
PHYS4031 STATISTICAL MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 12 EXERCISE CLASSES (21, 23 Novem-
ber 2016)
You may want to think about them before attending exercise class.
SQ28 - Applying and making sense of the Sommerfeld expansion
SQ29 - How does µ → 0 from below in Bose gas and the concept of macroscopic occupation of single-particle
ground state

SQ28 The Sommerfeld expansion - Using it and making sense of it.

Summary on Key Equations: In studying ideal Fermi gas, the key equations are

N =
∑

s.p. states i

1

e(εi−µ)/kT + 1
(1)

E =
∑

s.p. states i

εi
e(εi−µ)/kT + 1

(2)

pV = kT
∑

s.p. states i

ln
(

1 + e−(εi−µ)/kT
)

(3)

where the summations are over all single-particle states. Equations (1) and (2) have clear physical
interpretation as the Fermi-Dirac distribution gives the number of fermion in a single-particle state. Equa-
tion (3) follows from pV = −Ω = kT lnQF . These equations are general in that they can be used to
study ideal Fermi gas in any spatial dimension with any ε(k) dispersion relation.

In applying these equations to ideal Fermi gas, we turn the summations into integrals by invoking the
density of states g(ε), as discussed in Chapter VIII. In doing so, we encounter integrals of the following
form

∫

∞

0

f(ε)

e(ε−µ)/kT + 1
dε (4)

where f(ε) is some function of the single-particle energy ε. For example, Eq. (1) gives f(ε) = g(ε), Eq. (2)
gives f(ε) = εg(ε), and Eq. (3) gives f(ε) = g(ε) ln

(

1 + e−(ε−µ)/kT
)

. If you understand everything up to
here, you are in good shape.

Sommerfeld Expansion: In Fermi gas physics, the T = 0 physics and kT � µ (low-temperature) physics
are the most important. It is because the Pauli Exclusion Principle imposes an energy scale EF that is
usually high comparing with the ordinary temperature (thus kT ) that we want to study the system. For
kT � µ, the following Sommerfeld formula can be used

∫

∞

0

f(ε)

e(ε−µ)/kT + 1
dε ≈

∫ µ

0

f(ε)dε+
π2

6
(kT )2f ′(µ) (5)

where

f ′(µ) ≡

(

df(ε)

dε

)
∣

∣

∣

∣

ε=µ

(6)

In our course, you are not expected to know how to derive the formula, but you are expected to know how
to apply the formula.

(a) Applying the formula: Let’s say there is a situation in which the density of states has the form
g(ε) = Aε2, illustrate how Eq. (1) and Eq.(2) can be treated by the Sommerfeld expansion. [Don’t
need to work out the Fermi gas physics. Just show clearly how to apply Eq. (5).]

(b) Making sense of it: Show Eq. (5) (in a more physical than mathematical way).
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SQ29 How does µ → 0 from below in Bose gas? (Related to Ch.VII, Ch.XII and Ch.XIV)

In Ch.VII and Ch.XII, we derived the Bose-Einstein distribution (twice) and stressed that its physical
meaning is the number of bosons in a single-particle state of energy ε. Such a number cannot be
negative. This simple physical sense has important implication.

The general expression for the number of bosons N in a Bose gas is given by

N =
∑

s.p. states i

1

e(εi−µ)/kT − 1
(7)

where the summation is over single-particle states. As the expression in the summation cannot be negative,
it follows that the chemical potential µ must obey µ < εi for all single-particle states i. Let εlowest be the
lowest energy of the single-particle states (ground state), µ is then restricted to µ < εlowest to make sure that
the number of bosons in any state will NOT be negative. Practically, εlowest (recall particle-in-a-BIG-box)
can be taken as zero. Therefore, µ < 0 and this statement must be true at all temperatures.
Observe that for fermions (see Eq. (1)), we don’t need to worry because of the “+1” in the denominator.
Thus the “−1” in the Bose-Einstein distribution makes a lot of differences.

Here, TA will show the mathematical form of how µ → 0 from below.

(a) Let N0 be the number of bosons in the lowest single-particle state, i.e., the state with εlowest = 0.
Single out N0 from Eq.(7) and show that

µ = −kT ln

(

1 +
1

N0

)

. (8)

Immediately, one sees µ < 0 for all temperatures.

(b) For bosons, any number of them could occupy a single-particle state. In the limit of T → 0, we would
expect N0 → N , as all the bosons can occupy the single-particle ground state and thus µ becomes
0. Fine! But here is the key point. In many cases, we don’t need to go to T = 0. Instead for a
range of low-temperatures T < Tc, N0 becomes a macroscopic number. What it really means is
that a finite fraction of bosons in the system go into the single-particle ground state. Thus, in the
thermodynamic limit, N → ∞ and V → ∞ with N/V = finite, a finite fraction implies N0 → ∞.
Show that in this case,

µ ∼ −kT
1

N0
→ 0 (9)

for T < Tc. In technical jargon, when the ground state is macroscopically occupied at sufficient low
temperatures, we have Bose-Einstein condensation. In other words, Bose-Einstein condensation
refers to the macroscopic occupation of the ground state at low temperatures.

[Remark: The idea of macroscopic occupation of the ground state is important. When there is a
bit of inter-particle interaction between the bosons, even the T = 0 state may not consist of all the
bosons in the ground state. However, as long as there is a macroscopic occupation (a finite fraction
of the whole system of bosons) of the ground state, there is Bose-Einstein condensation. In contrast,
we could have one or two fermions (spin) in the single-particle ground state even as T → 0, thus no
macroscopic occupation of single-particle ground state for a Fermi gas.]

(c) Hence, put the information together and sketch schematically µ(T ) for an 3D ideal Bose gas.
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