suppose r is given. Then P is on the surface of a
sphere. Think of the sphere as the earth, and adopt
the usual convention that the north pole (NP) lies
along the +z axis, the south pole (SP) along the −z
axis. Draw latitudes and longitudes on the surface
(Figure 10), with the 0o longitude going through
the x axis. Latitudes North (South) are regarded
as positive (negative); longitudes East (West) are
regarded as positive (negative). Again note that
the latitude has a range of only 180o, whereas the
longitude has a range of 360o.

Then it is easily seen that4

θ = 90o − latitude

φ = longitude (12)

The relationship with the latitude is illustrated
by the table below.

Position Latitude θ
NP +90o 0o

Equator 0o 90o

SP −90o 180o

Table 1. Latitude and polar angle

Problem 4
The radius of the earth is 6370 km, and the po-
sitions of Hong Kong (H) and Buenos Aires (B)

4Here it is more convenient to use degrees for the angles,
since that is the norm for latitudes and longitudes.
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are as follows: H = 22.4 oN, 114.1 oE; B = 34.6 oS,
58.4 oW. (a) Find their respective cartesian coor-
dinates with respect to the center of the earth.
(b) Imagine that we want to dig a straight tun-
nel through the interior of the earth from H to B.
How long would this tunnel be? §

6 Formulas for distance

6.1 Cartesian coordinates

Basic formula
Consider neighboring points P and Q on a
plane (Figure 11) with coordinates (x, y) and
(x+∆x, y+∆y). The distance ∆s between them
is given by

(∆s)2 = (∆x)2 + (∆y)2

Generalizing to 3D and taking the separation to be
infinitesimal,5, we have

ds2 = dx2 + dy2 + dz2 (13)

In such formulas, dx2 always means (dx)2 and not
d(x2), etc.

Length of a curve
The length of a curve is obviously

s =

∫
ds

=

∫ √
dx2 + dy2 + dz2 (14)

But how is such a strange integral to be evaluated?
We illustrate through an example.

Consider a particle whose coordinates are given
in terms of time t: x = x(t), y = y(t), z = z(t).
Then on the RHS of (14) we can divide and multi-
ply by dt:

s =

∫ (
ẋ2 + ẏ2 + ż2

)1/2
dt

≡
∫
f(t) dt (15)

where ẋ = dx/dt etc. This is then an ordinary
integral of some function f(t).

5This is not really necessary here, but for the other co-
ordinate systems below, the analogous limit is required.

Example 1
The motion of a projectile is given by

x(t) = u0t

y(t) = 0

z(t) = v0t− (1/2)gt2

We have ẋ = u0, ẏ = 0, ż = v0 − gt, so

s =

∫ [
u20t

2 + (v0 − gt)2
]1/2

dt

The limits are the initial time t1 and the final time
t2. §

The point is simply that the strange-looking ob-
ject (14) can be converted to an ordinary integral;
the evaluation of the latter is a separate matter of
ordinary calculus. Incidentally, one can label the
position by any parameter say σ, e.g., x = x(σ),
and divide and multiply by dσ, so that (15) be-
comes

s =

∫ (
ẋ2 + ẏ2 + ż2

)1/2
dσ

≡
∫
f(σ) dσ (16)

where now ẋ = dx/dσ etc.

Problem 5
Calculate the circumference of a circle, given by
x = R cosσ, y = R sinσ, 0 ≤ σ < 2π. §

6.2 Polar coordinates on a plane

Basic formula
Consider two neighboring points P and Q on a
plane (Figure 12) with polar coordinates (r, φ)
and (r+∆r, φ+∆φ); the quantities ∆r and ∆φ
should be regarded as infinitesimal. Refer to the
two line segments shown in Figure 12. The radial
separation is ∆r and the tangential separation is
r∆φ. Moreover these line segments are perpendic-
ular. So the distance ∆s between P and Q is given
by

(∆s)2 = (∆r)2 + (r∆φ)2

Passing to differentials,

ds2 = dr2 + r2 dφ2 (17)
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Algebraic derivation
It is instructive to derive (17) algebraically, without
appealing to the diagram in Figure 12. The alge-
braic method is more generally applicable to more
complicated coordinate systems.

Start with the Cartesian coordinates on a plane
using (2), and consider their differentials:

dx = cosφdr − r sinφdφ

dy = sinφdr + r cosφdφ

Square these and put into (17). The expression
will be quadratic in the differentials, i.e., containing
terms of three types

dr2, dr dφ, dφ2

Collect these terms and simplify.

Problem 6
Carry out the above steps and prove (17). Note in
particular that the cross terms cancel. (This is not
guaranteed in general.) §

Problem 7
Derive the distance formula for cylindrical coordi-
nates (ρ, φ, z). §

Problem 8
A spiral is given by

ρ(t) = R

φ(t) = 2πt

z(t) = pt

in terms of a parameter t. There is one turn of
the spiral for each unit increase in t and p is the
pitch. Find the length of this spiral per turn. It
is sufficient to reduce the expression to an ordinary
integral; you do not have to evaluate this integral.
§

6.3 Spherical coordinates

Preliminaries
Some examples will help us to understand the gen-
eral formula.

Problem 9
The radius of the Earth is = r = 6370 km. Hong
Kong is at H = 22.3023 oN, 114.1741 oE.6

6These are the coordinates of Hong Kong Observatory

(a) If a point P is slightly due south, at P =
22.3024 oN, 114.1741 oE, what is the distance HP?
Generalize this to the north-south distance between
two points separated by dθ in polar angle.
(b) If a point Q is slightly due east, at Q =
22.3023 oN, 114.1742 oE, what is the distance HQ?
Hint: What is the radius ρ of the line of latitude?
Generalize this to the east-west distance between
two points separated by dφ in azimuthal angle. §

Basic formula
Consider two neighboring points P and Q
in 3D with polar coordinates (r, θ, φ) and
(r+∆r, θ+∆θ, φ+∆φ); the quantities ∆r, ∆θ and
∆φ should be regarded as infinitesimal. For sim-
plicity Figure 13 shows the case ∆r = 0; you
should imagine that Q lies on a slightly larger
sphere. It may be useful to think about the two
points as near the surface of the earth, with θ and
φ related to latitude and longitude in the usual way.
The vector separation from P to Q has three com-
ponents (immediately passing to differentials):

• In the east-west direction, with a length ρ dφ =
r sin θ dφ. Here ρ is the radius of the line of
latitude.

• In the north-south direction, with a length
r dθ.

• In the up-down direction, with a length dr.

The three separations are mutually perpendicular,
so

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 (18)

Problem 10
Derive the above formula algebraically, following
the method in Section 6.2. §

7 Formulas for area and vol-
ume

7.1 Cartesian coordinates

Area on a plane
Areas on a plane can be regarded as made up of
small rectangles, of dimension ∆x × ∆y. Passing
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to the infinitesimal limit, the element of area is7

dS = dx dy (19)

While surface integrals will not be dealt with sys-
tematically, one example will illustrate how areas
are calculated.

Example 2
The semicircular disk is bounded by the x axis and
the semi-circle y =

√
R2 − x2 (Figure 14a). To

calculate the area of the disk, we simply write

S =

∫
dS =

∫ ∫
dx dy (20)

The surface integral has been written as a double
integral, which can be understood as follows. The
total area is the sum of little rectangular elements,
which we add up in two steps. First, for a fixed
x, we add up the elements for different y (i.e., a
“column” as in Figure 14b). The limits for y are
y = 0 and y =

√
R2 − x2. Then we add up all the

“columns” labelled by x, which ranges from −R to
R. Thus

S =

∫ R

−R
dx

∫ √R2−x2

0

dy (21)

It is often convenient to write multiple integrals
this way: the differentials not at the end, but each
right next to the corresponding integral sign. The
meaning is always to do the inner integral first.

In this case, the inner integral is simple∫ √R2−x2

0

dy =
√
R2 − x2

so

S =

∫ R

−R
dx
√
R2 − x2 = πR2/2

which is of course correct. §

Problem 11
Redo the above problem, but adding up the “rows”
first, i.e., first integrate over x, then integrate over
y. Pay attention to the limits of the integrals. §

Volume in 3D space
Volumes in 3D space can be regarded as made up of
small rectangular blocks, of dimension ∆x×∆y ×

7Often the symbol S is used to denote surface area.

∆z. Passing to the infinitesimal limit, the element
of volume is

dV = dx dy dz (22)

Example 3
A hemisphere is bounded by the x–y plane and the
surface z =

√
R2 − x2 − y2. To calculate the vol-

ume of the hemisphere, we write

V =

∫
dV =

∫ ∫ ∫
dx dy dz (23)

The volume integral has been written as a triple
integral. Again we do it starting from the inner
integrals.

The calculation can be finessed a little by recog-
nizing that, at fixed z,∫ ∫

dx dy

= area of circle at height z

= π ρ2 = π (R2 − z2)

Hence we are left with the last integral, giving

V =

∫ R

0

[
π (R2 − z2)

]
dz

= (2π/3)R3

which is of course the right answer. §

7.2 Polar coordinates on a plane

Basic formula
Areas on a plane can also be regarded as made up
of small elements bounded by neighboring lines of
constant radius (r and r+∆r) and lines of constant
angle (φ and φ+∆φ); see Figure 15. So long as ∆r
and ∆φ are small, the area is nearly rectangular,
with sides ∆r and r∆φ, and hence area

∆r · r∆φ

Passing to infinitesimal elements, we can write the
element of area as

dS = r dr dφ (24)

Example 4
We can redo Example 2 very easily using polar co-
ordinates:

S =

∫ ∫
r dr dφ
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Now the limits are easy: r from 0 to R, and φ from
0 to π; the limits do not connect the two variables,
and the double integral becomes the product of two
single integrals:

S =

∫ R

0

dr r ·
∫ π

0

dφ

= (R2/2) · π = πR2/2

agreeing with the previous result. §

Integral of a gaussian
The formula for area provides a neat way of evalu-
ating the integral

I ≡
∫ ∞
−∞

dx e−x
2

Let us consider

I2 =

∫ ∞
−∞

dx e−x
2

·
∫ ∞
−∞

dy e−y
2

=

∫ ∫
dx dy e−(x

2+y2)

Regard x and y as Cartesian coordinates and
change to polar coordinates:

dx dy = r dr dφ

x2 + y2 = r2

giving

I2 =

∫ ∫
r dr dφ e−r

2

=

∫ 2π

0

dφ ·
∫ ∞
0

dr r e−r
2

= 2π · (1/2) = π

upon changing variables to u = r2, du = 2r dr.
Since I > 0, we finally get

I =
√
π (25)

This integral cannot be done by the usual “elemen-
tary” means.

Volume in cylindrical coordinates
In cylindrical coordinates (ρ, φ, z), an element of
volume can be represented as a slab: an area pro-
jected on the plane given by (24) (but with r re-
placed by ρ), with a thickness ∆z. It is then obvi-
ous that

dV = ρ dρ dφ dz (26)

7.3 Spherical coordinates

Area on a spherical surface
Consider a sphere of radius R. Points on the sur-
face are labelled by the angles θ, φ as usual. (Thus,
the surface is the set of points (r, θ, φ) with r con-
strained to the constant value R.) Areas on this
surface can be regarded as made up of elements
bounded by lines of “latitude”, i.e., lines of constant
θ (at θ and θ+∆θ) and lines of “longitude”, i.e.,
lines of constant φ (at φ and φ+∆φ); see Figure
16a. So long as ∆θ and ∆φ are small, this element
is a rectangle, with sides R∆θ in the “north-south”
direction, and R sin θ∆φ in the “east-west” direc-
tion (Figure 16b) — remember the circle formed
by the latitude has radius ρ = R sin θ. Passing to
infinitesimals, the element of surface can be written
as

dS = R2 sin θ dθ dφ (27)

Problem 12
The radius of the earth is 6370 km. Calculate the
area of land (in units of km2) enclosed by the fol-
lowing lines: the latitudes 22.3024 oN, 22.3024 oN;
the longitudes 114.1741 oE, 114.1742 oE. §

Problem 13
Find the surface area of a unit sphere by carrying
out the integral

S =

∫ ∫
sin θ dθ dφ

Put in the appropriate limits. §

Volume in spherical coordinates
A volume in 3D space can be regarded as be-
ing made up of elements, each of which is a slab:
bounded between two spherical surfaces with radii
r and r+∆r, and the area on the spherical surfaces
bounded by lines of constant θ and φ as above.
Then the element of volume is just the surface area
in (27), replacing the constant R by the coordi-
nate r, multiplied by the thickness of the slab ∆r.
Therefore

dV = r2 sin θ dr dθ dφ (28)

Problem 14
Find the volume of a unit sphere by carrying out
the integral of (28) over the appropriate domain. §
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Appendix

A Cartesian coordinates in
higher dimensions

In space of N dimensions, Cartesian coordinates
are formed by an N -tuple of numbers

(x1, x2, . . . , xN )

Distances are given by

ds2 = dx21 + dx22 + . . .+ dx2N

=
∑
i

dx2i (29)

The element of (hyper)-volume is given by

dV = dx1 dx2 . . . dxN =
∏
i

dxi

B Spherical coordinates in
higher dimensions

In N dimensions, spherical coordinates consist of a
radius r and N−1 angles, which are N−2 polar an-
gles plus one azimuthal angle. It would be difficult
to present these graphically. Rather we reformulate
the analysis in Section 5.2 algebraically, and then
generalize to higher dimensions.

Review 3D case
Start with Cartesian coordinates (x, y, z), and de-
fine the radius in the obvious way

r2 = x2 + y2 + z2 (30)

Of course we take r > 0.
Now break the three terms up into two pieces:

r2 = ρ2 + z2 (31)

ρ2 = x2 + y2 (32)

and of course we take ρ > 0. The first of these
motivates the definition

z = r cos θ , ρ = r sin θ (33)

while the second of these motivates the definition

x = ρ cosφ , y = ρ sinφ (34)

However, there is a subtle difference in the intro-
duction of the two angles. In (34), each of x and
y can be either positive or negative, so there are
four possibilities, corresponding to four quadrants
for φ; therefore 0 ≤ φ < 2π. But in (33), ρ must
be positive (by convention), so there are only two
choices, corresponding to the first two quadrants
for θ; therefore 0 ≤ θ ≤ π.

It is then straightforward to obtain the relation
(10). It is also easy to generalize to higher dimen-
sions; only the case of 4D space will be shown.

Spherical coordinates in 4D
In 4D, let the Cartesian coordinates be (x, y, z, w).
Define a radius in the obvious way

r2 = x2 + y2 + z2 + w2 (35)

First break this up into two pieces as follows:

r2 = p2 + w2 (36)

p2 = x2 + y2 + z2 (37)

where p ≥ 0 by convention. The first of these mo-
tivates an angle χ:

p = r sinχ , w = r cosχ (38)

By the same reasoning as before, 0 ≤ χ ≤ π.
Next we can break up p2 by introducing two an-

gles θ and φ as is done in normal 3D space, with
0 ≤ θ ≤ π and 0 ≤ φ < 2π.

Thus the Cartesian coordinates are given by

x = p sin θ cosφ

= r sinχ sin θ cosφ

y = p sin θ sinφ

= r sinχ sin θ sinφ

z = p cos θ

= r sinχ cos θ

w = r cosχ (39)

C Minkowski space

The higher dimensional spaces discussed above are
called Euclidean spaces. They have the property
that distances are given by (29), which is the ob-
vious generalization of Pythagoras’ theorem, im-
portantly with all terms contributing with + signs.
The distance is unchanged when axes are rotated.
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But when we consider special relativity, each
event is defined by four coordinates (t, x, y, z). For
convenience, choose the speed of light to be c = 1,
then the four coordinates have the same units.
Then it turns out that the appropriate “distance”
formula is

ds2 = − dt2 + dx2 + dy2 + dz2 (40)

with a minus sign for the term associated with
time.8 This formula is “appropriate” in the sense
that it is unchanged under Lorentz transforma-
tions, i.e., transformations to a moving frame.

A 4D space with one minus sign in the “distance”
formula is called Minkowski space.

D General coordinates

Define the Cartesian coordinates in 3D space as x̄i,
i = 1, 2, 3. We can instead use any other three
variables xi, i = 1, 2, 3; for example, these can be
the spherical coordinates

(x1, x2, x3) = (r, θ, φ)

These coordinates need not have the dimension of
length.

Thus in general

x1 = x1(x̄1, x̄2, x̄3)

x2 = x2(x̄1, x̄2, x̄3)

x3 = x3(x̄1, x̄2, x̄3)

Any three new variables (subject to some unique-
ness and non-singular conditions) constitute a set
of generalized coordinates.

It is often of interest to express distances, areas
and volumes using generalized coordinates; we have
done so for several special cases.

Generalized coordinates are useful in several
ways.

• The system may have a geometry that is conve-
niently expressed in terms of these coordinates.
For example, circular motion is obviously best
expressed in terms of polar coordinates on a
plane.

8Some authors take ds2 to be the negative of this expres-
sion.

• Suppose a particle is constrained to move on a
2D surface, in general curved. Such a surface
can be conveniently expressed by choosing a
suitable set of generalized coordinates and set-
ting, for example, x3 = C = constant. There
are no 2D Cartesian coordinates on a curved
surface.

• In general relativity, spacetime is curved.
Therefore spacetime can be regarded as a 4D
surface in flat N dimensional space (with N >
4), in which N − 4 coordinates have been set
to constants.9 This then provides a set of
tools for describing curved spacetime — in
which Cartesian coordinates (with either + or
− signs in the “distance” formula) are not pos-
sible.

9Such an embedding approach regards physical spacetime
as a subset of a higher-dimensional flat space. It is not
immediately obvious that physics would be independent of
the extra fictitious dimensions introduced. Therefore it is
often preferred, especially by mathematicians, to formulate
everything intrinsically, without going beyond the original
dimensions. That more abstract approach is probably not
suited for the first introduction to curved spacetime.

10
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