
PHYS4031 STATISTICAL MECHANICS Problem Set 4 Due: 21 October 2016 (Friday)
“T+2” = 24 October 2016 (Monday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignment in the PHYS4031

Box outside Rm.213. Work out the steps of the calculations in detail. While discussions with your classmates are

encouraged, you should write up your answers independently.

4.0 Reading Assignment:

Part III (Chapters V and VI) of our course discussed the canonical ensemble (formalism in Ch.V). The
topic is covered in every reasonable textbook. We (You) also did the standard examples, including 2-
level systems (defects, paramagnetism), harmonic oscillators (heat capacity of solids, vibrational levels in
molecules), occupation of rotational levels in molecules, and classical ideal gas.

Chapter VI ends with a discussion on the point that evaluating the partition function Z(T, V,N) is often
not easy for quantum (Fermi and Bose) gases. It motivated us to go back to the microcanonical ensemble
approach and call upon the concept of the most probable distribution (see Ch.III). Part IV (Chapters
VII and VIII) has two short chapters handling non-interacting particles, in particular fermions and bosons.
Using the microcanonical set up and finding the most probable distributions, together with the single-particle
density of states, everything can be obtained. It provides a nice short-cut for doing all of undergraduate
statistical physics. In Ch.VII, we apply the Lagrange multipliers method to derive the Fermi-Dirac and
Bose-Einstein distributions (they emerge as the most probable distributions) and what these distribution
really mean. A by-product is the Maxwell-Boltzmann distribution, which arises when the quantum nature
of the particles can be ignored. The results tell us how to fill particles into single-particle states at an energy
ε. How many states are there at an energy ε? This is the question answered in Ch.VIII on the density
of single-particle states g(ε). Part IV gives the treatment in most introductory textbooks, e.g., the UK
books by Guenault, Mandl, Trevana, the US book by Kerson Huang’s Introduction to Statistical Physics,
and all Chinese textbooks.

4.1 Writing Z for Fermions and Bosons ain’t easy - Problem 3.1 revisited.

This is EXACTLY Problem 3.1, but you will re-do the problem here using the occupation number represen-
tation. You may consult the TA’s solution to Problem Set 3. Here, the aim is to illustrate the discussion
at the end of Ch.VI (Part 6) about the point that evaluating Z(T, V,N) for a given fixed number of N
fermions or bosons is often inconvenient.

Consider TWO PARTICLES which are to be placed in 5 single-particle states (i.e., assuming non-interacting
particles). Two of these states have energy 0, two have energy ε, and one has energy 2ε.

The partition function Z is always given by

Z(T, V,N) =
∑

all N -particle states i

e−βEi , (1)

where the sum is over all N -particle states (here all 2-particle states) and Ei is the energy of the 2-particle
state being summed up.

(a) The two particles are Two identical fermions (don’t worry about spin, just impose the Pauli exclu-
sion rule that says two identical fermions cannot occupy the same state).

(i) Let’s label the five states by 1,2,3,4,5. Let n1 be the number of particle in state number 1, n2

particles in state number 2, and so on.
For fermions, ni = 0 or 1 due to the Pauli exclusion rule. We also have

∑5
i=1 ni = 2 as there are

two particles in total. A list {n1, n2, n3, n4, n5} with ni = 0 or 1 AND
∑5

i=1 ni = 2 represents one
possible 2-fermion state. [Pause: Understand this description?]
Make a table that gives the occupation numbers {n1, n2, n3, n4, n5} for all possible 2-fermion
state. For each state, also give the corresponding energy E.

(ii) Hence apply Eq. (1) to evaluate Zfermion for two identical fermions.
[Remark: Now imagine we have exactly 1022 fermions and 1030 states. Writing down what to be
summed up in Z is troublesome, if not impossible! This is exactly why we divert to look for the
most probable distribution for fermions in Ch.VII and Ch.VIII.]

(b) The two particles are Two identical bosons.
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(i) Now using the same occupation number representation for bosons. Now, ni can be any inte-

ger (no Pauli rule). But we still have
∑5

i=1 ni = 2 as there are two particles in total. A list

{n1, n2, n3, n4, n5} with ni being integers AND
∑5

i=1 ni = 2 represents one possible 2-boson state.
Make a table that gives the occupation numbers {n1, n2, n3, n4, n5} for all possible 2-boson state.
For each state, also give the corresponding energy E.

(ii) Hence apply Eq. (1) to evaluate Zboson for two identical fermions.
[Remark: Now imagine we have 1022 bosons and 1030 states. Writing down what to be summed
up in Z is troublesome, if not impossible! This is exactly the point why we divert to look for the
most probable distribution for bosons in Ch.VII and Ch.VIII.]

There is yet another way out. Later in Ch.XI, we will develop the 3rd ensemble theory: The Gibbs
distribution and Grand canonical ensemble for which the restriction

∑

i ni = N is relaxed. This will
make life much easier for studying quantum gases.

4.2 Statistical physics of gas of diatomic molecules. (Closely related to SQ15)

Physics Background – This serves to remind you of the related physics. Consider a gas of N molecules
(diatomic molecules for simplicity). The partition function is given by

Z = Ztrans × Zrot × Zvib

=

(

1

N !
zNtrans

)

zNrot z
N
vib, (2)

where the part of the translational motion Ztrans = zNtrans/N ! is what you worked out in Problem 3.5.
This part treats the motion of the center-of-mass of the molecules. For diatomic molecules, there are also
internal motions, described by the rotational and vibrational states. Here, zrot is the single-molecule
rotational partition function and zvib is the single-molecule vibrational partition function. The necessary
quantum physics as covered in Applied QM (PHYS3022).

(a) Vibrational states. (See SQ15) The general physical sense is that most molecules are in the vibrational

ground state at room temperature. It is because the typical vibrational energy scale given by h̄ω is of the
order of 0.1 eV and thus the vibrational temperature scale is θvib = h̄ω/k ∼ 103 K. In addition, θvib
is higher for molecules with light-mass atoms, as you would expect from ω ∼

√

K/m in a mass-spring
system.

The key results of statistical physics of vibrational states are:

zvib = e−βh̄ω/2 1

1− e−βh̄ω
(3)

Cvib = Nk

(

θvib
T

)2
e−θvib/T

(1− e−θvib/T )2
(4)

(i) Take the diatomic molecule HCl as an example. It has a light atom (hydrogen) and therefore
the temperature scale θvib = 4227 K set by the vibrational frequency is high. Calculate the
following quantities: The vibrational contribution to the molar heat capacity at 300 K and at
2000 K; the fraction of molecules in the vibrational ground state (n = 0 state) and the fraction of
molecules in all the excited states (n > 0 states altogether) at 300 K and at 2000 K.

(ii) Let’s consider Cl2, which differs from HCl only by replacing the light atom by another chlorine.
The situation is quite different with θvib = 805 K. Calculate the following quantities: The
vibrational contribution to the molar heat capacity at 300 K and 2000 K.

(iii) Consider T = 900 K. Calculate the fractions of molecules in the n = 0 (vibrational ground state)
and n = 1, 2, 3, 4 excited states one-by-one. Sketch the fractions as a function of n.

(b) Rotational levels. The key quantity of the statistical physics of rotational states is the rotational
partition function

zrot =
∞
∑

J=0

+J
∑

mJ=−J

exp

(

−
J(J + 1)h̄2

2IkT

)

=

∞
∑

J=0

(2J + 1) exp

(

−
J(J + 1)h̄2

2IkT

)

(5)
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The general physical sense is that while molecules are mostly in the n = 0 vibrational ground state
at room temperature, most molecules are in excited rotational states. It is because the typical
rotational energy scale h̄2/2I is of the order of 0.01 eV and thus the temperature scale θrot = h̄2/(2kI)
is much less than room temperature. The room temperature thermal energy kT can excite molecules
to higher rotational states. For example, HCl has θrot = 15 K.

(i) Evaluating zrot is not easy. In SQ15, TA worked out the high-temperature limit of zrot. It is
often the useful limit. Here, we will look at the opposite low-temperature limit. Thinking like
a physicist, the low temperature physics is dominated by the low-lying (meaning low energy)
rotational states. Here, h̄2/2I sets an energy scale for the problem. For kT � h̄2/2I, show that
zrot can be approximated to the lowest order as:

zrot ≈ 1 + 3e−h̄2/IkT . (6)

Hence, find the free energy (per mole), entropy, and heat capacity (due to rotational motion) in
this temperature range. In particular, point out how the contribution to the entropy and heat
capacity drops as T decreases.

(i’) (Optional: NO bonus points) Work out part (i) to the next term in zrot (in Eq. (5)) in the low
temperature limit.

(ii) (Closely related to SQ15) Again, let’s take HCl as an example. It has θrot = 15 K. Thus, room
temperature T corresponds to the high-temperature regime where T � θrot. This allows us to turn
the sum in Eq. (5) into an integral to evaluate (a classical limit of) zrot. Hence, evaluate zrot for
HCl at T = 300 K. Using the result, find the fraction of molecules in the J-th rotational level
for HCl at 300 K and sketch the result as a function of J . You have seen the HCl vibrational-
rotational spectrum (see class note and Applied QM). In a few sentence, explain the shape of
the envelopes in the vibrational-rotational spectrum as given in class notes.

4.3 Statistical physics of oscillators and Heat capacity of insulating solids.

Physics Background – There are N atoms in a 3D solid. Einstein assumed that there are 3N identical,
distinguishable and independent oscillators, each with the same angular frequency ωE . The heat capacity of
Einstein’s solid C → 0 and T → 0, in agreement with experimental data and as required by thermodynamics.
Nice! However, the heat capacity drops to zero too fast. That was 1907. A few years later, Debye came in
with his model of a distribution in the oscillators’ frequencies and obtained C ∼ T 3 → 0 as T → 0 in good
agreement with experimental data.

Here, you will carry out the derivations that lead to Debye’s result in 3D and 4D.

(a) Debye model in 3D. The starting point is the expression of the energy of a collection of oscillators:

〈E〉 = EGS +

∫

D(ω)
h̄ω

eβh̄ω − 1
dω (7)

where D(ω)dω being the number of oscillators (normal modes) with angular frequencies in the range
ω to ω + dω. The physics is that these are normal mode frequencies. In 3D Debye model of solids,
D(ω) behaves as

D(ω) = Aω2 (8)

where A is a constant to be determined. But this ω2 dependence is followed only up to a cutoff
frequency. It is because there are a total of 3N normal modes and no more. By integration D(ω) up
to some cutoff frequency called ωD (Debye frequency), find an expression for A. Hence, work out
the steps/arguments that lead to the conclusion that the second term in 〈E〉 goes like T 4 at low
temperatures and hence give an expression of the heat capacity that goes like T 3. You may find the
following integral useful:

∫

∞

0

x3

ex − 1
dx =

∫

∞

0

x3

(

∞
∑

s=1

e−sx

)

dx = 6

∞
∑

s=1

1

s4
=

π4

15

[Remarks: You just filled in the details on the Debye model. Although we work on the problem of heat
capacity of solids, the derivation and the result 〈E〉 ∼ T 4 are closely related to the Stefan-Boltzmann
T 4 law in thermal radiation of a body at a temperature T .]
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(b) Debye model in 4D. Let’s start with Eq. (7) again. In 4D, we have

D(ω) = B ω3 (9)

where B is a constant to be determined. Carry out the same calculation as in (a) and find
the temperature dependence of the mean energy and heat capacity in 4D. You may leave an integral
unattended (which is just a number after all) in the answer. Of course, you may also evaluate the
integral.

4.4 Physics of Ideal Bose gas using the most-probable distribution. DIY: Treating Ideal Bose Gas

within microcanonical ensemble approach by the most probable distribution.

In a separate Chapter on Ideal Bose Gas later after we develop the third ensemble theory (grand canonical
ensemble), we will soon find that for an ideal (meaning: non-interacting) Bose gas, the quantity Ω =
E − TS − µN is given by

ΩB = kT
∑

r

ln(1− e−β(εr−µ)) , (10)

where the sum is over all single-particle states. The quantity Ω is called the grand potential.

Here, you will derive the result using the most probable distribution found in Ch.VIII for bosons together
with the microcanonical ensemble (Ch.III). [Physics is physics – the same results emerge regardless of
methods.] Let’s see what we know. In Ch.VII, the Bose-Einsten distribution appears as the most probable
distribution for bosons being put into single-particle states, using ideas in microcanonical ensemble and
the method of Lagrange multipliers. In particular, we derived the number of microstates corresponding to
the most probable distribution as

W
(mp)
BE ({ni}) =

∏

i

(gi + ni − 1)!

ni!(gi − 1)!
≈
∏

i

(gi + ni)!

ni!gi!
(11)

and found that for bosons
ni

gi
=

1

e(εi−µ)/kT − 1
. (12)

At this point, we can go back to S = k lnW (microcanonical ensemble) and work out the physics. You will
DIY here for an ideal Bose gas using the (microcanonical ensemble) approach. You will obtain the grand
potential ΩB by manipulating the most probable distribution. Following the microcanonical ensemble
approach, everything starts with S = k lnW , which can be approximated by S = k lnW (mp), where W (mp)

is the number of microstates of the most probable distribution.

(a) Taking lnW ≈ lnW (mp), i.e., the most probable distribution dominates the number of microstates and

using SB ≈ k lnW
(mp)
BE , find an expression for the entropy SB for an ideal gas of bosons.

(b) Starting with the definition of the Helmholtz free energy F , find an expression for FB .

(c) Hence, show that

ΩB = kT
∑

i

gi ln
[

1− e−(εi−µ)/kT
]

= kT
∑

r

ln
[

1− e−(εr−µ)/kT
]

,

where the sum in the first line is over all cells i of single-particle states and the sum in the second line
is over all single-particle states r. [Remark: This last result will be derived by the grand canonical
ensemble approach later (see Ch.XII).]

[Remark: Given a situation (spatial dimension, dispersion relation), there is a single-particle density
of states g(ε). The summations can then be turned into integrals using the single-particle density of
states g(ε) as discussed in Ch. VIII, and the thermodynamics of a Bose gas can be studied. We will
study it later.]

(d) Back to the definition of the grand potential Ω = E − TS − µN . Recall Euler equation (what is it?)
and give an expression for pV for an ideal Bose gas based on Eq. (10). Immediately, you will see
that pV is different from that of a classical ideal gas for which pV = NkT .
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4.5 Mathematical Skills VII – Method of Lagrange Undetermined Multipliers.

Recipe: For those who only want to know how to use the method.

Physical Sense of the problem: Let’s consider a function f(x, y, z) for a given domain of the arguments x,
y, z. One can ask where is the maximum/minimum of f and what is its value at the maximum/minimum.
Very often, we have an additional constraint which is represented by an equation g(x, y, z) = 0. The
new question is: Where is the maximum/minimum of f(x, y, z) subject to the constraint g(x, y, z) = 0?
Obviously, it is different from just where f is a maximum/minimum with no constraint.

Here is the recipe.

Step 1. Set up the function
F = f − λ g (13)

where λ is an unknown (to be determined) constant.

Step 2. Take the partial derivative of h with respect to x, y, z and set each one equal to zero. That is to say,
we have

∂F

∂x
=

∂f

∂x
− λ

∂g

∂x
= 0 (14)

∂F

∂y
=

∂f

∂y
− λ

∂g

∂y
= 0 (15)

∂F

∂z
=

∂f

∂z
− λ

∂g

∂z
= 0 (16)

and
g(x, y, z) = 0 (17)

Step 3. Equations (14)-(17) give four equations in four unknowns, x, y, z, and λ. Solving these equations will
give the desired value (x0, y0, z0) where f is a maximum/minimum subject to the constraint g = 0.
Putting (x0, y0, z0) back into the function f gives the value at the maximum/minimum. Done!

Remarks: The steps can be readily generalized to a function f with more variables and/or subject to several
constraints g1 = 0, g2 = 0, etc. The point is: Following the procedure and there are always the right
number of equations to solve for the unknowns.

Starting here is Problem 4.5

In Statistical Mechanics, we have the concept of the most probable distribution (the one that carries
the largest number of microstates). In fact, the most probably distributions are the famous Fermi-Dirac
distribution for fermions and Bose-Einstein distribution for bosons. The mathematical technique involved
is called the Lagrange undetermined multipliers method. The method is part of earlier mathematics
or mathematical methods course. We consider the simpler case of a function of two variables and one
constraint. The bare minimum here is that you know how to use the method. Better still, you understand
why the method works.

(a) Let f(x, y) = ax + by. We want to find the extremum of f(x, y) under the constraint that x2 + y2 =
g(x, y) = 1. For a high school student, s/he will do it as follows. Solve the problem following
the following steps. (i) Solve y in terms of x using the constraint, (ii) then substitute y(x) into f
and (iii) look for extremum by df(x, y(x))/dx = 0. Find both the extremal values of f and the
corresponding x and y. This method should work well. [It is also useful to think about the problem
geometrically. To plot f(x, y), you need a 3D plot. Thus, f(x, y) looks like a piece of hanging cloth.
Then the constraint defines a particular contour for which you want to find the extremum.]

(b) For an undergraduate, s/he will use the Lagrange’s Method of undetermined multipliers (or in short,
the method of Lagrange multipliers). We want to find the extremum of f(x, y) = ax + by under the
constraint g(x, y) ≡ x2 + y2 = 1 ≡ c. Here c means a constant. [Remark: One can also regard the
constraint as another function g(x, y) = x2 + y2 − 1 = 0.] Set up two equations by introducing a
multiplier λ (one multiplier here because there is only one constraint):

∂f

∂xi
− λ

∂g

∂xi
= 0
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where xi = x and y. Solve for x(λ) and y(λ). To determine the ”undetermined multiplier”, use the
constraint g(x(λ), y(λ)) = 1 and solve for λ. At this point, you have the values of x(λ) and y(λ) that
give extremal value of f . Compare results with (a). They should come out to be the same, of course.

(c) Now think about what have been done in (a) and (b). Why do the two procedures give the same
results? What is the difference between the two ways?

Let’s use the high school way again but formally, i.e., without specifying the explicit form of
f(x, y) and g(x, y) = c. Solving g(x, y) = c formally gives us a function y = h(x, c). Imposing
df(x, h(x, c))/dx = 0 gives one equation, in which there is a term dh/dx that we need to know. Work
out the equation. [Hint: Use chain rule.] (This is what you did in (a).)

Next, we write the constraint c = g(x, y) as c = g(x, h(x, c)). The latter is just the trivial equation
c = c. Using the fact that dc/dx = 0, since c is a constant, to obtain an expression for dh/dx.

By substituting dh/dx into the former equation, show that the resulting equation is:

∂f

∂x
−

∂g/∂x

∂g/∂y

∂f

∂y
= 0.

This is the condition for extremum.

(d) Now, let’s use the undergraduate way again. We introduce a Lagrange multiplier λ and try to find
the extremum of the combined function f(x, y)−λg(x, y). Take derivatives with respect to x to get one
equation, and with respect to y to get another equation. Now, eliminate λ from these two equations
to show that the resulting equation is the one you have in (c). [Remark: You have proven the
validity of the method of Lagrange multipliers for the case of functions of two variables. (Remark:)
Students may want to repeat parts (c) and (d) for functions of arbitrary number of variables and
more constraints.]

References:
See Riley, Hobson, and Bence, Mathematical Methods for Physics and Engineering (2nd edition) (Cam-
bridge Univ. Press), p.170-176
Steiner, The Chemistry Maths Book (Oxford Univ. Press), p.194-198.
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