
Power series

August 11, 2015

This module introduces power series, including the
Taylor series for any given function, together with
some applications.
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1 Power series

This module deals with function such as f(x) =
sinx. The argument x must be dimensionless (e.g.,
an angle is measured in radians, which carries no

dimension), and we assume the function is suffi-
ciently smooth.1

Such a function can (usually) be expressed as an
infinite power series valid for a certain range of x
that is “not too large”.

f(x) = a0 + a1 x+ a2 x
2 + . . .

=

∞∑
n=0

an x
n (1)

1.1 Range of convergence and exam-
ple

How large is “not too large”? Instead of any formal
theory, we illustrate by examples: in the first exam-
ple below, an do not decrease, so x cannot be large;
in the example in Section 2, an decreases rapidly,
and the series converges for all x.

Geometric series
The series defined by an = 1 converges provided
|x| < 1, in fact with the result

S =

∞∑
n=0

xn = (1− x)−1 (2)

The proof is outlined below in Problem 1, but the
idea is already familiar to young students who have
learnt recurring decimals. Take x = 0.1, write out
the series as a recurring decimal, and note that mul-
tiplication by 0.1 is equivalent to shifting by one
digit:

S = 1.111111 . . .

(0.1)S = 0.111111 . . .

(0.9)S = 1

S =
1

0.9
=

10

9
1We leave it for mathematicians to worry about what

“sufficiently” means.
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Problem 1
Consider the partial sum

SN =

N∑
n=0

xn (3)

and compare with xSN . (Hint: shift one term.)
Hence show that

(1− x)SN = 1− xN+1 (4)

By taking N →∞, prove (2) for |x| < 1. §

1.2 Binomial series

This subsection generalizes the familiar formulas
such as

(1 + x)2 = 1 + 2x+ x2

(1 + x)3 = 1 + 3x+ 3x2 + x3

(1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4 (5)

Positive integer powers
For a positive integer n, we know

(1 + x)n

= 1 + nx+
n(n−1)

2
x2 + . . .

=
∑
k=0

n(n−1) . . . (n−k+1)

k!
xk (6)

Deliberately, we have not indicated an upper
limit to the sum; in principle, allow k to go to in-
finity. But provided n is an integer, for k > n the
numerator in the coefficient will encounter a factor
of zero. Thus, this is a finite series, and therefore
valid for any x.

Other powers
It turns out that the same formula works (with two
qualifications, as below) even if the power is not an
integer:

(1 + x)a

= 1 + ax+
a(a−1)

2
x2 + . . .

=
∑
k=0

a(a−1) . . . (a−k+1)

k!
xk (7)

There are two differences. (a) If a is not a positive
integer, the coefficient is never zero, and the series

is an infinite series. (b) For an infinite series, one
has to worry about convergence. This series con-
verges if (and only if) |x| < 1. A formal proof of
(7) is given later.

Problem 2
Take a = −1 and explicitly work out the coefficients
in (7). Compare with (2). §

Problem 3
Take a = 1/2 and and write out three terms of the
expansion. §

1.3 Using a power series

Given a series such as (1), there are three ways in
which it can be used.

• Take all the terms and use the sum to obtain
the exact answer. This is what mathemati-
cians tend to do. Our proof of (2) belongs to
this category.

• Take many terms and use the sum to obtain an
accurate answer. This is what computer scien-
tists tend to do. For example, this is one main
method used for evaluating special functions.
See Problems 5, 6.

• For some x that is much smaller than unity,
we can take a few terms and get a pretty good
answer. This is what physicists often do. See
Examples 1, 2 and Problem 7.

These uses are illustrated by some examples.

Problem 4
Imagine using the series in (2) to evaluate (1 −
0.99)−1. How many terms do you need to get an
absolute accuracy of 0.001? §

Problem 5
Consider the function expx introduced in (17) in
the next Section. Evaluate exp 0.2 to an accuracy
of 0.001. Use only the arithmetic functions (adding,
subtracting, multiplying and dividing) in your cal-
culator. §

Problem 6
The Bessel function is defined by the series

J0(x) =

∞∑
n=0

(−1)n
(x2/4)n

(n!)2
(8)

2



(a) Write out the first four terms explicitly.
(b) Evaluate J0(0.3) to 3 significant figures. §

Example 1
Consider the following method to calculate

√
2.

√
2

=

√
200

100
= (1/10) ·

√
200

= (1/10) (196 + 4)
1/2

= (1/10)
√

196 (1 + 4/196)
1/2

(9)

Note that 196 = 142 and use the series

(1 + x)1/2 = 1 + (1/2)x+ . . . (10)

applied to x = 4/196� 1, so that we can drop the
x2 term etc.:

(1 + 4/196)
1/2 ≈ 1 + 2/196 ≈ 1.01 (11)

Thus
√

2 ≈ (1/10)× 14× 1.01 = 1.414 (12)

Four figures are obtained without even a calculator.
Try using

2, 000, 000 = 14142 + 604 (13)

for an even more accurate result.

Problem 7
Find

√
3 in a similar way. Hint: 172 is just a little

bit less than 300. §

Example 2
In relativity, the energy E of a particle of mass m
moving at velocity v is given by

E =
mc2√

1− v2/c2
(14)

where c is the velocity of light. For many cases, v/c
is very small, so x ≡ v2/c2 is tiny, and its second
and higher powers can be ignored. (For example,
for a plane flying at approximately the speed of
sound, v ∼ 300 m s−1, v/c ∼ 10−6, x ≡ (v/c)2 ∼
10−12.) Thus [

1− (v/c)2
]−1/2

≈ 1 +

[
−1

2

] [
−(v/c)2

]
= 1 +

1

2

v2

c2
(15)

Thus

E ≈ mc2 +
1

2
mv2 (16)

The first term is the energy when the particle is
not moving (the rest energy), and the second term
is the additional energy due to motion (kinetic en-
ergy). Thus the Newtonian form of the kientic en-
ergy is recovered. §

Problem 8
A ball of 1 kg is moving at a speed of 3 m s−1.
Find in units of J (a) its rest energy; (b) its Newto-
nian kinetic energy; (c) the error in its Newtonian
kinetic energy. §

Very often, keeping just one non-trivial term in a
power series expansion is a good way of obtaining a
simpler yet accurate expression — and to connect a
general theory or expression with a more restricted
one that applies in a limited domain.

2 Exponential function

2.1 Definition

The series defined by an = 1/n! converges for any
value of x. Define the resulting function as

expx =

∞∑
n=0

xn

n!
(17)

2.2 Multiplicative property

The exponential function has the important prop-
erty that

expx · exp y = exp (x+ y) (18)

To establish this property, we have to check that( ∞∑
n=0

xn

n!

)
·

( ∞∑
m=0

ym

m!

)
?
=

∞∑
k=0

(x+ y)k

k!

(19)

Check a few terms
In case you are not familiar with manipulating in-
finite series, let us proceed step by step. Look at
just the first few terms:(

1 + x+ x2/2! + . . .
)
·
(
1 + y + y2/2! + . . .

)
?
= 1 + (x+ y) + (x+ y)2/2! + . . . (20)
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Arrange terms by the total power k of x and y.
(To make this more systematic, we can introduce a
formal parameter µ: replace x 7→ µx, y 7→ µy and
count powers of µ.) The k = 0 and k = 1 terms are
obvious, and the k = 2 terms are

LHS = x2/2! + xy + y2/2!

RHS = (x+ y)2/2! (21)

which are clearly equal.

Problem 9
Carry out the same verification for k = 3 and k = 4.
§

Formal proof
Look at terms with total power k:

LHS

=
∑

m+n=k

xn

n!
· y

m

m!

=

k∑
n=0

xnyk−n

n!(k − n)!

=
1

k!

k∑
n=0

k!

n!(k − n)!
xnyk−n

=
1

k!
(x+ y)k = RHS (22)

2.3 The number e

Define the number e as

e ≡ exp 1

=

∞∑
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ . . .

= 2.71828 . . . (23)

Thus we have, for example,

e2 = e · e
= exp 1 · exp 1 = exp 2 (24)

More generally,

ex = expx (25)

for any x. Thus the exponential function is just a
power. Henceforth we shall interchangeably write
ex or expx.

2.4 Some properties

Here we list only a few elementary properties of the
exponential function. Other properties, especially
about (a) its derivative and (b) its relationship with
trigonometric functions, will be discussed later.

Monotonic
The function expx is monotonically increasing: if
x < y, then expx < exp y. To see this, simply
compare similar terms in the two expansions. (This
proof works only for x, y > 0. How would you gen-
eralize the proof to other cases?)

Never zero
The function expx has no zeros. To see this, we
only have to note that there is a reciprocal:

expx · exp (−x) = 1 (26)

Grows faster than any power
An exponential grows faster than any power, in the
following sense. For any a, b > 0 and fixed n ≥ 0,
for sufficiently large x > 0 we have

eax > bxn (27)

To prove this, we just pick one term in the series
on the LHS (the omitted terms being all positive),
and we only need to prove

1

(n+1)!
an+1xn+1 > bxn (28)

which will hold provided

x > x0 ≡ (n+1)!
b

an+1
(29)

A simple corollary is that for any a, b > 0 and fixed
n ≥ 0, then for sufficiently large x we have

e−ax < bx−n (30)

for sufficiently large x.

3 Differentiation and integra-
tion

3.1 Term by term

Provided the power series converges “sufficiently”
well,2 then we can differentiate or integrate term

2Technically, that the convergence is uniform.
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by term, e.g., given

f(x) =

∞∑
n=0

anx
n (31)

then

d

dx
f(x) =

∞∑
n=0

nanx
n−1

∫
f(x) dx = c0 +

∞∑
n=0

an
n+ 1

xn+1 (32)

In the derivative we can omit the n = 0 term; in the
integral there is an unknown constant of integration
c0.

3.2 Examples

Problem 10
Differentiate (2) and hence obtain power series ex-
pansions for

(1− x)−2 , (1− x)−3 (33)

Also check (at least the first of these) by multiply-
ing (2) by itself and sorting out like powers. §

The next two problems assume that you know
about the natural logarithm.

Problem 11
Integrate (2) and obtain a power series for ln (1−x).
Note that

∫
x−1 dx = lnx. Also obtain the series

for ln (1+x). §

Problem 12
There is a simple rule in finance: If an investment
increases in value by p percent per year (and p is
not too large), then it will take n = 70/p years for
it to double. Prove this by starting with

(1 + p/100)n = 2 (34)

Take the natural log and expand in the small pa-
rameter x = p/100. Explain why it is not appro-
priate to expand (34) directly. §

Problem 13
Take the series for expx and show that

d

dx
ex = ex (35)

i.e., the exponential function is its own derivative.
What is the derivative of eax? §

Problem 14
From (2) we have (expanding in y = −x2)

1

1 + x2
= 1− x2 + x4 − x6 + . . . (36)

valid for all |x| < 1. Integrate term by term and
hence prove the following series for the arc tangent:

arctanx = x− x3

3
+
x5

5
− x7

7
+ . . . (37)

Apply this to x = 1 (which is “barely” OK, in the
sense that the resulting series is conditionally con-
vergent), to obtain the following series for evaluat-
ing π:

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

= 2

(
1

1 · 3
+

1

5 · 7
+ . . .

)
(38)

The latter form converges much better. Evaluate π
to 3 significant figures. §

4 Taylor series

4.1 Finding the coefficients

Given a function f(x), how do we find the coeffi-
cients an in the power series (1)?
(0) Start with the expansion of f and evaluate at
x = 0:

f(0) = a0 (39)

(1) Next differentiate the expansion once:

f ′(x) = a1 + 2a2 x+ 3a2 x
2 + . . . (40)

Now evaluate this at x = 0:

f ′(0) = a1 (41)

(2) Differentiate one more time:

f (2)(x) = 2a2 + 3 · 2a2 x+ 4 · 3x2 + . . .(42)

Now evaluate this at x = 0:

f (2)(0) = 2a2 (43)
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Here we adopt the notation that f (n) means the
nth derivative.

It is easy to see that after doing this n times

f (n)(0) = n! an (44)

Turning this around

an = f (n)(0)/n! (45)

or, putting this back into (1),

f(x) =

∞∑
n=0

[f (n)(0)/n!]xn (46)

This is the the Taylor series for expanding around
x = 0.

4.2 Expanding around another point

Consider the function

g(h) = f(x+ h) (47)

By applying the above result

g(h) =

∞∑
n=0

[g(n)(0)/n!]hn (48)

But

g(n)(0) = f (n)(x) (49)

so we have

f(x+ h) =

∞∑
n=0

[f (n)(x)/n!]hn (50)

which is a more general form useful for expanding
around x rather than 0. Strictly speaking the spe-
cial case of (46) is called a Maclaurin series, whereas
the general form (50) is called a Taylor series.

4.3 Some examples

Example 3
Let f(x) = (1 + x)a. Then

f(x) = (1 + x)a

f ′(x) = a (1 + x)a−1

f (2)(x) = a(a− 1) (1 + x)a−2

f (3)(x) = a(a− 1)(a− 2) (1 + x)a−3 (51)

etc., so evaluating at x = 0,

f(0) = 1

f ′(0) = a

f (2)(0) = a(a− 1)

f (3)(0) = a(a− 1)(a− 2) (52)

and hence we get

(1 + x)a

= 1 + ax+
a(a−1)

2!
x2 +

a(a−1)(a−2)

3!
x3

+ . . . (53)

valid for |x| < 1.
We make several remarks. (a) The above is valid

for any power a, which does not have to be an inte-
ger. (b) If a is a positive integer, the series termi-
nates, and the result is a polynomial — the familiar
binomial expansion. §

Problem 15
Take a = −1 and change x 7→ −x. Hence derive
(2). §

5 Newton’s method

5.1 Formulation

In physics we often have to solve algebraic equa-
tions numerically. Such equations in one variable
can always be written as

f(x) = 0 (54)

for some smooth function f .
Suppose we have an initial guess x0 that is not

too far off. Thus we consider only those x = x0 + ξ
where ξ is small. Then

0 = f(x0 + ξ) ≈ f(x0) + ξf ′(x0) (55)

Based on this approximation, the zero should occur
for

ξ = −f(x0)/f ′(x0) (56)

or namely at x1 = x0 + ξ:

x1 = x0 − f(x0)/f ′(x0) (57)
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Since (55) is only approximate, x1 is also only
approximate, but it is a better (usually much bet-
ter) approximation than x0. The process can be
repeated

x0 7→ x1 7→ x2 7→ . . . (58)

which converges rapidly to the correct solution.
Figure 1 illustrates the geometric interpretation
of each step of the map (58).

5.2 Some applications

Example 3
Solve the equation sinx = x/2 for x in radians. Put

f(x) = sinx− x/2 (59)

A rough sketch and the following tabulation gives
an initial guess: x0 = 1.9 is probably a good guess
to start with.

x sinx x/2 f
π/2 = 1.57 1.00 0.78 0.22

2 0.91 1.0 −0.09

Table 1. Tabulating the function f(x)

Iteration converges rapidly, as shown in the table
below.

x f
1.9 −3.7× 10−3

1.895506 −9.6× 10−6

1.895394 −6.5× 10−11

Table 2. Newton iteration

Problem 16
The intensity I per unit wavelength interval of
black body radiation at temperature T is given by

I = I0
x5

ex − 1
(60)

where I0 is a constant and x is the dimensionless
variable

x =
hc

λkBT
(61)

where h is Planck’s constant, c is the velocity of
light, λ is the wavelength, T is the temperature

and kB is Boltzmann’s constant.3 To find the wave-
length where the intensity is maximum, we seek the
maximum of

g(x) =
x5

ex − 1
(62)

So we set

0 = g′(x) =
5x4

ex − 1
− x5

(ex − 1)2
· ex (63)

This is the same as seeking the root of

f(x) = x− 5 + 5e−x (64)

An initial guess is x ≈ 5 (since for x this large, the
exponential term is quite small).
(a) Use Newton’s method to find the value of x to
3 significant figures.
(b) If cosmic microwave background has a temper-
ature of 2.75 K, find the peak wavelength in mm.
§

Appendix

A Convergence

Here we give a simple criterion for convergence of
a power series.

Ratio test
From Problem 1, we see that the geometric series∑

n r
n converges if 0 ≤ r < 1. Thus any series∑

n Tn (which does not even have to be a power
series) will also converge if its terms decrease faster
than the geometric series, i.e., if there is some r
such that 0 ≤ r < 1 and some N , such that for any
n > N , ∣∣∣∣Tn+1

Tn

∣∣∣∣ ≤ r (65)

for all n > N . We can exclude the first N terms
because any finite number of terms do not affect
convergence.

Exponential function
Applied to the series for the exponential function

3See the module on Dimensional analysis: Part II where
this function is discussed and the peak identified in a less
efficient way.
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for a given x, the ratio is

|x|
n+ 1

(66)

If we choose N to be some integer larger than |x|,
then the ratio test is satisfied. Thus the series for
the exponential function converges for any value of
the argument.
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Figure 1: Newton’s method 
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