
PHYS3022 Applied Quantum Mechanics Problem Set 1
Due: 23 January 2019 (Wednesday); “T+2” = 25 January 2019 (Friday) (20% discount)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the
box labelled PHYS3022 outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

1.0 Reading Assignment. It is a guide to supplementary reading. No need to hand in anything.
PHYS3022 started off with a discussion on several approximation methods, as most real problems
in QM cannot be solved analytically. The topics are covered in standard QM textbooks, such as
Griffiths’ Introduction to Quantum Mechanics and Rae’s Quantum Mechanics. Softer (less math)
discussions in books either on Modern Physics or Quantum Physics, e.g. Modern Physics for
Scientists and Engineers by Taylor, Zafiratos, and Dubson, and Modern Physics by Randy Harris
are also useful. Our treatment combines mathematics and physical sense.

We first wrote TISE into a huge matrix problem as an exact treatment. We will refer to the exact
matrix formulation many times. The variational method, which is based on an one-sided guessing
theorem, was then introduced. A particularly useful application is to use trial wavefunctions in
the form of a linear combination of several functions. We showed that the variational method
gives a matrix problem, which can be regarded as a truncation of the huge matrix in the exact
treatment. In Week 2, we will develop the time-independent non-degenerate perturbation theory
up to second order and the degenerate perturbation theory as a by-product of approximating
the huge matrix. Griffiths and Rae’s books are both good on these topics. They presented the
derivations (of the same results) slightly differently. It is interesting to see how two excellent
authors look at a problem differently. The discussion so far points to the importance of matrix
mathematics (a bit of it) in QM. Here, you will have the chance to re-do simple matrix math.
Sample Questions in Week 2 illustrate how the variational method works. Here, you will do some
problems by yourself.

1.1 Reduced Mass µ, transformation, and separation of variables (Extending SQ2)

Background: Hydrogen atom is a two-body problem with a proton and electron. In QM, we
often fix the proton at the origin and then study it as a one-body problem. In doing so, a correction
of replacing the bare electron mass m by the reduced mass µ is made. A H2 molecule (ignoring the
electrons) consists of two nuclei connected by a bond. This two-body problem can be treated as a
freely motion center-of-mass (CM) motion plus a single-body vibrational motion. The same goes
to the rotational rotation. In SQ2, TA showed that this is true for two identical masses by making
transformation to the CM and relative coordinates. Here, you will extend the consideration to a
heavier mass m1 and a lighter mass m2 interacting through U(x2 − x1).
For simplicity, consider a two-particle system in 1D. The two-particle interaction is represented
by a potential energy function U(x2 − x1), i.e., depends only on the combination (x2 − x1) of
the positions x1 of mass m1 and x2 of mass m. An example is that of two particles connected
by a spring (as in a diatomic molecule). In 3D, the Coulomb interaction between a proton and
an electron also depends on the separation between them. The time-independent Schrödinger
equation (TISE) is{[

− h̄2

2m1

∂2

∂x21
− h̄2

2m2

∂2

∂x22

]
+ U(x1 − x2)

}
︸ ︷︷ ︸

Ĥ

ψ(x1, x2) = E ψ(x1, x2) , (1)

where the Hamiltonian Ĥ is marked.
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(a) (See SQ2) We want to do a transformation from the variables x1 and x2 to two new variables
X and x, where X is the center of mass coordinate and x is the relative coordinate. Write
down (see classical mechanics book if necessary) X and x in terms of m1, m2, x1 and x2.

Carry out the transformation of the second derivatives and show that the Hamiltonian
Ĥ becomes

Ĥ = − h̄2

2M

∂2

∂X2
− h̄2

2µ

∂2

∂x2
+ U(x) , (2)

and identify what M and µ are in terms of m1 and m2. [Hint: The transformation involves
carrying out several partial derivatives. See Math Skill books in book list if necessary.]

(b) Hence, writing ψ = Φ(X) · φ(x), apply the method of separation of variables to TISE
to obtain two equations, one for Φ(X) and another for φ(x). Check whether Φ(X) has the
form exp(iKX), indicating the center-of-mass motion is free with an energy h̄2K2/2M .

[Remarks: Important concept here. For a N2 molecule in a gas, its energy has several
contributions. The freely moving CM motion is the translational part. There are vibrational
and rotational energies. The translational part gives the picture of point particles moving
around in a gas as discussed in secondary school physics. In statistical mechanics, each part
has a corresponding partition function.]

1.2 Variational Method: Harmonic oscillator

Consider a 1D harmonic oscillator for which the Hamiltonian is given by

Ĥ = T̂ + V̂ =
p̂2

2m
+

1

2
kx̂2 =

p̂2

2m
+

1

2
mω2x̂2 (3)

where the first term is the kinetic energy and the second term is the potential energy. The problem
was solved exactly in QMI. Here, we pretend that we don’t know the exact solution.

(a) Proposing a good trial wavefunction for the variational method is more an art than a science.
Let’s say we are not good at that. A lousy proposal of a trial wavefunction is

φtrial(x) =

{
sinλx for −π

λ < x < π
λ

0 otherwise
(4)

which is not properly normalized. Pictorially, it is one wavelength of a sine wave, with λ
adjusting the width. It is a bad proposal because it has a node at x = 0 and does not capture
the key features of a ground state wavefunction. Nonetheless, the theorem 〈Ĥ〉φ ≥ EGS is
valid.

Carry out a variational calculation using φtrial to obtain the best estimate to EGS and
contrast your result with the exact value of EGS = h̄ω/2.

(b) A Twist that makes a lousy choice clever. Make an educated discussion based
on the symmetry of the trial wavefunction and argue that the estimated value in part (a) is
actually a guess on the 1st excited state of the oscillator problem instead. Hence, compare
and comment on the estimate value in light of the known energy of the 1st excited state
E1 = 3h̄ω/2.

[Remark: Here, you see a way how physicists have extended the variational method to go
beyond guessing at the ground state energy.]
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1.3 2× 2 matrices are important in quantum physics and they can be treated exactly

Background: Two points here. Point #1: We showed in class that the time-independent
Schrödinger Equation (TISE) can be turned into a huge matrix problem (typically∞×∞ matrix
problem) using a complete set of basis functions. Each matrix element is of the form Hij −ESij .
We also discussed that the practical approach is to truncate the problem to a smaller one. Point
#2: In addition, when a trial wavefunction of a linear combination of functions is used in a varia-
tional calculation, a matrix problem of the same elements emerges, only that the size of the matrix
is equal to that of the number of functions in the linear combination (thus smaller). Obviously,
matrices are important in QM.

Let’s truncate the huge matrix to retain only a 2×2 matrix problem. That is to say, what’s left is
one value of i and one value of j. Without loss of generality, the remaining 2× 2 matrix equation
takes on the form (see more on Approximation Methods in class notes):(

H11 − E S11 H12 − E S12
H21 − E S21 H22 − E S22

)(
c1
c2

)
= 0 (5)

with H21 = H∗12 and S21 = S∗12. The retention of Sij implies that we have NOT assumed
orthonormal properties of the basis functions. This form often appears in QM problems.

(a) For non-trivial solutions of c1 and c2, the determinant should vanish. Using this condition
to solve for the allowed values for E exactly. [Hint: Recall what determinant is, then solve
a quadratic equation for E.]

(b) There is a simpler form of Eq. (5) that appears in QM problems. First of all, if Sij = δij ,
Eq. (5) becomes (

H11 − E H12

H21 H22 − E

)(
c1
c2

)
= 0 (6)

Secondly, if H11 = E(0) + H ′11, H22 = E(0) + H ′22, (note the same E(0) appears in H11 and
H22), and H12 = H ′12, H21 = H ′21, Eq. (5) (or Eq. (6)) becomes(

E(0) +H ′11 − E H ′12
H ′21 E(0) +H ′22 − E

)(
c1
c2

)
= 0 (7)

where H ′21 = H ′∗12. In perturbation theory, these symbols have physical meanings. Typically,
E(0) � H ′11 and E(0) � H ′22 in physics problems, but all these do not matter here. For
Eq. (7), find the allowed values of E. [You may apply the results in (a) to this special case,
or you may solve it again.]

[Important Remarks: Your answer to part (a) (the matrix in Eq. (5)) is important to the
theory of bonding when two atoms come together to form a molecule. It is also related to
non-degenerate perturbation theory up to 2nd order. Your answer in part (b) (the matrix
in Eq. (7)) is related to the time-independent degenerate perturbation theory. The word
“degenerate” is reflected in the same E(0) that appears in the “11” and “22” matrix elements
in Eq. (7). Here, you did what the scary name of degenerate perturbation theory really
means.]
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1.4 All CUHK students must do this. 2 × 2 matrices carry much physics and matrices
ain’t frightening. Street-fighting matrix math.

Background: You solved exactly the 2 × 2 matrices that appear in QM problems in Problem
1.3. Sometimes, we don’t need to do the mathematics exactly. This problem reminds you of the
essential 2×2 stuffs and how useful/dirty approximation can be made. Inspecting Eq. (6) (above),
it is an eigenvalue problem of a 2 × 2 matrix defined by Hij , with i, j = 1, 2. This leads us to
consider a 2× 2 matrix of the form (

EA ∆
∆ EB

)
(8)

where we simply take ∆ to be a real number. The corresponding eigenvalue problem is(
EA − E ∆

∆ EB − E

)(
c1
c2

)
= 0 (9)

(a) Easiest case! When ∆ = 0, what are the eigenvalues and the corresponding eigenvectors.

(b) Second easiest case. Now ∆ 6= 0. Consider the special case of EA = EB = E0. Find the
eigenvalues. For each eigenvalue, find the corresponding normalized eigenvector.

[Physics Remarks: This simple case is very important. You see the eigenvalues become
farther apart due to ∆ 6= 0: one eigenvalue (energy in QM) goes down and another eigenvalue
(energy) goes up. Carry this result with you. In classical physics, this is related to the
coupling of two oscillators with identical fundamental frequency. In QM, it is related to the
theory called LCAO (linear combinations of atomic orbitals) of diatomic molecules formed
by two identical atoms. This is an approximated form of Eq. (7) in Problem 1.3. One result
gives a bonding orbital (lower eigenvalue) and the other an anti-bonding orbital (higher
eigenvalue). You heard of them in CHEM1070.]

(c) Consider the general case of EA 6= EB. We assume EA < EB without loss of generality.
Let’s call the eigenvalues E1 and E2. Find the eigenvalues. For E1 and E2, find the
corresponding eigenvectors. At this point, we handled the 2 × 2 problem in Eq. (9) exactly
(as you did in Problem 1.3). [Hint: Solving a quadratic equation, again.]

(d) Very important, poor person’s perturbation theory, must do! Let’s assume that
|∆| � |EB − EA|, i.e., EA and EB are well separated and ∆ is much smaller than the
separation. Then there is a small parameter in the problem. Starting with the exact
expressions for the two eigenvalues in part (c), expand the square root (something like
(1 + x)1/2 for small x) and find approximate expressions for the two eigenvalues E1 and
E2. Identify E1 as the eigenvalue that is closer to EA and E2 the one closer to EB.

Hence, draw a picture to illustrate the following physical picture that emerges from the
math in your answer: (i) the lower eigenvalue EA is altered by an amount ∆2/(EA−EB) and
thus it is “pushed down”; (ii) the higher eigenvalue EB is altered by an amount ∆2/(EB−EA)
and thus it is “pushed up”; and both shifts are due to the small coupling (recall that
|∆| � |EB − EA| is assumed) ∆ between the two states of eigenvalues EA and EB.

[Take-home picture: Higher state pushed up and lower state pushed down, and take the
approximated eigenvalue expressions with you. This is street-fighting matrix math.]

(e) If all these are too abstract, find the eigenvalues of(
10 ∆
∆ 3

)
(10)

for ∆ = 1 and ∆ = 0.1. For each case, compare the exact eigenvalues with approximated
values using the formulas in part (d).
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1.5 Variational Method: Tilted infinite well with trial wavefunction being a linear com-
bination of functions (Closely resemble SQ5)

Consider an infinite 1D well that U(x) = ∞ for x ≤ 0 and x ≥ a. Inside the well 0 < x < a,
the potential is tilted, with U(x) increasing linearly from U(0) = 0 to U(a) = U0. Here, you will
estimate the ground state energy by the variational method.

See SQ5 for the art of proposing a reasonable trial wavefunction. Sketch U(x) and inspect it.
Think like a physicist. Make a guess (draw it out) on the shape of the ground state wavefunction
AND think whether the ground state energy is higher or lower than that of an 1D infinite square
well with a flat U(x) = 0 inside. These ideas will guide you through the variational calculation.
As U =∞ outside the well, the wavefunction vanishes there.

(a) A reasonable trial wavefunction inside the well for the tilted case is

φ(x) = c1ψ1(x) + c2ψ2(x) = c1

√
2

a
sin

πx

a
+ c2

√
2

a
sin

2πx

a
. (11)

Obviously, ψ1(x) and ψ2(x) are the normalized ground state and first excited state of an
infinite well with U = 0 inside the well.

Using c1 and c2 as the variational parameters for minimizing 〈Ĥ〉φ, where Ĥ is the Hamil-

tonian operator (recall Ĥ = T̂ + Û), the result is a 2×2 matrix problem. In general, it is of
the form of Eq. (5) in Problem 1.3. You may use the result without re-driving it. There
are a few integrals to do to set up the matrix. Do them and estimate the ground state
energy of a tilted well based on the variational method.

(b) Consider two cases: a slightly tilted well, e.g. U0 = E1/2, where E1 is the ground state
energy of a flat infinite well; and a more tilted well, e.g. U0 = 2E1. Let’s say we apply
the result in part (a) to these two cases. [You need not do that explicitly.] For which case
you believe the variational approach will give a more reliable result, and why? [Give the
argument behind your answer.]

(c) A student wants to do a variational calculation with another trial wavefunction of the form

φ̃(x) = c1

√
2

L
sin

πx

L
+ c3

√
2

L
sin

3πx

L
(12)

instead of Eq. (11). Comment on the appropriateness of this choice.

(d) (Optional Extensions: No bonus points) A bit more work could also give you a rough estimate
of the corresponding wavefunction, i.e., find the corresponding c1 and c2 and hence φ(x) for
the estimated ground state energy. This can be checked against your guess of the ground
state wavefunction. For students who want to do more, solve the TISE for the tilted well
numerically. You may use a numerical package to solve TISE and compare results with
variational calculation.

1.6 Atomic polarizability of a hydrogen atom - Quantum Mechanics in action

Background: A hydrogen atom in ground state has the nucleus (proton) and the center of mass
of the electron probability distribution |ψ1s(r)|2 overlapped. Therefore, there is no electric dipole
moment. When a static electric field ~E = E ẑ is applied to a hydrogen atom, the nucleus and the
electron cloud will be shifted slightly in opposite directions in the z-direction, leading to an induced
electric dipole moment ~µ = α~E , where α is the atomic polarizability of the hydrogen atom. This
is discussed in Griffiths’ Introduction to Electrodynamics (Chapter 4 in the 3rd edition). Griffiths
even gives a number of α/(4πε0) = 0.667× 10−30 m3 for hydrogen. Note that the smallness 10−30
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is actually related to a factor a30, where a0 is the Bohr radius. Classical electrodynamics then uses
α to obtain the electric susceptibility χe and then the permittivity ε. This is all “Griffiths” EM.
But the origin of the atomic polarizability is quantum mechanical in nature. Here, we apply the
same method as in Problem 1.5 to calculate α of a hydrogen atom.

Let Ĥ0 be the hydrogen atom Hamiltonian. We solved it analytically last term. We know that
ground state wavefunction is ψ1s and the energy E1s = −e2/(2κ0a0) = −13.6 eV , where κ0 =
4πε0. We also know an excited state called 2pz state with wavefunction ψ2pz with energy E2 =
−e2/(8κ0a0) = −13.6/4 eV .

The effect of ~E = E ẑ is an addition term in the Hamiltonian. For this extra term, “think classical”
gives an interaction energy −~µ · ~E = −(−e~r) · ~E = ezE = erE cos θ. Therefore, the full Hamiltonian
of a hydrogen atom in an applied electric field is

Ĥ = Ĥ0 + Ĥ ′ = Ĥ0 + eEr cos θ (13)

The extra term Ĥ ′ in Ĥ is analogous to the term that tilts the potential energy function in a 1D
well.

Since Ĥ ′ has the effect of shifting the 1s electron cloud a little bit in the z-direction, the resulting
distribution can be mimicked by a combination of ψ1s and ψ2pz . To study the effect of Ĥ ′, a trial
wavefunction is

φ = c1ψ1s + c2ψ2pz (14)

This is analogous to Eq. (11) in Problem 1.5. The variational method requires us to calculate H11,
H12, and H22 in Eq. (5). I leave the Sij to you. To help you out (actually rather obvious), show
that H11 = −e2/(2κ0a0) and H22 = −e2/(8κ0a0). But H12 is harder, so I give you the result of

H12 =
8√
2

(
2

3

)5

eEa0

Set up the 2 × 2 matrix problem and solve for the ground state energy in the presence of E .
Hence, show that the energy is of the form

E ≈ − e2

2κ0a0
− (something)κ0a

3
0E2 (15)

and find that “something”.

Going back to classical electrodynamics. The energy required to induce an electric dipole moment
is given by −αE2/2. This is what we see in Eq. (15). Applying this result to identify an expression
for the atomic polarizability α to be

α = (number)κ0a
3
0 (16)

and give the “number”. [Note: The known/experimental value is (4.5)κ0a
3
0.] At this point, you

applied the variational method to a real QM problem in atomic physics. Problems 1.3-1.6 form a
set of problems related to 2×2 matrices in QM and the most useful way of applying the variational
method.

[Remark: This problem is also part of the module on the ”Physics of Atoms”.]
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