
Complex variables: Part I

August 11, 2015

This module introduces complex numbers and their
arithmetic and algebra. Two advanced topics, an-
alytic functions and Cauchy integrals, are sketched
in the next module.

Contents

1 Motivation 1

2 Arithmetic 2

2.1 Complex numbers . . . . . . . . . . 2

2.2 Addition, subtraction and multipli-
cation by a real number . . . . . . . 2

2.3 Vector representation . . . . . . . . . 2

2.4 Multiplication and division . . . . . 2

3 Polar representation 3

3.1 Modulus and argument . . . . . . . 3

3.2 Multiplication and division . . . . . 3

3.3 Roots . . . . . . . . . . . . . . . . . 4

4 Algebra 4

4.1 Quadratic equations . . . . . . . . . 4

4.2 Counting roots . . . . . . . . . . . . 4

4.3 General polynomials . . . . . . . . . 4

4.4 The square root function* . . . . . . 5

4.5 The logarithm function* . . . . . . . 5

1 Motivation

Physics is about the relationship between measur-
able quantities, e.g., force and acceleration related
as F = ma. Measurable quantities are real. So
why should we care about complex numbers?

• Some formulas become simpler if we consider
their complex generalizations. For example,

the formula (see the module on Elementary
Functions)

eiθ = cos θ + i sin θ (1)

makes the addition formula for trigonometric
functions easier to understand. You probably
know that simple harmonic motion is the pro-
jection onto one axis (say the x-axis) of uni-
form circular motion. This statement is just
an application of (1), with θ = ωt and ω being
the angular frequency of circular motion.

• Related to the above, a function such as
exp (iωt) has a simple property under differ-
entiation:

(d/dt) eiωt = iω eiωt

(d/dt) 7→ iω (2)

turning differentiation into multiplication. For
this reason, we often express oscillatory func-
tions such as cosωt as the real part of complex
exponentials.

• For a smooth function f(x), we can learn a lot
more by generalizing it to complex arguments
f(z). If f(z) is known on a closed curve in the
complex plane, it would be completely known
everywhere inside the curve — a very strong
property that has no counterpart for real ar-
guments. Functional dependences in physics
are usually smooth enough for this condition
to apply. For example, this concept allows us
to predict the dispersion of an optical medium
(how the refractive index changes with wave-
length) from a knowledge of its absorption
spectrum. Also, many special functions en-
countered in physics (for which real arguments
are involved) become better understood if we
extend to complex arguments.
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• Finally, in quantum mechanics, the central ob-
ject is a complex wavefunction ψ(x, t), whose
absolute square |ψ(x, t)|2 is the measurable
probability density. In this case, there is no
way to avoid complex numbers — the imagi-
nary part is not just tagged on for calculational
convenience.

2 Arithmetic

2.1 Complex numbers

Square root of minus one
There is no real number x such that x2 = −1. We
extend the real numbers by defining a new number
i such that

i2 = −1 (3)

Of course, there is another solution −i:

(−i)2 = −1 (4)

By the way, electrical engineers tend to use j to
denote

√
−1, reserving i to denote the current.

Complex numbers
Complex numbers are numbers of the form

z = x+ yi (5)

where x, y are real numbers, respectively called the
real and imaginary parts:

< z = x

= z = y (6)

Complex numbers can be represented on the com-
plex plane, which is the 2D plane of (x, y). (See
below on vector representation.)

Complex conjugate
Given a complex number z, define the complex con-
jugate or simply conjugate, denoted as z∗, as fol-
lows:

z = x+ yi

z∗ = x− yi (7)

Note that

z∗z = x2 + y2 (8)

is real and non-negative.
Notation: Physicists tend to denote the conju-

gate as z∗ whereas mathematicians tend to denote
it as z̄.

2.2 Addition, subtraction and multi-
plication by a real number

If zj = xj + yji, and z = z1 + z2, then

z = (x1 + y1i) + (x2 + y2i)

= (x1 + x2) + (y1 + y2)i

x = < z = x1 + x2

y = = z = y1 + y2 (9)

In other words the real and imaginary parts add
independently. The same property holds for sub-
traction.

Multiplication by a real number β also works sep-
arately on the real part and the imaginary part:

βz = (βx) + (βy)i (10)

2.3 Vector representation

A complex number z can be represented as a point
P = (x, y) on a 2D plane (Figure 1), or as the
vector

~z = x î + y ĵ (11)

where î and ĵ are unit vectors in the x and y direc-
tions. Addition, subtraction and multiplication by
a real number all work exactly as for the analogous
vectors.

2.4 Multiplication and division

But complex numbers have a much richer structure
than mere vectors: multiplication and division are
also possible.

Here multiplication means a commutative prod-
uct (z1 · z2 = z2 · z1) with the result being another
complex number. The analogue for vectors does
not exist. The analogue of division certainly does
not exist.

Multiplication
Let zj = xj + yji and z = z1z2:

z = (x1 + y1i) · (x2 + y2i)
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= (x1x2 − y1y2) + (x1y2 + y1x2)i

x = < z = x1x2 − y1y2
y = = z = x1y2 + y1x2 (12)

Problem 1
Find (3 + 4i) · (5 + 6i). §

Division
Division is a bit trickier. Let us start with an ex-
ample.

Example 1
Write 1/(3 + 4i) in the standard form x+ yi.
To do so, we multiply and divide by the complex
conjugate:

1

3 + 4i
=

1

3 + 4i
· 3− 4i

3− 4i

=
3− 4i

25
= (3/25)− (4/25)i (13)

The denominator z∗z is always real (and positive);
then the only i occurs in the numerator and we get
the standard form. §

Thus in general we have, provided that x and y
are not both zero,

1

x+ yi
=

x− yi
x2 + y2

(14)

Problem 3
Find (5 + 12i)/(3 + 4i) in standard form. §

To summarize, we can perform all arithmetic op-
erations (add, subtract, multiply, divide — in the
last case provided the denominator is not zero) with
complex numbers, and the answer is still a com-
plex number. Mathematicians say that the com-
plex numbers form a field.

Complex arithmetic has all the properties of 2D
real vectors, and much more besides.

3 Polar representation

3.1 Modulus and argument

If we regard a complex number z = x+yi as a point
(x, y) on a 2D plane, then there is a natural polar
representation in terms of a length and an angle:

|z| =
√
x2 + y2

arg z = θ = arctan y/x (15)

The length is called the modulus and the angle is
called the argument or phase. The arctan is only
a shorthand: in reality we need to look at the in-
dividual signs of x and y. For example, the points
P = (x, y) = (3, 4) is in the first quadrant, while
Q = (x′, y′) = (−3,−4) is in the third quadrant,
even though the ratios y/x and y′/x′ and hence
the arctan values are the same.

The reverse transformation is

x = |z| cos θ

y = |z| sin θ (16)

But using the Euler formula (see the module on
elementary functions)

eiθ = cos θ + i sin θ (17)

we see that

z = |z| eiθ (18)

An amazing identity
By putting θ = π into (18), we get

eiπ = − 1 (19)

an amazing formula that relates three important
numbers in mathematics: e, π and i.

3.2 Multiplication and division

Multiplication becomes easy in polar representa-
tion. If

zj = |zj | eiθj (20)

then the product z = z1 · z2 has the polar represen-
tation (18), with

|z| = |z1| · |z2|
θ = θ1 + θ2 (21)

with the obvious changes for division.

Problem 4
Use the polar representation for 5 + 12i and 3 +
4i (see Problem 3) to calculate (5 + 12i)/(3 + 4i)
in polar coordinates. Then express as x + yi and
compare with Problem 2. §
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3.3 Roots

It is now easy to find one square root of any com-
plex number z given by (18). Evidently it is

√
z = |z|1/2 eiθ/2 (22)

and more generally the nth root is

z1/n = |z|1/n eiθ/n (23)

In these formulas, the first factor is the conven-
tional real root of a positive real number.

But a square root should have two possibilities
and the nth root should have n possibilities. The
solutions are

√
z = ±|z|1/2 eiθ/2

z1/n = |z|1/n eiθ/n e2(k/n)πi (24)

for k = 0, . . . , (n−1). We note that (a) the last
factor in the second formula is any one of the nth
roots of unity, i.e.,[

e2(k/n)πi
]n

= e2kπi = 1 (25)

and (b) the first equation in (24) is a special case
for n = 2.

Problem 5
Find the cube roots of 1 and of −1 and express
these both in polar representation and in the form
x+ yi. Check by taking the cube of x+ yi. §

4 Algebra

4.1 Quadratic equations

Using complex numbers, the equation

z2 = ∆ (26)

has a solution (indeed two solutions) for any ∆,
positive or negative (even complex). More gener-
ally, the quadratic equation

az2 + bz + c = 0 (27)

has two solutions

z =
−b±

√
∆

2a

∆ = b2 − 4ac (28)

You should know the proof by completing squares,
and the crucial step is taking the square root of
∆ just as in (26). In most applications in physics,
the coefficients a, b, c are real, but all the above is
correct even for complex coefficients.

4.2 Counting roots

The quadratic in general has two roots (for ∆ > 0
or ∆ < 0). But in the special case ∆ = 0, the + or
− sign gives the same root — it appears if there is
only one root.

A better convention is to count this as two roots.
In general, for an algebraic equation

f(z) = 0 (29)

A root ζ is a value of z for which (29) is satisfied.
But if we have

f(ζ) = f ′(ζ) = . . . = f (n−1)(ζ) = 0 (30)

with the next derivative nonzero, in other words if
the Taylor series about ζ starts with

f(z) = a(z − ζ)n + . . . (31)

then we say the root is of order n, and count it as
n roots.

Problem 6
Consider (27) for the case ∆ = 0. Show that the
root has order 2 in the sense defined above. §

Problem 7
Consider the quadratic z2 +2z+c = 0 and plot the
locus of the two roots as c varies continuously from
0 to 2. This example illustrates a general property:
The solutions change continuously with the change
of parameters; they may “collide” but never “dis-
appear”. §

4.3 General polynomials

Consider a general polynomial equation of order n:

0∑
k=n

akz
k = 0 (32)

where an 6= 0. There are exactly n roots, counting
multiple roots if any in the sense defined above.
The proof requires some tools of complex analysis,
and will be given in the next module.
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The polynomials that appear in physics usually
have real coefficients ak. In this case, if ζ is a root,
then so is ζ∗ (which would be a different root if and
only if = ζ 6= 0).

4.4 The square root function*

*This subsection is more advanced and can be
skipped.

Multiple roots
We have already learnt how to take the square
root, but there is some subtlety when we regard
the square root as a function:

f(z) =
√
z (33)

The reason is this: There are two solutions, and
we have to make a consistent choice so that f(z)
is continuous. Let arg z = θ, by convention defined
to be

0 ≤ θ < 2π (34)

Then we can write z in either of the two ways

z = |z| eiθ or |z| ei(θ+2π) (35)

Then using the rule that the argument is to be
halved, we have

√
z = |z|1/2 eiθ/2 or |z|1/2 ei(θ/2+π) (36)

The extra phase iπ in the second solution is just
a minus sign. This explanation gives us another
perspective: multiple roots appear because we can
assign different phases to z (differing by 2π) — a
complication that was already present before we
take the square root.

Consider an example: take z anticlockwise on
the unit circle (|z| = 1), starting from the positive
real axis, going through the points A,B,C,D,E in
Figure 2. We take the first root in (35) and (36).
Denote θ = arg z, θ′ = arg

√
z.

θ θ′

A 0+ 0+

B π/2 π/4
C π π/2
D 3π/2 3π/4
A′ 2π π

Table 1. The arguments θ = arg z and θ′ = arg
√
z,

for z going around the unit circle. The complex plane
is cut along the positive real axis, as in Figure 3. The
symbol 0+ means an infinitesimal positive number.

Problem 8
Write

√
z in the standard form x + yi for each of

the points A,B,C,D,A′ in Table 1. §

Need for a cut
We now have a problem: the points A′ and A are
almost the same; yet

√
z is quite different: it is +1

at A and −1 at A′. If we allow these two points
to be regarded as “nearby”, the function would be
discontinuous. There are two ways out. (a) When
θ goes beyond 2π, we imagine z going onto a second
sheet, i.e., another copy of the complex plane. We
shall not deal with this point of view here. (b) We
simply do not allow A′ and A to be connected, by
declaring the positive real axis to be a barrier that
cannot be crossed. In other words, we cut the plane
along the positive real axis, as indicated in Figure
2. The cut is simply a way of saying that we assign
the value of θ as in Table 1 (and not, for example,
2π larger).

But we can cut the complex plane in other ways,
for example, as in Figure 3. If that is done, the
arguments would be as shown in Table 2. There is
now a discontinuity in

√
z between the point C (just

above the negative real axis) and the point C ′ (just
below the negative real axis), on different sides of
the cut. Now there is no discontinuity between A′

and A.

θ θ′

A 0+ 0+

B π/2 π/4
C π π/2
C′ −π −π/2
D −π/2 −π/4
A′ 0− 0−

Table 2. The arguments θ = arg z and θ′ = arg
√
z

for z going around the unit circle. The complex plane
is cut along the negative real axis, as shown in Fig-
ure 4. The symbol 0+ (0−) means an infinitesimal
positive (negative) number.

Problem 9
Write

√
z in the standard form x + yi for each of

the points A,B,C,C ′, D,A′ in Table 2. Compare
with the previous problem. §

4.5 The logarithm function*

*This subsection is more advanced and can be
skipped.
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In elementary discussions of the logarithm, we
learnt about the function lnx, but only for x real
and positive.1 What about ln z for other values:
negative real numbers or in general complex num-
bers?

ln z = ln (|z| eiθ)
= ln |z|+ iθ (37)

where the first term is the log of a positive real
number, and the second term is obtained by the
usual rule of picking out the exponent. Thus, if z
is not a positive real number, its logarithm has an
imaginary part.

Example 2
Find ln (−4).
Write

−4 = 4 eiπ (38)

Then

ln (−4) = ln 4 + iπ

= 1.39 + 3.14i (39)

But note: If we write the argument as−π, we would
get a different answer. §

Thus there is the same problem as with
√
z: what

do we take the value of θ to be, and is it continu-
ous? Exactly as before, we need (a) a convention
to define θ, and (b) a cut to prevent discontinuities.
The cut can be placed on the positive real axis (and
a positive real number is regarded as just above the
cut), or it can be placed on the negative real axis.

Problem 10
Let zj , j = 1, 2, 3, be the three cube roots of unity.
(See Problem 4). Find ln z using the cut prescrip-
tions in Figure 3 and Figure 4. Thus there should
be 6 answers. §

1For any other base b, just divide by ln b.
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Figure 2: Choice of phase for the square root function; cut on positive 

real axis 
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Figure 3: Choice of phase for the square root function; cut on negative 

real axis 
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