
PHYS3022 Applied Quantum Mechanics Problem Set 7 (Revised)
Due: 18 April 2019 (Thursday) “T+4 = 23 April 2019”
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

7.0 Reading Assignment. The electronic part of a molecular problem gives chemical bonding.
The motions of the nuclei give rise to vibrational levels and rotational levels. Molecules are
usually in their electronic ground state and vibrational ground state. But room temperature
can distribute them among the rotational levels. Molecular spectrum originates from transitions
between molecular levels. In the microwave/far IR range, we have rotational spectrum. In the IR
range, we have vibrational or vibrational-rotational spectrum. With QM of molecules, molecular
spectrum gives us useful information, including the bond length R0 and the force constant of the
bond (thus the strength of the bond). Behind this application is the knowledge about harmonic
oscillator and rigid rotor. For the physics contents, see the chapter on molecules in Modern Physics
(e.g. by Taylor, Zafiratos, Dubson; and by Harris). We use more QM in our treatment in typical
modern physics and quantum physics books. If you would like to learn more about molecules,
e.g. anharmonic effect, polyatomic molecules, see Physical Chemistry and Quantum Chemistry
by McQuarrie, Quantum Chemistry and Spectrocopy by Thomas Engel. For those only want to
read “physics” books, see Physics of Atoms and Molecules by Bransden and Joachain, which takes
you from the undergraduate level to the postgraduate level both in quantum mechanics and in
atomic/molecular physics.

The last part of the course discusses Tunnelling and its applications. The problem is motivated
by phenomena in α-particle decays in heavy nuclei. For tunnelling (and more generally transport
properties of matter), we need to consider travelling waves in quantum mechanics. There is
an issue of normalization. We discussed three possible ways out. One is to extend the definition
of orthonormality using Dirac δ-functions. Another way is to form wave packets. In solid state
physics, one mimics an infinite system by a finite (but big) system and imposes the periodic
boundary condition. The concept of Probability Current Density is then introduced. These
concepts are essential for an understanding of the tunnelling formulation. Although we use the
single (square) barrier as the example, we discussed the proper and formal definitions of the
Transmission Coefficient and Reflection Coefficient. Our discussion is meant to prepare
you for many other transport (tunnelling) problems that you may encounter in courses/research
in the future. To put the application to α-particle decays and to nuclear fusion into a proper
context, we will do a “Crash Module on the Physics of Nuclei”. The aims here are to get cross the
point that the quantum mechanics we know can be readily applied to understand many pieces of
nuclear physics, and to introduce two important figures in nuclear physics. They are the binding
energy per nucleon versus the mass number of nucleon and the Segre Chart. Other applications
of tunnelling, including Scanning Tunnelling Microscope, writing using atoms, field emission, and
quantum cascade lasers are discussed briefly.

For reading on tunnelling, sections in Griffiths’ book and Rae’s book provide the standard discus-
sion. Shankar’s book (higher level than our courses intended to be) has a discussion using wave
packets. Well beyond the level of our course, Quantum Theory of Tunnelling by Razavy gives a
550-page discussion on the topics. For textbook chapters on nuclear physics, read for example
Chapters 13 and 14 of Modern Physics by Serway et al., and TDZ Chapters 16 and 17 of Modern
Physics for Scientists and Engineers by Taylor et al.. They cover the standard undergraduate
nuclear physics contents (some of which you met in PHYS1122). Two other books are reserved
in the University Library specifically for nuclear physics. They are: A pictorial book with clear
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descriptions (but no equations) entitled Nucleus - A trip to the heart of matter by MacKintosh et
a;. and a standard textbook on nuclear and particle physics entitled Nuclear and Particle Physics
by Williams.

Part A: Standard Problems on Molecular Spectrum

7.1 (See class notes: rotational spectrum.) The microwave spectrum of KI (to be specific,
39K127I) consists of a series of lines whose spacing is almost constant at 3634 MHz. Calculate
the bond length of 39K127I. [Hint: Think like a physicist! You should get used to the following
way of approaching a problem: (i) In which range does the frequency belong to? (ii) What leads
to a series of equally spaced lines? (iii) Which kind of excitation/transitions will that be? (iv)
What is the physical parameters involved in such excitation?]

Sometimes (quite often, actually), the spacing is expressed in terms of a number called the ro-
tational constant of a molecule. In units of Hz, the spacing is given by 2B. However, it is
also given in units of cm−1 (wavenumber). In this case, the spacing is given by 2B. Find an
expression for B and B (they represent the same quantity only in different units). Hence, find
B and B for 39K127I.

7.2 Consider the molecules HCl and DCl, where D denotes the deuterium (a heavier isotope of hy-
drogen) atom.

(a) Explain why the force constant k and bond length R0 should be about the same for DCl
as for HCl. [Hint: Think about the reason of bonding.]

(b) Adjacent vibrational levels in HCl are separated by h̄ωc ≈ 0.37 eV. Estimate the corre-
sponding value in DCl?

7.3 (Revised) Consider the molecule 6LiF. The bond has an equilibrium separation (bond length) of
R0 = 1.56× 10−10 m and a spring constant k = 250 N·m−1.

(a) Sketch (taking into consideration of the given numbers) an energy-level diagram
showing the first five rotational levels in the n = 0 and n = 1 vibrational states.

(b) Illustrate by arrows in the sketch in part (a) the allowed transitions in an IR absorption
experiment between the rotational levels in n = 0 and the rotational levels in n = 1.

(c) Hence, illustrate how the vibrational-rotational spectrum will look like by a sketch and
mark some key features with numbers.

Part B: Probability Current Density and Standard Tunnelling Problems

7.4 Probability current density

The Probability Current Density ~J is generally given by

~J =
h̄

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗) (1)

where Ψ is the shorthand notation of Ψ(~x, t).

(a) For the wavefunction

Ψ(~x, t) = A ei
~k·~x−iωt +B e−i

~k·~x−iωt (2)

evaluate the probability current density starting from the definition. [Recall that the gra-
dient of Ψ is a vector.]
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(b) For the wavefunction
ψ(~x) = |ψ(~x)| eiδ(~x) (3)

where δ(~x) is a phase that has spatial dependence, calculate the probability current
density.

7.5 Tunnelling through a single barrier - Filling in the steps

(a) Read class notes on tunnelling through a potential barrier. Some steps are missing in the
mathematics when we solved for the transmission coefficient T (E) and reflection coefficient
R(E) for E < U . Here, we will fill in the steps. Set up the equations and fill in the steps
to solve for T (E) and R(E) separately. [Meaning: Don’t use R + T = 1, solve R and T
separately.] Hence, obtain R+ T from your results.

(b) Turn your answer for T (E) into one for the case of E > U .

(c) What is T (E) when it is NOT a potential energy barrier with U > 0 but a potential energy
well with U < 0 instead?

[Remarks: If you have done the EM problems of EM waves incident normally (analogous to our
1D problem) onto a slab of medium of thickness L, you will see an analogous answer to part (b) for
the air-slab-air system. Part (c) is like a medium-air-medium system. The Quantum Mechanical
version of the water-glass-air problem is that of a single barrier with the V on each side being
different.]

Part C: Some Essential Nuclear Physics

7.6 Binding Energy and Binding Energy per Nucleon

Estimate the binding energy and the binding energy per nucleon of a helium nucleus
based on the missing mass. We may use data of atomic mass of helium, etc. from textbooks e.g.,
Appendix B of SMM (Serway et al., Modern Physics) or from websites. Cite the source of the
numbers in your answer.]

7.7 Mass of force carrier and range of interaction.

Experimental (scattering) results point to a rather uniform mass density inside the nucleus. Thus,
there is some preferred separation between two neighboring nucleons. If we are to interpret the
result by a repulsive interaction that prevents two nucleons from getting too close, say 10−17 m,
to each other, what would the mass of the carrier of this repulsive interaction be?

7.8 Fermi gas model of nuclei illustrated in 1D and degenerate pressure due to many
non-interacting (independent) fermions.

When we invoke the independent particle model for a many-nucleon nucleus, we first solve a
single-nucleon in a well problem and then fill in the protons/neutrons according to the Pauli
Exclusion Principle as protons/fermions are fermions. This is the Fermi gas model. The Fermi
gas model is very useful, as it can be applied to nuclei (10−14 m scale), metals (1 cm scale), and
stars (astronomical scale).

To illustrate the key physics, let’s work on the 1D version of the model. Consider 1D particle-in-
a-box of size L. The single-particle states are given by

En =
n2π2h̄2

2mL2
(4)
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Let’s say there are N � 1 spin-half fermions and they are non-interacting. So the question is to
fill them into the states according to the Pauli Exclusion Principle. [If you are very strict, yes
take N to be an even number.] [Remark: Even if we ignore the fermions’ spin – the results to be
obtained remains the same qualitatively.]

(a) With the single-particle states, we fill in the fermions to achieve the ground state. Eventually
we run out of fermions. There is a highest state labelled by nmax that is filled. All states
above it are empty and all below it are filled. The highest energy filled is called the Fermi
energy EF , after the famous Enrico Fermi. Find a relation between the Fermi energy EF
and the ratio (N/L). [Remark: Note that N/L has the following physical meaning. There
are N fermions in the box of size L. Thus, N/L ≡ ρ is the number of particles per unit
length or the (linear) particle number density. It is a property of the system.]

(b) The result in part (a) says that EF remains the same as long as N/L is a constant. For
example, a certain metal (e.g. copper) wire (pretending to be 1D) has 107 electrons per cm.
Then for wires of 2m long and 1 millimeter “short”, they have the same EF . For this metal,
find the Fermi energy EF in units of eV. Hence, find a corresponding temperature TF =
EF /k, where k is the Boltzmann constant. The quantity is called the Fermi temperature.

(c) But we know from Eq. (1) that if we double the size L of the well, the single-particle energies
drop! Give a physical picture why EF can be maintained fixed when a system is doubled
in size (L to 2L, say).

(d) Thus, argue that the total energy Etot is proportional (actually smaller than) to NEF .

(e) (Optional: NO bonus) Try to derive Etot exactly and express the answer in terms of EF and
N .

(f) If we now squeeze the box a bit so that the length becomes L−∆L, find out how the energy
changes. In analogy to the idea of a pressure, −∂Etot/∂L corresponds to a pressure (in 1D).
How does this “pressure” scale with the number density ρ = N/L in 1D.

Important Remarks: Although the number of protons/neutrons in a nucleus is just a few
tens, the basic results here are valid. In part (e), you see the famous degenerate pressure
due to a gas of fermions. The fermions need not be interacting. The resulting pressure is
entirely a quantum effect due to the Pauli Exclusion Principle (anti-symmetric wavefunction).
A collection of fermions confined in a box (1D here) leads to a pressure against squeezing the
box. Note that we only considered T = 0 ground state physics here. Even so, the pressure
is there. In astrophysics, the gravitation force tends to squeeze a dying star and yet the
fermions inside it exerts an opposing pressure against the pull due to gravity. Depending on
the mass of the star, sometimes a balance can be achieved. In some cases, gravity will win
though. Similarly, the degenerate pressure is there in a neutron star. You will learn more
about Fermi gas and Bose gas in your Thermodynamics and Statistical Physics course.

3D Fermi gas: If we do this exercise in 3D, we will get

Etot ∝ NEF ∝ N
(N
V

)2/3

, (5)

when N identical fermions are confined in a box of volume V , where V = L3. You need not
work this out. But you should know the result and carry it to future courses on solid state
physics, astrophysics, and statistical mechanics.
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