
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 6 EXERCISE CLASSES (18
Feb - 22 Feb 2019)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress in our course: We discussed the quantum mechanics of multi-electron atoms. For the
many-electron Schrödinger Equation, the strategy is to reduce it to solving one-electron problems for
the atomic orbitals. These Independent Particle Approximation (IPA) can be carried out in
different ways. A key idea is self-consistency, as we introduced through the Hartree approximation
in the context of the helium atom ground state. For multi-electron atoms, the next step is to fill
the electrons into the atomic orbitals. We know of the Pauli Exclusion Principle. But the
more general principle is that the many-electron wavefunctions must be anti-symmetric with
respect to interchanging any two electrons. It is due to the indistinguishability of electrons.
Combining this requirement with IPA, the Pauli Exclusion Principle comes out. Filling the atomic
orbitals with the Pauli Exclusion Principle explains the periodic table. These are the key points of
Atomic Physics.

SQ14 Helium atom ground state energy - First order perturbation theory
SQ15 Helium atom ground state energy - Variational method

The Helium Atom
The helium atom is the playground to learn the physics of multi-electron atoms. The helium

atom Hamiltonian in SI units is

Ĥhelium =
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where r12 = |r1 − r2|.
Given the problem defined by Ĥhelium, we try every tool we have in our box. We tried the first

order perturbation theory and the variational method. More importantly, the results illustrate the
way to move on to approximate a two-electron QM problem by one-electron problems by treating
the effect of one electron on the other approximately.

When we invoke such approximation we will obtain single-electron states (atomic orbitals). It
is the spirit of the Independent Particle Approximation (IPA). Let’s consider the ground state
of a helium atom. We know that the ground state has two electrons in the helium 1s atomic
orbitals, and one electron is “spin-up” and another is “spin-down”. To write this physical picture
down mathematically, the helium atom ground state wavefunction is

ψ(1, 2) = φ1s(r1)φ1s(r2)︸ ︷︷ ︸
symmetric spatial part

1√
2

(α(1)β(2)− α(2)β(1))︸ ︷︷ ︸
anti−symmetric spin part

. (2)

Here, “1” (and “2”) represents the coordinates (x,y,z, and spin) of electron #1 (and electron #2).
We used α to represent the spin-up (ms = +1/2) state and β the spin-down (ms = −1/2) state.
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The spin part in Eq. (2) makes sure that the helium atom ground state wavefunction ψ(1, 2) is
anti-symmetric with respect to interchanging the two electron’s coordinates. What it means is that
if we interchange r1 ↔ r2 and 1 ↔ 2 in ψ(1, 2), we have ψ(2, 1) = −ψ(1, 2). This is a QM rule
for multi-electron wavefunctions. We will discuss more about the spin part later. Here, it is the
spatial part that goes into the calculations.

We encountered the form Eq. (2) several times.

• Perturbation Theory - The first 4 terms in Eq. (1) form the unperturbed problem Ĥ0 and
the electron-electron interaction term (last term) is the perturbation Ĥ ′. In this case,
φ1s(r1)φ1s(r2) is the solution to Ĥ0 and thus each φ1s is a hydrogen-like wavefunction, which
is known. SQ14 takes on this viewpoint.

• Variational Method - The form of Eq. (2) and the hydrogen-like form of Ĥ0 = ĥ1 + ĥ2
motivate a trial wavefunction that can be used in a variational calculation. SQ15 takes on
this viewpoint.

• In Hartree type approximation, φ1s(r) is an unknown and yet-to-be-determined wavefunc-
tion. By including an average effect of one electron in φ1s on the other electron also in φ1s,
an equation (Hartree equation) can be set up to solve for φ1s(r) self-consistently.

SQ14 Helium Ground State energy using first-order perturbation theory. (Educational, but integrals
are Optional for Exam Purposes)

In class notes, we discussed the first-order perturbation approach as as a first attempt to
understand helium atom and claimed the result. Here, TA will show the calculations.

The first four terms forming Ĥ0 = ĥ1 + ĥ2 gives an exactly solvable problem. The problem
defined by

ĥ = − h̄2

2m
∇2 − 2e2

4πε0r
(3)

is a hydrogen-like problem and thus its solutions are known. In this case, φ1s(r) is a
hydrogen-like 1s state of the form

φ1s(r) = φ100(r) =
1√
π

(
Z

a0

)3/2

e
− Z
a0
r

(4)

where Z = 2 for ĥ in Eq. (3). For the hydrogen atom solved last term, Z = 1.

(a) For φ1s(r1)φ1s(r2) with φ1s(r) given in Eq. (4), what is the zeroth-order energy in
units of eV and in Hartree (atomic units).

(b) Using Eq. (2) (with φ1s(r) in Eq. (4)) as the unperturbed wavefunction for the ground
state, the first-order perturbation theory (in Hartree Eh and in eV ) gives an integral
over r1 and r2, i.e., integrating over 6 variables. Evaluate the integral explicitly.

[Remark: The answer 5
8Z = 5×2

8 Eh = 5
4 Eh was given in class notes. Here the TA will

work out the not-too-easy integrals.]

(c) Hence, obtain the helium atom ground state energy in first order perturbation theory
and compare it with the known value of −2.9033 Eh.
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SQ15 Helium ground state energy using variational method. (Integrals are Optional for Exam Pur-
poses)

Here is a twist on the problem and another way of using Eq. (2). Instead of using Z = 2 in
the wavefunction φ1s(r) in Eq. (4), let’s turn Z into a variational parameter and call it ζ.
So the variational problem is defined by
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with the trial wavefunction
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(a) Evaluate 〈Ĥhelium〉 with respect to the trial wavefunction to obtain

〈Ĥhelium〉 = E(ζ) = −ζ2 + 2 ζ(ζ − 2︸︷︷︸
nuclear charge

) +
5

8
ζ = ζ2 − 27

8
ζ (7)

when the result is expressed in atomic units.

[Hints: The term − 2e2

4πε0r1
in Ĥhelium can be written as − ζe2

4πε0r1
− (2−ζ)e2

4πε0r1
. The same goes

for the term involving r2. The integral in SQ14 will also be useful.]

(b) Apply the variational method, i.e., varying the value of ζ to search for the best value,
to obtain the best estimate to the helium atom ground state energy.

[Remarks: Comparing the variational calculation result to the known value of helium ground
state energy is −2.9033 Eh, the approximation works quite well. Note that we only included
one variational parameter ζ in the trial wavefunction in Eq. (6). This idea opens up wilder
ideas. How about inserting more parameters? (Ans: Yes, it should work better.) How about
varying the whole function φ1s(r)? (Ans: Yes! This can also be done!) And this is the
formal mathematical approach to obtain the Hartree approximation with the self-consistent
equation for φ1s(r) that we discussed in Appendix B of AP II. More formally, the mathematics
invoked is functional derivatives, quite like what you did in varying the trajectory of a particle
from (x1, t1) to (x2, t2) in classical mechanics in the discussion of the less action principle.
When you tried different paths, you are trying different functions x(t) with both ends fixed,
thus varying the function x(t).]
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