
PHYS4031 STATISTICAL MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 2 EXERCISE CLASSES
(12, 14 September 2016)
You may want to think about (work out) them before attending exercise class.
Concepts and techniques covered:
SQ3 - Proving Stirling’s formula for n! and lnn! (using Gamma function introduced in Problem 1.5 in
Problem Set 1)
SQ4 - Euler equation and Gibbs-Duhem relation in thermodynamics. Using scaling argument.
SQ5 - Getting the Gibbs free energy G(T, p,N) by Legendre transformation of E(S, V,N).

SQ3 Stirling’s Formula follows from Γ-function representation of n!

This is a by-product of Problem 1.5 in Problem Set 1 in which we introduced the Γ-functions. Starting
from Eq. (13) in Problem Set 1, show that

n! = Γ(n+ 1) =

∫ ∞
0

xne−xdx = ...? (1)

and hence

n! ≈
√

2πn nne−n . (2)

Hence, illustrate that the Stirling’s formula for lnn! follows. In our course, we usually use lnN ! ≈
N lnN −N .

SQ4 A bit more Thermodynamics: Fundamental Relation, Euler’s equation and Gibbs-Duhem
relation, and a scaling argument.

“The first and second laws of thermodynamics combined” gives the fundamental relation

dE = TdS − pdV + µdN (3)

This is important. It says if we know E(S, V,N), i.e. in terms of the natural variables of E, we
can work out T , p, µ and everything about the thermodynamics of a system by taking simple partial
derivatives. Turning it into an equation for dS, then if we know S(E, V,N), then T , p, µ follow by
easy derivatives. Nice! And the first formalism in Stat. Mech. aims at getting S(E, V,N).

It is, however, not-at-all obvious from Eq.(3) that we have

E = TS − pV + µN , (4)

which is called the Euler’s equation in thermodynamics.

TA: Starting with scaling up the system by a factor λ and that E is an extensive quantity, i.e.,

E(λS, λV, λN) = λE(S, V,N) ,

and considering λ = 1+ ε with ε� 1 (i.e., scaling the system up only by a tiny amount), show that the
Euler’s equation Eq.(4) follows. [Pay attention to the argument. You will need it in a future
problem set.] The origin of this formula comes from the Euler’s theorem for homogeneous functions,
usually discussed under Partial Derivatives in math books.

Here is a by-product. By taking dE from the Euler’s equation and comparing with the fundamental
relation (Eq. (3)), show that

SdT − V dp+Ndµ = 0 , (5)

which is called the Gibbs-Duhem relation in thermodynamics. It is very useful for finding the
boundary different different phases.

SQ5 Getting other thermodynamics potentials from E(S, V,N).

In Chapter II, we reviewed the Helmholtz free energy F ≡ E − TS. If we know F (T, V,N), then we
know everything about the thermodynamics of the system. Obviously, F is the “energy” to study a
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system of a fixed number N of particles confined in a fixed volume V in thermal equilibrium with a
heat bath at a temperature T . (See the difference - for E, it is E(S, V,N).) Mathematically, we have
carried out a Legendre transform in going from E(S, V,N) to F (T, V,N) – where we “traded” the
variable S in E(S, V,N) into T in F (T, V,N). A graphical interpretation of the Legendre Transform
is given as an Appendix in class notes.

Chemists often like to carry out experiments under constant pressure instead of a constant volume
condition.

TA: Start with E(S, V,N), go toG(T, p,N), which is called the Gibbs free energy. Find an expression
for dG and give the formulas that would give the conjugate variables S, V and µ if G(T, p,N) is
known.

Finally, noting that N is the only extensive variable in G, make a scaling argument and show that
an interpretation of the chemical potential µ is the Gibbs free energy per particle. [Students: Pay
attention to the argument. We will use it later.]
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