
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 4 EXERCISE CLASSES (28 Jan
- 1 Feb 2019)
What are Sample Questions (SQs)? TA will discuss the SAMPLE QUESTIONS in exercise
classes. The Sample Questions are designed to serve several purposes. They either review what you
have learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem. You are encouraged to think about (or work out) the sample questions before
attending exercise class and ask the TA questions.

SQ8: The “minimal substitution rule” in generating the −~µL · ~B term in Hamiltonian and more
SQ9: Some expectation values of f(r) for hydrogen atomic states
SQ10: Counting the states of three spin-1/2 particles in three different states in two different ways

SQ8 The “minimal substitution rule” in generating the −~µL · ~B term in Hamiltonian and more

Background: When an external magnetic field is applied to an atom, a magnetic interaction
energy coming from the interaction between the magnetic dipole moment ~µL accompanying the
orbital angular momentum ~L of the electron and the applied magnetic field ~B (or ~Bext to be
explicit) is added to the Hamiltonian. The interaction energy carries the form −~µL · ~B. In QM,
this term becomes an operator and it is added to the Hamiltonian. The ~µL becomes ~̂µL. A
consequence is the normal Zeeman effect. Note that spin angular momentum is ignored
here. All is fine. This follows from the “think classical” and then “go quantum” procedure.

We ask a more general question: “Is there a standard procedure to incorporate the effect of an
applied ~B field in QM?” The answer is yes. Here, we introduce a standard procedure in QM
to include the effect of ~B and to generate the −~µL · ~B term automatically. The procedure is
applicable to many other occasions, e.g. incorporating EM fields quantum mechanically into the
Dirac equation and in quantum field theories.

In QM, the vector potential ~A plays a more important role than the magnetic field ~B. Recall
that ~B = ∇× ~A. In QM, when an applied magnetic field acts on a charged particle of charge q, the
effect is captured by (i) writing down the Hamiltonian without the magnetic field effect; and (ii)
replacing the linear momentum ~p in the Hamiltonian by ~p− q ~A, i.e., making the substitution
~p → ~p − q ~A, where ~A is the vector potential that can generate the field ~B. When we apply the
procedure to the electron in a hydrogen atom in the presence of an applied field ~B = Bẑ, we have

Ĥ =
(~p+ e ~A)2

2m
+ V (r) (1)

where V (r) = −e2/(4πε0r) is the Coulomb potential energy term for a hydrogen atom, and V (r)
is a spherically symmetrical potential for other atoms.

TA: For ~B = Bẑ (no loss of generality), choose a proper ~A that works and show that a term
of the form −~µL · ~B emerges (without a priori knowing there is an orbital magnetic moment)!
Identify ~µL. Also show that an extra term of the order A2 (thus B2) also emerges as a by-product.

Physics remarks: (a) Physically, the term −~µL · ~B is a paramagnetic response, as it prefers
the alignment of the magnetic dipole moment with ~B. The extra ∼ A2 term is a diamagnetic
response of the orbiting electron. It can be treated by the 1st order perturbation theory. It
is analogous to the Lenz law. The response in a loop threaded through by a changing magnetic
field is a current that opposes the change. Since the magnetic field is typically not big, the
paramagnetic term is more important than the diamagnetic term. In some cases where L = 0
(so ~µL = 0), the diamagnetic term becomes important. (b) If we have a scalar potential φ in
addition to ~A, you may immediately think that there should be a term qφ added to the energy
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(Hamiltonian). You are right! (c) The magical thing is that the substitution generates how
a charged particle interacts with an external field. For EM interaction, the Maxwell’s
equations and the Lorentz force govern the behavior of EM fields and how a charge interacts
with EM fields. Thus the substitution rule gives nothing new. It simply confirms what is known.
However, for the cases where the form of the interaction term is not clearly known (e.g. other
interactions in particle physics), this substitution serves as a guiding principle in key developments
in quantum (gauge) field theories. (d) The nucleus also has a spin magnetic moment. Hence, it
creates a ~B field and thus ~A. This ~A field will interact with the electron’s ~L when the substitution
rule is applied. The result is the hyperfine structure.

SQ9 Some expectation values of f(r) for hydrogen atomic states

In applying perturbation theory (even 1st order approximation as in SQ7), we need to evaluate
expectation value of some quantity f(r) such as r, 1/r, 1/r2, with respect to a hydrogen
atomic state Rn`(r)Y`m`

(θ, φ). Since f(r) does not depend on θ and φ, the integrals over angles∫
(· · ·)dΩ can easily be handled by the normalization of the spherical harmonics. It is an integral

of
∫∞
0 R∗n`(r)f(r)Rn`(r)r

2dr that matters at the end. In class notes, a few standard results are
listed.

TA: Evaluate 〈r〉 for 2s (R20(r)) and for 2p (R21(r)) and illustrate that the results are consistent
with the general formula

〈r〉n`m`
=
a0
2

(
3n2 − `(`+ 1)

)
(2)

where a0 is the Bohr radius. [Note: We studied the most probable rmp at which P (r) = r2|R(r)|2
peaks in QMI. The quantity 〈r〉 is different, though related.]

TA: Evaluate 〈1/r〉 for 2s and 2p, and illustrate that the results are consistent with the general
result

〈1
r
〉n`m`

=
1

n2a0
(3)

Important remark: Some students wonder whether 〈1/r〉 ?
= 1/〈r〉. The results show that it is

NOT THE CASE.

SQ10 Counting the states of three spin-1/2 particles in three different states in two different ways

We studied how to add an orbital angular momentum of quantum number ` to a spin s = 1/2
angular momentum to form a total angular momentum. The quantum number j for the magnitude
squared J2 is given by j = `+ 1/2 and j = `− 1/2. Here, we extend the application of this rule
to study the states of three spin-half particles in three different states.

Method 1: Consider there are three spin-1/2 particles (electrons) and there are three states (e.g.
1s, 2s, 2px). There is one particle in each state. [The set up avoids complications due to the Pauli
Exclusion Principle, a topic to be discussed.] Each particle can be of “spin-up” or “spin-down”.
We may think that particle 1 is in state 1, particle 2 in state 2, and particle 3 in state 3. A possible
state of the system is “up, up, up”. TA: List all the states.

Method 2: So far, we only know how to add some angular momentum to a spin-1/2 angular
momentum. But that is sufficient. TA: By adding two spin-1/2 angular momenta first, and then
add in the remaining spin-1/2 angular momentum, group the states by the total spin angular
momentum quantum number S that gives the eigenvalues S(S + 1)h̄2 of the total spin angular
momentum squared Ŝ2

tot. Note that for each value of S, there are accompanying values of MS for
the eigenvalues of Ŝtot,z. Hence, illustrate that the number of states labelled by (S,MS) is the
same as that listed in Method 1.
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