
PHYS3022 Applied Quantum Mechanics Problem Set 6 Due: 2 April 2019 (Tuesday)
“T+2 = 4 April 2019”
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

6.0 Reading Assignment.

Progress: We discussed the physics of molecules. The Born-Oppenheimer approximation sepa-
rates the electronic problem and the nuclei motions in a clever way. The electronic part becomes
a problem similar to multi-electron atoms. It can be treated in an independent particle approx-
imation. To solve the electronic problem, LCAO gives a powerful and conceptually transparent
method. The formation of molecular orbitals (MO) allows the understanding of bonding when
electrons are fill into the MO’s according to the Pauli Principle. The MO concept can be applied
to understand many other molecules. LCAO is also essential to understanding the idea of sp,
sp2 and sp3 hybridization. The LCAO approach also describes the behavior of the π-electrons in
benzene and other conjugated molecules (such as butadiene). In these contexts, it is called the
Hückel theory. With the chemical bond(s) formed by the electrons, the nuclei motions come back
into consideration. They consist of vibrational motion and rotational motion. The full description
of a molecular state, including the electronic, vibrational, and rotational parts. Molecular spec-
trum comes from transitions between molecular states. One can extract useful information (band
length and bond strength) from rotational spectrum, and vibrational-rotational spectrum. This
forms a good and essential story of the quantum physics of molecules at the undergraduate level.

Reading: Essential phenomena are covered in the chapters on molecules in Modern Physics (e.g.
by Taylor, Zafiratos, Dubson; and by Harris). Our QM treatment is deeper than those in typical
modern physics and quantum physics books. With your undergraduate QM background, it is easy
to read standard Physical Chemistry or Quantum Chemistry textbooks. Good discussions on MO
theory can be found in Physical Chemistry and Quantum Chemistry by McQuarrie, and Quantum
Chemistry and Spectrocopy by Thomas Engel. For those insisting on reading physics books only,
see Physics of Atoms and Molecules by Bransden and Joachain (1000+ pages), which takes you
from the undergraduate level to the postgraduate level both in QM and in atomic/molecular
physics. For those who don’t want to see equations but like to know the physics of chemistry, see
Absolutely Small by Michael Fayer for an accurate narration.

6.1 H+
2 molecular ion: Molecular Orbitals approach

We did the H+
2 molecular ion problem both qualitatively and quantitatively in class and in class

notes. Here, it is your turn to work it out, again. For two nuclei labelled A and B (left or right if
you like) and one electron, the Hamiltonian for the single-electron problem with fixed nuclei can
be written in atomic units as

Ĥ = −1

2
∇2 − 1

rA
− 1

rB
+

1

R
(1)

The terms are: kinetic energy of electron, electron sees nucleus A, electron sees nucleus B, and
nucleus-nucleus interaction. The last term is a constant for a given nucleus-nucleus separation R.
You may rewrite Ĥ in the full SI units to work out the problem.

Background: In class notes, we used the combination

ψ = cAψA + cBψB (2)

for a variational calculation and obtained a 2×2 matrix problem. Here, ψA is the 1s atomic
orbital centered at A and ψB is the 1s atomic orbital centered at B, respectively. We have saved
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the coordinates of the electron, e.g. ψA(r), for simplicity (laziness). The bonding and anti-bonding
molecular orbitals are obtained. The result is a bonding molecular orbital (MO) when cA = cB
and an anti-bonding MO when cA = −cB.

Action: Making use of (2× 2 or any size) matrix properties, (or by the symmetry of the problem
given that both sides have a proton), the coefficients must have |cA| = |cB|. Therefore, the
eigenvectors must be of the form

ψ± = c± (ψA ± ψB) (3)

In mathematical thoughts, using the two functions in Eq. (3) to express Ĥ, the matrix will be
diagonalized. This is our starting point.

(a) Find the normalization constants c± in terms of the overlap integral S(R). [Hint: See class
notes]

(b) Hence, find the energies E±, more formally E±(R), which are simply the expectation
values of Ĥ with respect to the normalized ψ+ and ψ−, respectively. For example,

E+ =

∫
ψ∗
+ Ĥ ψ+ d

3r (4)

and there is an analogous expression for E−.

Express the answer in terms of integrals such as J and K without evaluating them.

[Remark: You may want to compare results with the two energies obtained by observing the
2×2 matrix problem as given in class notes.]

(c) Expressions for J(R), K(R), and S(R) are given in class notes. Plot them out and combine
them properly to illustrate the behavior of E±(R) as a function of R.

6.2 HF bonding: Closely related to SQ23 but now with numbers

Background: The bonding in HF is governed by how the hydrogen 1s atomic orbital (AO)
and the fluorine 2px (or py or pz, doesn’t matter) form MO’s and filling two electrons (one from
hydrogen and one from fluorine) into the MO’s. Since hydrogen is very different from fluorine, it
is typical of a case in which the two AO’s in LCAO are of very different energies. You did the
2×2 matrix problem in which the two diagonal elements are different in Problem Set 1. In SQ23,
this form is used to understand MO formation in HF qualitatively. Read SQ23 as a preparation.

In considering bonding in HF, we can start with a linear combination (LCAO)

ψ = cHψH,1s + cFψF,2p ≡ cHψ1 + cFψ2 (5)

and use it as a trial wavefunction for a variational calculation. The results give a set of equations

cH(H11 − ES11) + cF (H12 − ES12) = 0 (6)

cH(H12 − ES12) + cF (H22 − ES22) = 0 (7)

and hence the values of E can be obtained by∣∣∣∣H11 − ES11 H12 − ES12
H12 − ES12 H22 − ES22

∣∣∣∣ = 0 (8)

Eq. (8) can be used to get the two values of E and Eqs. (6) and (7) can be used to find cH and
cF for each allowed value of E. So far, it is completely general (as discussed under variational
method).
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We now put in numbers. We have S11 = 1 and S22 = 1 because the AO’s are normalized. For
HF, H11 = −13.6 eV and H22 = −18.6 eV. Formally, there may be some other terms (in the
formula) in Hii, but the energy of the atomic orbital will dominate. These numbers are related to
the ionization energies of hydrogen 1s electron and fluorine 2p electron. For the other parameters,
take S12 = 0.30 and H12 = −8.35 eV.

(a) Find the energies Elower and Eupper for the bonding and anti-bonding molecular orbitals.

(b) For Elower (the bonding MO), find the ratio cH/cF . Hence, using the normalization condition
of bonding MO ψlower to find cH and cF and hence find the LCAO ψlower.

(c) For Eupper (the antibonding MO), do the same as in part (b) to find the LCAO ψa.

(d) Filling in the electrons, write down formally the two-electron ground state wavefunction
for HF.

6.3 sp3 hybridization - Key to understanding semiconductor structure

sp3 hybridization is key to understand CH4 and the structure of many semiconductors. We live
in a semiconductor world (your computer, your phone).

In discussing sp2 hybridization, we put one hybridized orbital in the z-direction and then worked
out a second one and showed that the angle between them is 120◦. This is completely general
as we could always put two directions (two vectors) onto a plane. The angle between two sp3

hybridized orbitals can be evaluated in a similar procedure.

Back to class notes on sp3 hybridization. The four sp3 hybridized orbitals are written in a more
“symmetric” form, with each one carrying some share of s, px, py and pz atomic orbitals. The
form is often used in solid state physics. It is because diamond (carbon), silicon, germanium, and
GaAs have the same crystal structure dictated by sp3 hybridization at the local (atomic) level.

(a) [Referring to class notes] Write down the four hybridized orbitals. Pick (any) one and show
that it is properly normalized.

(b) Orthogonality is a concept that should be handled carefully in QM. It is not tested by
eye (being 90◦ between eac other in space). For example, the sp2 hybridized orbitals are
orthogonal but they have 120◦ between them. Instead, orthogonality is defined by an
integral (or inner product) between two hybridized orbitals. Pick any two of the sp3 orbitals
and show that they are orthogonal in the quantum mechanical sense.

(c) Pick any two and find the angle between them. [You may use the mathematical sense that
the p-atomic states are like unit vectors pointing in different directions.]

(d) (This is harder artistically.) Take the hybridized orbital with coefficients 1/2, 1/2, 1/2 for
px, py and pz components and think of it as pointing towards the (+1,+1,+1) direction in
Cartesian coordinates. In a similar way, draw the four orbitals to illustrate the standard
relative orientations of the orbitals.

Remark: To consolidate what you did here, refer to a picture of the diamond structure and GaAs
structure. Inspect how the sp3 hybridized orbitals from each atom propagate to become a crystal
structure. The bonds formed the hybridized orbitals are strong (carbon is very hard). This covers
a part on bonding and crystal structure in solid state physics. See, e.g., C. Kittel, Introduction to
Solid State Physics.
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6.4 π-bond in ethene C2H4 - Warming up for benzene

Consider C2H4. After invoking sp2 hybridization, each carbon is bonded to two hydrogen and the
other carbon. These bonds are strong and they form the strong framework/skeleton and govern
the 120◦ structure between bonds. We can call the plane of the framework the x-y plane. Here,
we consider the rest of the story.

For each carbon, there is one electron in the 2pz orbital that is not involved in bonding so far.
With two carbon, these 2pz orbitals will form another bond which is called the π-bond. So, these
two electrons are called the π electrons. We apply LCAO again to these two 2pz orbitals to form
the π-bond. The approach is more often called the Hückel Theory.

We construct LCAO using the two 2pz AOs of the two carbon atoms as

ψ = cAψA,2pz + cBψB,2pz (9)

This is exactly the same form as in Eq. (5) and thus Eq. (8) also applies here. Next, we use the
Hückel Theory. Its spirit is to retain the most important parameters in Eq. (8). Namely, S11 = 1,
S22 = 1, but S12 ≈ 0. Then H11 is dominated by the atomic 2p energy α (following chemistry
notations), so H11 = H22 = α. Note H11 = H22 because they are both carbon atom’s 2pz AOs.
The only thing remains is H12. We simply put H12 = β, representing how the two 2pz AO’s couple
in the presence of Ĥ.

(a) Apply the Hückel Theory to the π electrons in ethene and find the energies of the two
molecular orbitals in terms of α and β. Note that β < 0.

(b) Hence, fill in the two electrons according to the Pauli Principle and find the total energy
of the two π electrons.

(c) The case of no bonding refers to H12 = 0. Find the total energy of the two π electrons in
this case.

(d) Hence, compare results and find the amount of energy lowered by forming the π-bond.

6.5 The Hückel Molecular Orbital Theory for the π electrons in Benzene (1931) and
Delocalization Energy

The application of the Hückel Theory to ethene in Problem 6.4 is rather trivial. A more interesting
application is benzene. Here, you will complete the calculation as already outlined in class notes.
Like the hydrogen atom problem (Schrödinger 1926), the successful applications to the physics of
molecules (bonding) are among the early triumphs of quantum mechanics. Benzene (C6H6) is the
best example showing how simple QM can explain its electronic structure. It is a planar molecule
with 6 carbon atoms forming a ring. The skeleton is formed by six σ bonds in a plane, using sp2

hybrid orbitals. This gives a hexagonal ring with nearby bonds making an angle of 120◦. All these
are QM. Here, we explore another beautiful QM application to benzene so as to understand the
behavior of the remaining six pz electrons or the π-electrons.

Let the plane of the benzene hexagonal framework be the x-y plane. For each carbon atom, there
is one lonely electron in the 2pz orbital. We will focus on the molecular orbitals (MO’s) formed
by these six 2pz orbitals. The problem is to study how these 6 atomic pz orbitals form
the additional bonds on top of the strong σ-bonds backbone. Mulliken developed the
MO theory in 1927. Erich Hückel developed/applied the MO theory to treat the bonding of these
π electrons around 1930. His Hückel Molecular Orbital Theory is highly successful and essential
for the understanding of organic molecules. Hückel also learned quantum mechanics from Max
Born while he was in Göttingen. He worked with Peter Debye (also in Göttingen) for his doctoral
thesis. [Born and Debye are both Nobel Laureates, one in physics and one in chemistry.]
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Let’s label these 2pz atomic orbitals by φ1, φ2, φ3, φ4, φ5, φ6 in a cyclic way around the ring.
Naturally, we could study how these pz orbitals form bonds by constructing a trial wavefunction

ψ =

6∑
n=1

cnφn = c1φ1 + c2φ2 + c3φ3 + c4φ4 + c5φ5 + c6φ6. (10)

The result is a 6×6 determinant (c.f. Eq. (8)) to solve for the six values of the energy and one
can find the set of coefficients for each value of the energies and thus ψ for every energy. “Six
(atomic orbitals) in and six (MO’s) out” - no more and no less. That’s formal and it follows from
the variational method.

(a) To think like a physicist, we go by physical sense and we don’t care about the details
in the many integrals Hij and the overlap integrals Sij . We expect the “on-site” terms Hii

should be important. We don’t care about how to integrate it out and just represent it by
a symbol α. Carbon 2 is quite far away from Carbon 4,5,6 and it is closer to only Carbon
1 and Carbon 3. Therefore, we only include H21 and H23 and call them β. More generally,
we let Hij = β for nearest-neighboring Carbon i and Carbon j and Hij = 0 otherwise.
This is often referred to as including only the nearest-neighbor interaction – a
very useful approximation in physics. A remark is that β is an energy and it is usually
negative.

For the overlap integral, we even take the simplest possible approximation of Sii = 1 and
Sij = 0 for i 6= j.

Write down an equation of the form of a determinant equation |6 × 6| = 0 that is to be
solved for the 6 energies of the molecular orbitals. [Remark: You have written down the 6×6
structure by physical sense. See class notes if necessary.]

(b) Solve the energies of the MO’s. Try it, how to handle determinants? Don’t be scared.

(c) Make a sketch of the energies by lining them up, with the lowest energy one at the bottom
and the highest energy one at the top. (Recall: β is usually negative.)

(d) Sketch a picture with the 6 electrons filled into the MO’s according to the Pauli Exclusion
Principle so as to attain the lowest possible energy. Hence find the total π-electronic energy
Eπ(benzene) by adding up the energies of the electrons.

(e) Once upon a time, it was thought that the benzene molecule consists of alternating double
and single bonds (there are two configurations). Sketch a picture of benzene in this form.
Now set up the 6 × 6 determinant again for this picture of a benzene molecule (simply by
physical sense). Solve for the energies of the molecular orbitals. Fill in the electrons and
find the total π-electronic energy in this case.

(f) Compare the results of part (d) and part (e). [Recall that β is usually negative.] Evaluate
the difference Eπ(benzene) minus the energy in part (e). It is called the delocalization
energy. You might have heard of the term in secondary school chemistry. [For benzene,
the delocalization energy, i.e., the energy lowered (gained) by delocalizing the π electrons, is
about −150 kJ mol−1 (recall this is the unit that chemists used for energies!) Thus, allowing
the electrons to delocalize leads to a lower energy.]

(g) HOMO and LUMO. HOMO is the short-hand for highest occupied molecular orbital
and LUMO is the short-hand for lowest unoccupied molecular orbitals. Find the
HOMO-LUMO gap. In your sketch in part (d), indicate the energy between LUMO and
HOMO.

Remark: Nowadays, many scientists study the optical properties of organic molecules, in par-
ticular related to controlling the absorption or emission of light at some preferred wavelength
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and to solar energy applications. The LUMO-HOMO energy difference is an important pa-
rameter. In solids (which can be regarded as very big molecules), this LUMO-HOMO energy
difference becomes the energy gap in a semiconductor or insulator.

(h) (Optional - NO Bonus Points but educational) - Find the wavefunctions of the six MO’s, i.e.,
solve for cn (n = 1, ..., 6) for each of the six MO energies. This will give you a sense of how
the electrons in the (filled) lower energy MO’s spread out over the benzene and why we put
a circle inside the benzene symbol.

[Remarks: (i) Now go back to parts (a) to (f) again and appreciate how simply QM considerations
and clever approximations can bring out deep physics in the molecular world. (ii) We see that
delocalizing the electrons leads to lower energy. It can be extended to a solid, in which the
delocalization of electrons leads to extended wavefunctions of electrons (called Bloch states). For
example, consider 3 square wells, 4 square wells,..., 10 square wells, etc. The benzene picture
can be seen as a way to understand the metallic bond. (iii) What you just did for benzene is
called the Hückel theory of molecular orbitals. (iv) The same approach can be applied to
other aromatic (structure of a ring) molecules. (v) Reference: E. Hückel, Zeitschrift für Physik
70, 204-286 (1931) (a classic paper on QM of benzene).]
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