
PHYS3022 Applied Quantum Mechanics Problem Set 5 Due: 22 March 2019 (Friday).
“T+2 = 25 March 2019”
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

5.0 Reading Assignment. For atomic transitions, including (stimulated) absorption, stimulated
emission and spontaneous emission, see Modern Physics (e.g. by Taylor, Zafiratos, Dubson; and
by Harris) for the big picture and physical ideas. We discussed time-dependent perturbation
theory. The discussion follows that in Introduction to Quantum Mechanics by Griffiths, and An
Introduction to Theory and Applications of Quantum Mechanics by Yariv. We applied the theory
to transition rates, Einstein’s A and B coefficients, and the life time of excited states. We started
to discuss the Physics of Molecules. The first part introduces the general QM problem of a
molecule and the very clever Born-Oppenheimer approximation, which separates the molecular
QM problem into two parts. The electronic part takes the nuclei as fixed (in principle should try
different nuclei separations). The results include a preferred separation (bond length) and the the
electronic wavefunction provides the chemical bond, which in turn gives the spring that model a
bond about which the nuclei vibrate and rotate. The electronic part is usually handled by LCAO
(linear combination of atomic orbitals). See the chapter on molecules in Modern Physics (e.g. by
Taylor, Zafiratos, Dubson; and by Harris) for physics contents. We treated the QM in LCAO
more completely. The discussion on MO follows that in Physical Chemistry by McQuarrie and
Quantum Chemistry and Spectrocopy by Thomas Engel.

Time-dependent Perturbation Theory and Atom-light Interaction

5.1 Deriving the equation for dai(t)/dt for a 3-state system - Practicing your QM manip-
ulation

Background: In developing the time-dependent perturbation theory (in class and in class notes),
we focused on a two-state system and developed the equation(s) for the time evolution of the
coefficients dai(t)/dt for i = 1, 2.

Let’s consider a 3-state system, with states labelled 1,2, and 3. In the presence of Ĥ = Ĥ0 +Ĥ ′(t),
where Ĥ ′(t) has a time-dependence (as well as a spatial dependence), the general form of the
wavefunction is

Ψ(x, t) =
∑

i=1,2,3

ai(t) ψi(x)e−iEit/h̄ (1)

where the effects of Ĥ ′(t) is put into the time-dependence of the coefficients and ψi and Ei are
eigenstates and eigenvalues of the Ĥ0 part of the Hamiltonian.

(a) Substitute Eq. (1) into the time-dependence Schrödinger Equation and obtain the equa-
tions governing da1/dt, da2/dt, and da3/dt. [Note that the equations are (i) general, and (ii)
applicable to any initial conditions.]

(b) For the initial condition a1(0) = 1, a2(0) = 0, and a3(0) = 0, write down the equations for
obtaining a1(t), a2(t), and a3(t) to the lowest order (also called leading order) in Ĥ ′(t).

5.2 The form of |a2(t)|2 for transitions from state 1 to a group of final states

Background: Let’s go back to 2-state system as discussed in class. After getting da2(t)/dt and
assuming a1(t) ≈ 1, we obtained the following expression for an incident EM waves polarized in
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the z-direction, i.e., ~E0 = E0ẑ. After integration over time from 0 (when Ĥ ′(t) is switched on) to
time t, we obtained

|a2(t)|2 = e2E2
0 |z21|2

sin2[ 1
2h̄(E2 − E1 − h̄ω)t]

(E2 − E1 − h̄ω)2

=
e2E2

0

h̄2 |z21|2
sin2[1

2(ω21 − ω)t]

(ω21 − ω)2
(2)

where ω21 = (E2−E1)/h̄ is set by the energy difference between the initial state “1” and final state
“2”. Eq. (2) works for monochromatic light of angular frequency ω polarized in the ẑ-direction
for a transition from one initial state “1” to one final state “2”. It is the starting point for
deriving several other results.

One thing we did was the case of a non-monochromatic light source with a spread in the
angular frequencies. In that case, we summed up their contributions to |a2(t)|2 and found

|a2(t)|2 =
πe2

ε0h̄
2 |z21|2 t U(ω21) (3)

and hence the transition probability per unit time (rate) per atom as

λ1→2 =
πe2

ε0h̄
2 |z21|2 U(ω21) (4)

where U(ω21) is the energy density of the incident energy right at the frequency ω21 defined by
(E2−E1)/h̄. In going from Eq. (2) to Eq. (3), we looked at the time-dependent function in Eq. (2)
as a function of ω for a fixed ω21 (i.e. given two states). Eq. (4) is also related to Einstein’s B
coefficient.

Your Action: Let’s start from Eq. (2) again. We consider the case of a monochromatic
incident light at ω with energy density U(ω). In many real systems, it so happens that starting
from an initial state “1”, the transitions can go to a group of final states. This will be
the case of many degenerate final states. This happens readily in a solid. This is the physical
scenario for you to work out here.

In this case, the time-dependent function in Eq. (2) can be regarded as a function of ω21 at fixed
ω (and time t). Make a sketch of that function as a function of ω21. The physical scenario under
consideration implies that there is a spread in ω21 among the possible final states. There is a
function called the density of states (in physics) where g(ω21)dω21 gives the number of states
with the quantity (E2 − E1)/h̄ falling within the interval ω21 to ω21 + dω21. By summing up
the contributions from possible transitions (possible final states and many of them), derive an
expression for |a2(t)|2 and show that the answer is linear in time t. Hence, obtain an expression
for λ1→group of states and show that the answer picks up g(ω) (i.e., the number of states with

(E2−E1)/h̄ right at the incident frequency h̄ω. [Remark: The answer is another popular form of
what is called the Fermi Golden rule.]

5.3 Hydrogen atom’s explicit “Matrix element” for transitions and selection rules (Closely
related to SQ19 in Week 8)

A key result of time-dependent perturbation theory is that a transition from a state 1 (or initial
state) to a state 2 (or final state) occurs with a probability depending on a spatial integral

a2(t) ∝ r2pz ,1s =

∫
ψ∗final(r) r ψinitial(r) d3r (5)
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together with a complicated function of time that gives the energy criterion (see Problem 5.2).
Here, r = ~r. Eq. (5) comes from the interaction between the atom’s electric dipole moment
and the incident light, which is the most important mechanism. The integral is usually handled
numerically for atoms and molecules. For the simplest case of a hydrogen atom, it is possible
to evaluate it analytically. This integral plays an important role for stimulated processes AND
spontaneous emission. The integral is a vector and at the end what it matters is the dot product
of this vector and the electric field. The integral also governs which transitions are allowed and
which not, i.e., the selection rules.

We know that for hydrogen, the transition between 1s and 2p is allowed. There are several 2p
states. So let’s be concrete. Consider the transition between the 2pz state of m` = 0 and the
1s ground state. Thus, ψ2,1,0(r) is the final state and ψ1,0,0(r) is the initial state. [In SQ19, TA
considered transition between (1, 0, 0) and (2, 1, 1) states.]

(a) Writing r = xx̂+ yŷ+ zẑ = r sin θ cosφ x̂+ r sin θ sinφ ŷ+ r cos θ ẑ, evaluate the integral
in Eq. (5) explicitly for ψfinal(r) = ψ210(r) and ψinitial(r) = ψ100(r). Give your answer in
terms of the Bohr radius aB. You should note that the answer is a vector.

(b) For (stimulated) absorption, consider an external field ~E = E ẑ, i.e. incident light linearly
polarized in z-direction. The perturbative term Ĥ ′ in the Hamiltonina is the dot product of
the electric dipole moment ~µ and the field, −~µ · ~E , which in turn is proportional to the dot
product of r2pz ,1s and the field ~E . Argue that such a linearly polarized light can stimulate
an absorption and thus the transition between 1s and 2pz. State your result in terms of a
selection rule.

(c) Now consider light propagating in the z-direction, i.e., the propagation vector ~k ‖ ẑ. Thus, its
electric field is on the x-y plane. In particular, circularly polarized light with its polarization
(meaning: direction of ~E) specified by e+ ∝ (x̂ + iŷ) or e− ∝ (x̂ − iŷ) has its electric field
rotating with time (note that there is an time factor e−iωt in the field that gives the rotating
behavior) at a fixed point in space. Show that circularly polarized light cannot lead to the
1s to 2pz transition. [Remark: SQ19 showed that e+ ∝ (x̂+ iŷ) circularly polarized light can
stimulate a transition from ψ100 to ψ211. Thus, skillfully using the polarization of incident
light can selectively induce transitions and thus put atoms into a particular excited state.]

Physics of Molecules

5.4 Selection rule: Transitions between harmonic oscillator states.

Let’s rewrite Eq. (5) as

a2(t) ∝ ~µfi =

∫
ψ∗final(r) ~µ ψinitial(r) d3r (6)

where we emphasized that it is the electric dipole moment matrix element that matters and
~µ is the electric dipole moment (a vector).

This expression is general. It can be applied to different forms of initial and final states. Here,
let’s consider the initial and final states being 1D harmonic oscillator states. Such state carries
a quantum number n. Practically, we need to consider transitions between one harmonic oscillator
state n and another state n′ in molecular physics. In Problem Set 2, we did integrals of x and x2

between harmonic oscillator states. You may make use of the results in Problem Set 2.

The Physical Situation is: A particle experiences a potential energy function U(x) ≈ U(x0) +
1
2k(x−x0)2 for x ≈ x0, and thus x0 the classical equilibrium position where U(x0) is the minimum.
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Thus, harmonic oscillator physics enters. The initial and final states in Eq. (6) are harmonic
oscillator states ψn(x− x0). Depending on whether the particle is charged (and another particle
at the origin is charged or not), there may be an electric dipole moment ~µ that behaves like

µ(x ≈ x0) = µ0 +
dµ

dx

∣∣∣∣
x=x0

(x− x0) (7)

where µ0 is a constant (e.g. µ0 = qx0 for a charge −q at x = 0 and a charge +q at x = x0) and
the second term is a Taylor expansion about x = x0 (e.g. gives how µ changes as the charge +q
oscillates about x = x0). The vector sign is omitted because in 1D it is understood to be along
the x̂-direction.

(a) Let’s consider only the constant µ0 term. “Evaluate” the integral in Eq. (6) between different
harmonic oscillator states.

(b) Let’s consider the second term in the Taylor expansion in Eq. (7). Write down Eq. (6) for
this term between different harmonic oscillator states. Hence, making use of previous results
in Problem Set 2, find the rule that governs the initial and final states n and n′ for allowed
transitions. [Hint: You don’t need to re-do the integrals, even you love to do them!]

[Remark: Results in (a) and (b) are important! Take them with you. They govern
the transitions between vibrational states in molecules and how the interpretation of molecular
spectrum. There is one complication. Part (a) says that a molecule with a fixed and constant
electric dipole moment will not absorb (usually harmonic oscillator states have energy difference
in the infrared) in IR range. Part (b) gives that if a molecule has an electric dipole moment

that does not change as the atoms vibrate, then dµ
dx

∣∣∣
x=x0

= 0 and the molecule will not absorb

through transitions between oscillator states. This is the case of a linear molecule of the form
−+− vibrating in the way that the two slightly negative parts stretches out in opposite directions
on the line and back. Such vibrating normal mode, for example, will not lead to IR absorption.
Part (b) also says when the electric dipole moment of a molecule changes as it vibrates, thus
dµ
dx

∣∣∣
x=x0

6= 0, then there will be transitions governed by the (x − x0 term and the system is IR

active. This is why CO2 is greenhouse gas and O2 is not. It is Quantum Mechanics at work!]

5.5 KCl - energetics

For two ions (not neutral atoms), an approximate expression for the potential energy as a function
of the separation between the two ions is

PE = − e2

4πε0r
+

b

r9
(8)

(a) Give the physical meaning of the two terms. Obviously, PE = 0 when r → ∞. What is
the physical situation that r →∞ refers to?

(b) Sketch PE as a function of r.

(c) Let r = r0 be the separation that PE takes on the minimum value. Express the parameter
b in terms of r0.

(d) For KCl (potassium chloride), r0 = 2.79 Å. Calculate PE of KCl at its equilibrium sepa-
ration.

(e) If the ionization energy of 4.34 eV of potassium and electron affinity of 3.62 eV of chlorine
are taken into account, how would the sketch in part (b) be altered so that zero energy
refers to two neutral atoms far apart? What would be the estimate for the dissociation
energy of KCl, which is the energy to break KCl into two neutral atoms far apart?
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5.6 From two ions to a solid: Adding up Coulombic terms in a 2D ionic crystal

Consider a square lattice and put ions onto it so that a cation is surrounded by 4 anions and an
anion is surrounded by 4 cations. It is meant to be an infinite lattice. The separation between
nearest neighboring ions (lattice constant) is r0.

(a) Sketch the array of oppositely charged ions to illustrate the arrangement.

(b) Sit on a cation (doesn’t matter which one), then consider the coulomb energies due to the
nearest anions (attractive), and then the next-nearest cations (repulsive), and then the next-
next-nearest anions (attractive), and so on. Show that the coulomb energy uc per ion can
be expressed in the form

uc =
1

2
· e2

4πε0r0
(a series of alternating signs to be summed up) , (9)

and give the first 6 (minus, plus, minus, plus, minus, plus) terms at least.

Optional: NO bonus points Next, write a program to sum up the series to convergence
(you need a way to generate the terms) and obtain a value. Is uc positive or negative at the
end, i.e., will it bind?

(c) Not optional: Look up the value on the web. The number is characteristic of the square
lattice and it is called the Madelung constant. Different lattices have different Madelung
constants. This is a section in solid state physics books.

(d) Optional: NO bonus points You did the square lattice. There are 5 possible 2D lattices,
with the square lattice being the simplest one. Look up the other 4 lattices and work out
the corresponding Madelung constants.
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