
PHYS3022 Applied Quantum Mechanics Problem Set 3
Due Date: 20 February 2019 (Wednesday) “T+2” = 22 February 2019 (Friday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
PHYS3022 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

3.0 Reading Assignment.

In Part 1 of the module on the physics of atoms, we introduced various effects in atoms using the
strategy of a hydrogen atom PLUS some effects. We covered spin-orbit interaction (and so reviewed
orbital and spin angular momenta and introduced the total angular momentum), relativistic cor-
rection (SQ and class notes), the fine structure, Zeeman effect, and hyperfine structure, and atomic
polarizability (problem set). There are two levels of understanding. Level 1 is the big picture (key
ideas). They are covered in standard textbooks on Modern Physics (e.g. by Taylor, Zafiratos, Dub-
son; and by Harris) or Quantum Physics (e.g. by Eisberg and Resnick). These books describes
the key ideas very clearly. For applying QM’s mathematical and approximation methods to these
topics, see standard QM books such as Griffiths and Rae’s books. Quantum Chemistry books (e.g.
by McQuarrie and by Engel) are also good. But QM treatments should be seasoned by the physics
discussions in the Modern Physics books. In Part 2, we will discuss the physics of atoms beyond
hydrogen. The strategy is to do a high-level popular physics treatment, i.e., making use of QM but
not working out the details. For more serious discussion on Atomic Physics, see C.J. Foot, Atomic
Physics; Mark Fox, A student’s guide to Atomic Physics; and Bransden and Joachain, Physics of
Atoms and Molecules.

3.1 Counting f-states (` = 3) in two ways (Closely related to SQ11)

Consider the hydrogen atom described by

Ĥ0 = − h̄2

2m
∇2 − e2

4πε0r
(1)

We solved the TISE analytically. The energy eigenstates are ψn`mell,ms , where the last quantum
number ms takes on ±1/2 for spin-up and spin-down states. To be very explicit, the set of quantum
numbers (n, `,m`; s = 1/2,ms) label the energy eigenstates. Since the single and only electron
hydrogen has s = 1/2 always, s is usually suppressed. In SQ11, TA did this problem for the 2p
states. Now it is your turn to work on the same problem for the 4f states.

(a) Consider 4f states, i.e., n = 4 and ` = 3. List out all the states using the notations
|4, 3,m` ; s = 1/2,ms〉. What is the energy for each of these states?

(b) We could linearly combine the states |4, 3,m`; s = 1/2,ms〉 to form an equal number of states
labelled by |n = 4, ` = 3, s = 1/2; j,mj〉. Using the rule of obtaining the allowed values of
j and mj , list out all the possible states using the notations |4, 3, 1/2; j,mj〉. Illustrate
that (using one example) a state |4, 3, 1/2; j,mj〉 is an energy eigenstate of Ĥ0 given by Eq. (1)
and find its energy.

(c) Now consider the spin-orbit interaction represented by an additional term

Ĥ ′
so = f(r)~S · ~L (2)

where ~S is the spin angular momentum, ~L is the orbital angular momentum, and f(r) is a
function depending only on the variable r. Using the states (many of them) |4, 3, 1/2; j,mj〉
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to form a matrix for Ĥ0 + Ĥ ′
so. Illustrate that the j = `+ 1/2 states and the j = `− 1/2

states take on different energies in the presence of Ĥ ′
so. Given the Term Symbol for these two

groups of states. [You will go back to 4f states in Problem 3.3.]

3.2 Spin-orbit interaction term Ĥ ′
so = f(r)~S · ~L

Background: In QMI, we know that the condition for two operators to share a common set of
eigenstates is that the two operators commute. This idea is the reason why we invoke the total
angular momentum J when we need to handle spin-orbit interaction. This question (reminds you
of) takes you through the argument.

We showed that the spin-orbit interaction leads to an addition term

Ĥ ′
so = f(r)~S · ~L . (3)

This term is to be added to Ĥatom that includes the Coulomb potential energy term due to the
nucleus. An example is Ĥ0 in Eq. (1) for a hydrogen atom. With Ĥatom alone, the electron’s
states can be labelled by (n, `,m`, s,ms), where s = 1/2 (always) is the spin quantum number of
an electron. The form Ĥ ′

so is typical of two coupled angular momenta. At this point, recall the
standard commutation relations that define an angular momentum in quantum mechanics.

(a) Show or Argue that Ĥ ′
so does not commute with L̂z and Ŝz.

(b) Show or Argue that Ĥ ′
so commutes with L̂2 and Ŝ2.

(c) Show also that Ĥ ′
so commutes with Ĵ2 and Ĵz, where ~J = ~L+~S is the total angular momentum.

[Remark on Physics (Read me): Part (a) says quantum numbers m` and ms are no good
when Ĥ ′

so is present. Part (b) says quantum numbers ` and s remain good. Part (c) says quantum
numbers j and mj are good when Ĥ ′

so is present. Putting these together, the description (`, s, j,mj)
of electron states is useful in the presence of spin-orbit interaction, while the description (`,m`, s,ms)
is not. This is what you already showed by yourself in Problem 3.1.]

3.3 Weak-field Zeeman splitting for f states

The aim here is (i) to lead you to review class notes on weak-field Zeeman effect, and (b) to apply
the results. You don’t need to repeat the derivation. Just jump to the result and apply it. [Hint:
We did the case of p states in class notes. Follow the discussion there and work out the case of f
states here.]

“Weak-field” means that the spin-orbit interaction term f(r)L · S is more important than the
Zeeman term due to the external field. As shown in SQ12, the internal magnetic field related to the
spin-orbit interaction is not small and it is bigger in heavier atoms. Thus, the “weak-field Zeeman
effect” is rather common. Before turning on the external field, the 4f states split into two groups
according to the value of j, as you should have done in Problem 3.1.

Now, an external field B in turned on. For each value of j, find the corresponding Landé g-factor.
Hence, sketch a figure that illustrates the cases of (i) no spin-orbit interaction and B = 0, (ii)
with spin-orbit interaction and B = 0, and (iii) with spin-orbit interaction and a weak field B 6= 0.

3.4 Strong-field Zeeman splitting plus spin-orbit interaction for f states

This problem accompanies Problem 3.3, but the external field B is strong so that the Zeeman
splitting due to m` and ms in the interaction term (−µL ·B− µS ·B) should be handled first and
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then the spin-orbit interaction is treated within perturbation theory. We did the case of p-states in
class notes. You will work out the case of f -states.

Review class notes, take the results and illustrate how the degenerate f states are affected by both
the Zeeman term and spin-orbit interaction in the strong field case. Sketch a figure similar to that
of the p-states discussed in class notes.]

3.5 Adding an angular momentum of quantum number of quantum number L = 2 to
another angular momentum of quantum number S = 1

Background: In hydrogen atom, there is only one electron and its spin quantum number is always
s = 1/2. However, there are several electrons in other atoms and the electrons’ spins will sum up
to a total spin angular momentum characterized by a quantum number S. Similarly, the orbital
angular momenta of electrons can be summed up to a total orbital angular momentum characterized
by a quantum number L. Here, we follow the convention of using capital letters in situations beyond
the hydrogen atom.

(a) Now for the value of L = 2, there are values of ML behind it. Similarly, for the value of
S = 1, there are values of MS behind it. Give the total number of states characterized by
(ML,MS).

(b) Two angular momenta can be added up to form a total angular momentum J, which is char-
acterized by possible values of its quantum number J . What are the possible values of J
for L = 2 and S = 1? Hence, show explicitly that the total number of states characterized
by (J,MJ) are the same as that in part (a), i.e., no more and no less.

3.6 Rewriting Hamiltonian of Helium Atom in Atomic Units (See SQ13)

Read class notes (an appendix in AP II) on the atomic units. The system measures physical
quantities in units of what are set by the hydrogen atom problems, i.e., typical in atomic/molecular
physics. The helium atom has its Hamiltonian in SI units as

Ĥhelium = − h̄2

2m
∇2

1 −
2e2

4πε0r1
− h̄2

2m
∇2

2 −
2e2

4πε0r2
+

e2

4πε0r12
, (4)

where r12 = |r1 − r2| and the last term is the electron-electron interaction term that makes the
problem unsolvable. Starting from Eq. (4), rewrite the Helium atom Hamiltonian step-by-step
in atomic units.

3.7 Explain a phenomenon in atomic physics

Background: In AP II, we discuss multi-electron atoms. The TISE problems cannot be solve
analytically (nobody can). So our strategy is to try to turn the many-electron problem into
single-electron problem. In this approach, the focus is on one electron in the atom and then
regard the other electrons as providing an additional potential energy term in the single-electron
Hamiltonian from which single-electron states are solved. (Do you understand the sentence? If not,
read it again!) In this way, the notion of single-electron states or atomic orbitals is saved.
We can then talk about 3s states or 3d states of a sodium atom, say.

Phenomenon: Take sodiium atom as an example, you probably know that the energies of 3s, 3p
and 3d are different, with E3s < E3p < E3d. Rather interestingly, E3d is quite close to the hydrogen
n = 3 energy. Similarly, E4s < E4p < E4d < E4f in sodium, and E4f happens to be quite close to
the hydrogen n = 4 energy.

Give an explanation (physical picture)of this phenomenon based on quantum mechanics.
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