
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 12 EXERCISE CLASSES (8
- 12 April 2019)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress: In Week 11, we discussed molecular spectrum, including rotation spectrum (in mi-
crowave range) and vibrational-rotational spectrum (often in IR range). The former arises from
transitions between rotational levels (different ` in the same vibrational level (usually n = 0) and
the latter arises from transitions between rotational levels belonging to different (∆n = ±1) vibra-
tional levels. It turns out that our background in Quantum Mechanics I on harmonic oscillator
handles the vibrational motions of nuclei and on 3D rigid rotor handles the rotational motions.
And the story goes, the electronic part of the molecular problem (bonding) gives a curve Eel(R)
that shows a preferred bond length at R = R0 such that Eel(R0) is a minimum. Near the minimum,
the profile Eel(R) is parabola (harmonic oscillator) and the curvature gives the force constant K
of the bond characterizing the harmonic oscillator in the radial direction. Recall that we have
a 3D problem. The radial direction harmonic oscillator corresponds to a 3D spherically sym-
metrical potential and the rotational motion (assuming a fixed R0 separation between the two
nuclei) is readily handled by the angular parts. For molecular states in the lowest electronic state,
the possible energies are

E(molecule) = Eel(R0) + (n+
1
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2I
(1)

where the second term gives the vibrational levels with ω =
√
K/µ being the characteristic angular

frequency of the bond (spring) with µ the reduced mass of the two atoms (diatomic molecule), and
the third term gives the rotational levels with I ≈ µR2

0 being the moment of inertia related to the
bond length. It is important to realize that the energy scales are very different. The difference
of electronic terms (first term to the next curve of Eel(R)) is of the order several eV to 10 eV
(visible to UV). The vibrational term (second term) is 1% of the first term and thus of the order
0.1 eV (IR). The rotational term (third term) is another 1%. Thus, it is of the order of 10−4 to
10−3 eV (microwave to far IR). Finally, transitions between the allowed molecular energy levels
give molecular spectrum. There are selection rules.

We also started to discuss travelling waves in quantum mechanics and their normalization. We
will then discuss the probability current density and tunnelling. We motivated the necessity of
tunnelling through α-particle decays in nuclei. There are many phenomena and applications based
on tunnelling.

SQ27 - Characteristic frequency for vibrations and Rotational Spectrum
SQ28 - Probability Current Density

SQ27 Rotational Spectrum

The characteristic frequency ω (in Eq.(1)) for vibrational levels is typically in the IR range.
Spectroscopists sometimes quote the numbers in cm−1. For H35Cl, the value is 2990.94 cm−1.

(a) Argue that almost all the molecules are in the n = 0 vibrational level at room tempera-
ture. [Here, a bit of statistical physics is needed. The probability that a state of energy
ε is occupied is proportional to exp(−ε/kT ) at a temperature T (thermal equilibrium).]
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(b) Calculate the force constant K from the characteristic frequency.

(c) It is easier to see that microwave cannot excite molecules from n = 0 to n = 1 vibrational
level. However, something does happen when microwave is incident upon the molecules.
This is related to transitions between rotational levels associated with the n = 0 vibra-
tional level. These transitions are related to the third term in Eq. (1). The selection
rule is ∆` = ±1. Thus, molecules at ` = 0 can absorb a photon to go to ` = 1, and
those in ` = 1 to ` = 2, and so on, as far as absorption is concerned. Show that there
will be a series of lines with equal spacing h̄2/I. In H35Cl, the microwave spectrum of
H35Cl consists of equally spaced lines of separation of 6.350 × 1011 Hz. Estimate the
bond length R0 of H35Cl.

[Remark: Putting together the information, one can anticipate how the vibrational-rotational
spectrum of H35Cl (needs higher resolution) looks like. The spectrum is shown in class notes.]

SQ28 Probability Current Density

The probability current density ~J in quantum mechanics is given in general by

~J =
h̄

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗) (2)

The first thing to note is that ~J is a vector.

Of course, the expression becomes simpler (but very often mistakes are still made) in 1D
problems. It is important to recall that ∇ → î ∂

∂x in 1D.

(a) Let’s start with Ψright(x, t) = Aeikx−iωt. Obtain ~Jright.

(b) Obtain ~Jleft for Ψleft(x, t) = B e−ikx−iωt.

(c) Consider Ψ(x, t) = Aeikx−iωt +B e−ikx−iωt. Obtain ~J . Relate the answer to ~Jright and
~Jleft.

(d) For the simplified case of Ψ(x, t) = eikx−iωt + r e−ikx−iωt, what is ~J?

(e) For the further simplified case form of ψ(x) = eikx + r e−ikx, what is ~J?

(f) Consider Ψ~k
(~x, t) = Aei

~k·~x−iωt, where ~k = kxî + ky ĵ + kzk̂ or (kx, ky, kz) and ~x =

xî + yĵ + zk̂. Apply Eq. (2) to obtain ~J~k. Note that ~k is the wave vector giving the
direction of propagation.

(g) Hence, obtain ~J for Ψ±~k
(~x, t) = Aei

~k·~x−iωt +B e−i~k·~x−iωt.
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