
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 1 EXERCISE CLASSES (7-11
January 2019)

TA will discuss the SAMPLE QUESTIONS in exercise classes every week. The Sample
Questions are designed to serve several purposes. They review what you have learnt in previous
courses that are needed in AQM, tell a physics story, enrich discussions in lectures, and some are
closed related to the questions in an upcoming Problem Set. They also served as worked examples.
Students should be able to do the homework problems independently after attending the exercise
class. You should attend one exercise class session. You are encouraged to work out (or at
least think about) the sample questions before attending exercise class and ask the TA questions.
Over the semester, you are welcome to go to the TAs for help.

SQ1 - Classical Mechanics: Two-body problem reduces to CM (center-of-mass) problem plus rela-
tive motion problem
SQ2 - Two-problem quantum mechanics problem also reduces to CM problem and relative motion
problem [a question in PHYS3021 mid-term exam]
SQ3 - Precision spectroscopy is key to developments in quantum mechanics

SQ1 Classical Mechanics: The Reduced Mass µ emerges when the relative separation is intro-
duced - Relevant to the Hydrogen atom, Diatomic Molecules, and more

Background: Besides the simplest problems such as particle-in-a-box or harmonic oscillator,
more often than not we have to deal with a system of two or more particles. Three-body
problems, for example, are typically not exactly solvable (both in classical and quantum
physics). However, two-body problems can be handled readily. There are many examples in
physics – planets orbiting around the Sun is a difficult model, but only the Earth orbiting
around the Sun (and ignore all the other planets) is easier. We solved the hydrogen atom
problem last Term by assuming the proton being fixed at the origin. In principle, the hydrogen
atom problem is a two-body problem with a proton and an electron. Similarly, replacing
the proton by an Atom A and the electron by another atom B (not meaning Boron), we have
an AB molecule. Thus, a diatomic molecule, the simplest of which is H2, is also a two-body
system. We mentioned last Term that in QM, we focus on the relative motion (thus assuming
the nucleus to be fixed at the origin) and the hydrogen atom problem becomes a one-body
(one electron) problem with the mass of the electron replaced by the reduced mass. Here, we
review the idea of reducing a two-body problem to a one-body problem plus a centre of mass
problem. The result is important in handling all many-body systems. The results are useful
in the treatment of a gas of diatomic molecules (the N2 and O2 in the classroom), as will be
discussed in statistical mechanics.

A simple classical mechanical model of a diatomic molecule (molecule consisting of two atoms)
is that of two balls of masses m1 and m2 connected by a spring with a natural length r0 and
spring constant K. For simplicity, let the molecule be on the x-axis, and motions can only
be along the x-direction. Instantaneously, the coordinates of m1 and m2 are x1 and x2,
respectively. Using Newton’s law, show that the two equations of motion are:

m1
d2x1
dt2

= K(x2 − x1 − r0)

m2
d2x2
dt2

= −K(x2 − x1 − r0)

By manipulating the equations, demonstrate clearly that the equation of motion for the
Center of Mass (CM) implies that the CM moves uniformly in time with a constant momentum

1



(thus moving freely). Obtain the equation of motion for the relative coordinate x =
x2 − x1, and illustrate that the standard harmonic oscillator equation

µ
d2r

dt2
+Kr = 0

emerges, where µ is the reduced mass. Show clearly what r is about. Give the expressions
for the characteristic angular frequency ω, frequency ν and wavenumber ν.

Remark: Technically, the freely moving center-of-mass motion is the translation motion.
The relative motion corresponds to the vibration of the two masses. We could have allowed
rotations as well (not restricted to be on a line). The picture that would emerge is similar.
[TA: don’t need to work this out.]

SQ2 Reduced Mass µ, transformation, and separation of variables

The results in SQ1 also work in Quantum mechanics. Consider a two-particle system in 1D.
A simple case is that the mass m of the two particles are the same (identical mass). The
two-particle interaction can be represented by a potential energy function U(x1 − x2), i.e.,
depends only on the combination (x1 − x2) of the positions x1 and x2 of the two particles.
An example is that of two particles connected by a spring (as in a diatomic molecule) as in
SQ1. The time-independent Schödoinger equation (TISE) is{[

− h̄2

2m

∂2

∂x21
− h̄2

2m

∂2

∂x22

]
+ U(x1 − x2)

}
︸ ︷︷ ︸

Ĥ

ψ(x1, x2) = E ψ(x1, x2) , (1)

where the Hamiltonian Ĥ is marked.

(a) We want to do a transformation from the variables x1 and x2 to two new variables

X ≡ mx1 +mx2
2m

=
x1 + x2

2
, x ≡ x1 − x2. (2)

Obviously, X is the center of mass coordinate and x is the relative coordinate. Carry
out the transformation of the second derivatives and show that the Hamiltonian Ĥ
becomes

Ĥ = − h̄2

2M

∂2

∂X2
− h̄2

2µ

∂2

∂x2
+ U(x) , (3)

and identify what M and µ are in terms of m.

(b) Hence, writing ψ = Φ(X) · φ(x), apply the method of separation of variables to
TISE to obtain two equations, one for Φ(X) and another for φ(x). Inspect the equation
for Φ(X) and comment on its solutions (freely moving?).

This is a question in PHYS3021 mid-term exam in Nov 2018.

SQ3 Atomic spectrum or spectroscopy is key to quantum physics developments

Background - Physics is an experimental science and its developments are often driven by
experimental observations and measurements of increasing precision. Atomic and moelcular
spectroscopy (seeing “light” (EM waves or photons) being absorbed or emitted) had led to key
developments in quantum mechanics. The Balmer series of hydrogen spectrum was known in
the 19th century. Rydberg played with the known data at the time including Balmer and the
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other series and came up with a description that the energy correspondence of the spectral
lines are given by differences of terms of the form ∼ − 1

n2 . Bohr took it as a statement
of the conservation of energy and then came up with the Bohr’s model in 1913. Einstein
put together Bohr’s model and Planck’s black-body radiation formula and came up with
the idea of stimulated emission and thus laser (to be discussed in the course). Heisenberg
wanted to explain the observed intensities of the spectral lines and founded his matrix version
of quantum mechanics. Schrödinger wanted to replace the ad hoc rule that Bohr imposed
(quantizing the orbital angular momentum to nh̄) by the more natural boundary conditions
that matter wave functions ought to be properly behave (continuous, single-valued, can be
normalized, etc.) and came up with the time-independent Schrödinger equation in 1926. As
spectrometer became more precise, what regarded as one spectral line in the past often came
up to be two closely-spaced lines – fine structure. Highly accurate spectroscopy in the 20th
century had further revealed the hyper-fine structure, and the Lamb shift that eventually led
to the development of quantum electrodynamics (QED) - the first successful quantum field
theory. All these are only about the hydrogen atom. Many more useful applications were
developed when precision spectroscopy was applied to other atoms and molecules. The first
thing to realize is – we should show great respect towards good experimentalists!
Two Nobel Chemistry Prizes in the past 4 years (2014 and 2017) were also awarded for clever
manipulation of light in high-resolution microscopy.

(a) The simplest version of the Bohr model or solving the Schrödinger equation for a hy-
drogen atom with the proton fixed at the origin gives the energies of a hydrogen atom
as

En = − me4

8ε20h
2

1

n2
n = 1, 2, . . . (4)

or you might have seen this in terms of h̄ instead of h. Here, m is the mass of an
electron. First, we learn to speak the spectroscopists’ language. Show that the
wave number ν that has the units of cm−1 is given by

ν =
me4

8ε2ch3

(
1

n21
− 1

n22

)
= RH

(
1

n21
− 1

n22

)
. (5)

Evaluate RH (the Rydberg constant) in units of cm−1. The value turns out to be
109,7xx cm−1. The time was 1913 and 1926.

(b) Precision spectroscopy gives us many data. The National Institute of Standards and
Technology (NIST) of USA has measured, updated, and published data for various
atomic transitions to very high accuracy. The NIST site http://www.nist.gov/pml/data/
handbook/index2.cfm (Click here on soft copy to link to site) has many data. Unfor-
tunately due to the partial closing down of the US Government, the site is
closed temporarily. When it is working, you could select “element name” and then
“hydrogen” and you will see some atomic data. Then select “energy levels”, you will
see accurate data of the hydrogen energy levels as measured as absorption and emis-
sion. (Click here on soft copy to link to page) TA: Show the data for RH collected
earlier.

(c) For ordinary purposes (e.g. learning QM), the difference is tiny and not something to
be bothered with. But for serious works, the difference is indicative. There are many
reasons for the difference. Based on SQ1 and SQ2, the simplest correction is to use the
reduced mass µ instead of the electron mass m, because hydrogen atom is a two-body
system. Evaluate RH again using µ instead of m and see if the value is closer to data.
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(d) In QM I (PHYS3021), we solved the hydrogen atom Schrödinger equation exactly. Al-
though the wavefunctions ψn`m carry three labels (three quantum numbers), the energy
En depends only on n. Let’s see if it is really the case.

TA: Show the highly accurate measured energy levels table of hydrogen atom to illus-
trate that (i) the previous observation of the Lyman, Balmer, and other series is actually
rather correct; and (ii) if we care about the fine details, there are actually some very
tiny splitting of, say, the n = 2 levels into very closely-spaced levels, and similarly for
the higher n levels. In PHYS3022, we will explain the reasons behind some of these
splitting in our course, e.g. due to spin-orbit coupling, and we need some approximation
methods as well. However, some remaining discrepancy is hard to explain at our level.

Key points: There are established (regularly updated) tables of spectroscopic data for
atoms. This is a serious business. The reduced mass does have some effects.
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