
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 3 EXERCISE CLASSES (21-25
January 2019)
What are Sample Questions (SQs)? TA will discuss the SAMPLE QUESTIONS in exercise
classes. The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closely related to the questions in
an upcoming Problem Set. You should attend one exercise class session per week. You are encouraged
to think about (or work out) the sample questions before attending exercise class and ask the TA
questions.

Students: The SQs are related to the time-independent perturbation theory. Read the summary first.
Non-degenerate Perturbation Theory - Summary of Key Results

Given Ĥ = Ĥ0+Ĥ ′, but the TISE problem Ĥψ = Eψ does not allow analytic solutions. Fortunately,
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known. Here, Ĥ ′ is the perturbation term. The most important result of non-degenerate perturbation
theory is an approximate expression for the n-th eigenvalue of the problem
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The first-order theory to the n-th eigenstate is
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i Ĥ ′ψ

(0)
n dτ

E
(0)
n − E(0)

i

ψ
(0)
i (3)

We derived these formulas in class. More important than the derivation, you should understand the
meaning of the symbols in Eqs.(2) and (3) and how to apply the formulas.

Applying the results requires two levels of maturity in physics and mathematics. (a) We need to set
up the problem (i.e., identify Ĥ0 and Ĥ ′) and then write down the integrals explicitly in Eq. (2) and
Eq. (3). (b) We need to do the integrals. For (a), after identifying Ĥ0, we need the exact solutions to
TISE of Ĥ0. We know only a few of them, including the infinite well, harmonic oscillator (1D,2D,3D),
rigid rotors, and hydrogen atom. These are covered in QM I (refer to PHYS3021 notes). For (b),
we need to do many integrals involving sine and cosine functions (infinite well), Hermite polynomials
(harmonic oscillator), eimφ and Ylm(θ, φ) (rotors), and ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (hydrogen atom).
Some integrals are hard to do. There are integral tables that are helpful. But you shouldn’t let the
mathematics ruin your appreciation to the usefulness of perturbation theory.

The SQs here apply the perturbation results.
SQ6: 1st and 2nd order perturbation theory applied to an exactly solvable problem (harmonic oscillator)
SQ7: Shifts in hydrogen atom energies due to relativistic correction to kinetic energy - 1st order per-
turbation theory
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SQ6 Harmonic Oscillator – an exactly solvable problem treated by 1st and 2nd order perturbation theory

Consider an 1D harmonic oscillator in which the potential energy function is U(x) = 1
2k(1 + ε)x2,

where ε is meant to be ε � 1. Referring to harmonic oscillator quantum physics, write down
the exact eigenvalues of the problem.

Knowing the exact results, we actually don’t need the perturbation theory. However, it will be
interesting to see how good (or bad) perturbation theory works.

(a) The exact eigenvalues can be expanded into a power series in ε, i.e., considering ε� 1. Do
it.

(b) Now we take the unperturbed problem to be

Ĥ0 = − h̄2

2m

d2

dx2
+

1

2
kx2 (4)

and the perturbed problem as

Ĥ = − h̄2

2m

d2

dx2
+

1

2
k(1 + ε)x2 = Ĥ0 + Ĥ ′ (5)

Identify the perturbation term Ĥ ′ and obtain the 1st order perturbation in the energy for
all states.

(c) Next consider only the ground state. Find the 2nd order perturbation to the ground state
energy. Hence, write down the ground state energy including 0th, 1st, and 2nd order terms.

(d) Compare the perturbation result with the exact result in part (a) to the same order.

(e) (Optional for TA, just for fun) How about the 1st order correction to the ground state
wavefunction?

[Remark: This is Problem 6.2 and Problem 6.4(b) in Griffiths’ Introduction to Quantum
Mechanics.]

SQ7 Non-degenerate perturbation theory: 1st order correction to hydrogen atom energies due to rela-
tivistic correction to the kinetic energy

Background – Schrödinger solved the hydrogen atom problem in 1926 and gave the famous
−R∞/n2 or −13.6/n2 (in eV) energies as observed in hydrogen spectrum (Lyman, Balmer,... se-
ries). Despite the success, the kinetic energy term in the Hamiltonian in the Schrödinger Equation
used the Newtonian form TNewton = p2/2m. Einstein published his papers on special relativity
in 1905. Naturally, soon after Schrödinger’s work, people started to consider the relativistic
corrections to Schrödinger’s solutions to the hydrogen atom. This SQ deals with one such cor-
rection. The result is important in that (i) the correction is tiny, and (ii) the small correction is
characterized by the fine structure constant squared, or α2.

(a) Is it really necessary to consider relativistic effects? Think like a physicist! Relativistic
effect becomes important when a speed becomes not too small compared with the speed
of light. Taking the Bohr’s model of a hydrogen atom, the electron is orbiting around the
nucleus. Find the ratio of speed v1 of the electron in the n = 1 orbit (ground state in QM
language) to the speed of light c. This ratio v1/c turns out to be a very important number
in physics - so important that it is given a name called the fine structure constant. Its
value is < 1%.
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(b) To use perturbation theory, we need to identify Ĥ ′. Relativistically, the kinetic energy of
a free particle can be found by the difference between the total energy and the rest energy.
Thus, we start with the relativistic expression

T =
√
p2c2 +m2c4 −mc2 (6)

and expand it in powers of the dimensionless parameter (p/mc) which is assumed to be small,
show that there is a correction term to p2/2m given by

T ≈ p2

2m
− p4

8m3c2
. (7)

(c) Using the kinetic energy term into the Schrödinger Equation of a hydrogen atom, we have

Ĥ =

[
p̂2

2m
+ U(r)

]
− p̂4

8m3c2
= Ĥ0 −

p̂4

8m3c2
(8)

where U(r) = −e2/(4πε0r) = −e2/(κ0r) is the Coulomb potential energy.

The unperturbed Ĥ0 problem is analytically solvable. The energy eigenvalues are the famous

E
(0)
n ∼ −13.6/n2 in eV and the eigenstates ψ

(0)
n`m`

(r, θ, φ)’s are also known.

Apply 1st order perturbation theory (don’t do the integrals at this point) to write down
the correction to the hydrogen atom energies.

(d) Finally, evaluate (or simply give the results of) the integrals and hence give an explicit
expression of the first order shift in energy due to Ĥ ′. It is important to point out how
small the correction term is, in comparison to the unperturbed energy.

TA: (i) Show that the 1st order perturbation in energy is related to the expectation value
of 〈(Ĥ0 − U(r))2〉 with respect to the unperturbed hydrogen atom states. (ii) Hence, show
that it amounts to evaluating the value of expectation values 〈1/r〉 and 〈1/r2〉 for different

ψ
(0)
n`m`

(r, θ, φ). (iii) These are standard integrals of hydrogen atom physics. I looked them up
from books and found that

〈1
r
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(`+ 1
2)n3a20

(9)

where the subscript (n, `,m`) labels the state in which the expectation value is evaluated and
a0 = κ0h̄

2/(me2) is the Bohr radius.

Use these results to obtain the first order correction E
(1)
n`m`

. Most importantly, show that

the magnitude of the correction is governed the fine structure constant squared α2, which

is about (1/137)2 of the unperturbed energy E
(0)
n . This is tiny. Tough small, spectroscopy

(atomic spectrum) is sensitive enough that we need to consider such corrections.

[For TA: It is more important to point out how those integrals emerge from the perturbation
formula and what those integrals are. You need not carrying out the expectation value
calculations in Eq. (9), unless you want to show off your technique.]

[Further remark: Those of you with sharp eyes may start worrying why we could apply 1st
order (non-degenerate) result here, as hydrogen energy levels carry degeneracy in general,
e.g. there are several (n = 2) states with energy −13.6/4 eV. This is a tricky question that
can be explained by even sharper eyes on the form of the perturbation Ĥ ′. For the moment,
don’t worry about it as the reason is a bit technical for some students. Another remark is
that there will be another relativistic correction term related to the spin of the electron that
we have not considered. Recall that spin is intrinsically a relativistic effect.]
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