
PHYS4031 STATISTICAL MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION in WEEK 4 EXERCISE CLASSES
(26,28 September 2016)
You may want to think about them before attending exercise class.
SQ8 - Volume of a D-dimensional sphere of radius R
SQ9 - Learning physics by inspecting the classical ideal gas result - what if it is D-dim?
SQ10 - Interstitial or Frenkel Defects (Microcanonical ensemble approach)

SQ8 Mathematical Skills VI - Volume of a D-dimensional “sphere”. (You do not need to memorize the
final result Eq. (7) for exam purposes.)

You know that πR2 is the area of a circle (2D “sphere) and 4
3πR

3 is the volume of a 3D sphere. How about
higher dimensions? We used the answer in carrying out the microcanonical ensembe calculations for a classical
ideal gas.

The volume of a hyper-sphere of radius R in D dimensions is formally given by

VD(R) =

∫
· · ·
∫
0≤x2

1+···x2
D≤R2

dx1 · · · dxD. (1)

(TA: Why is it?) We want to carry out this integral. This problem makes use of the Gaussian integral and the
Gamma function, as introduced in Problem Set 1.

To proceed, by dimensional analysis, the surface area of a hyper-sphere of radius r can be written as:

AD(r) = SD rD−1 (2)

where SD is a constant to be determined. If we can find SD, then VD(R) follows immediately since

VD(R) =

∫ R

0

SD rD−1dr =
SD

D
RD. (3)

Eq. (3) amounts to adding up shells to form a sphere as in an onion. Thus the whole problem becomes that of
determining SD in Eq. (2).

To get SD, we consider the following integral:

ID ≡
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 · · ·
∫ ∞
−∞

dxD e−(x
2
1+x2

2+···+x2
D) (4)

where the integrals are over all space in D dimensions.

(a) Noting that ID is a product of Gaussian integrals, show that

ID = πD/2. (5)

(b) The integrand in ID is “spherically symmetrical” (just like the spherically symmetrical potentials you
encountered in atomic problems or in central force problems) and this allows us to treat Eq. (4) in
a different way. Treating the integral over all D-dimensional space by adding up “spherical shells” of
different radii, show that

ID =
SD

2
Γ(
D

2
) (6)

where Γ is the Gamma Function (see Problem Set 1 about the Gamma functions).

(c) Hence, show that the volume of a D-dimensional hypersphere is given by

VD(R) =
πD/2

Γ(D
2 + 1)

RD. (7)

Remarks: This formula is needed for studying classical ideal gas within microcanonical ensemble (if we do
not want to invoke any particle-in-a-big-box QM) in getting W<(E, V,N). It can also be used to study a
collection of classical oscillators (Problem 2.6). To see that it is right, write down the explicit results for
D = 1, 2, 3, 4. I think one can also do a mathematical induction proof. I hope that you are happy as you
have just learnt something that goes beyond high school mathematics!
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SQ9 Learning physics by inspecting a result - Classical ideal gas.

After a laborious calculation, the entropy of a 3D classical ideal gas was shown to be

S(E, V,N) = k ln

[(
V

N

)N (
4πmE

3h2N

)3N/2
]

+
5

2
Nk (8)

This is (one form of) the Sackur-Tetrode Equation. This is exact, but looks a bit complicated. After taking
derivatives, we have E = 3

2NkT and pV = NkT , results that you know in high school!

Natural extensions of the problem could be: How about classical ideal gas in 1D, 2D, 4D, etc.? Life is short
and we don’t want to waste our time doing these calculations one by one. Could we get at the results based
on inspecting Eq. (8)?

TA: Lead the students through the following line of thought. We see that there is 3
2 in E = 3

2NkT . This 3/2
must come from the 3/2 in the power in Eq. (8). So the question is where does the “3” come from and
where does the “2” come from? You may lead the students back to an expression of W<(E, V,N) or
W (E, V,N ; ∆E) and see how “3” and “2” enter into the expression.

Hence, predict how E goes in various dimension? You may add in discussions on other situations.

SQ10 Interstitial Defects Problem - Microcanonical Ensemble Approach, again! See Ch.IV appendix.

In Ch.IV Appendix A, we discussed the Schottky defect problem using microcanonical ensemble approach.
Defects are extremely important to materials properties, as a perfect crystal is something too ideal. In fact,
one can even make use of defects to control materials properties (e.g., in making swords). The example in
Ch.IV is the simplest case in which n atoms are taken out (or excited from) of a regular array of N atoms
and these atoms migrate (move) to the surface sites - forming Schottky defects. In the example, we don’t care
about how to put the n atoms onto the surface.

Interstitial or Frenkel defects: Here is an alternative scenario to the atoms after they are excited out of
their positions in a regular array of N atoms. In a crystal, there are places in between where the atoms usually
sit. When atoms get excited and go into these sites, they form interstitial defects or Frenkel defects. Let’s
say there are N ′ possible interstitial places that the excited atoms can get into (no double occupancy (too
crowded) please). The energy required to create one such defect is ε. Consider a state of energy E = nε, i.e.,
n Frenkel defects are created. Thus, (E,N,N ′) or (n,N,N ′) defines a macrostate. Typically, n � N,N ′, but
these numbers are much bigger than unity.

TA: Follow the standard microcanonical ensemble approach - Count W , find S, derive 1/T in terms of E, N ,
N ′ and find n(T ). This shows the number of thermally created defects at a temperature T . Also, obtain the
heat capacity and sketch how it depends on temperature T .

[Important remarks: In reality, excited atoms inside a crystal can do a lot of things – some go to the surface
sites (Schottky defects) and some go to the interstitial positions (interstitial or Frenkel defects). Different
excitations may require different energies, e.g., ε′ for an excitation to surface states and ε for interstitial
defects. Experiments usually cannot control one process to happen and one doesn’t. Experimental data are a
combination of all effects! Only in theoretical treatments can we separate them and consider them one by one.
One should appreciate the complex reality that experimentalists face everyday! For a discussion on defects, see
the chapters on “Point Defects” and ”Dislocations” in Introduction to Solid State Physics by C. Kittel.]
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