
PHYS4031 STATISTICAL MECHANICS Problem Set 3 Due: 12 October 2016 (Wednesday)
“T+2” = 14 October 2016 (Friday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignment in the PHYS4013

Box outside Rm.213. Work out the steps of the calculations in detail. While discussions with your classmates are

encouraged, you should write up your answers independently.

3.0 Reading Assignment: We have established the theory for two ensembles: microcanonical (Ch.II-IV) and
canonical ensembles (Ch.V-VI, and a later part on classical statistical mechanics (Ch.IX)). We set up
these calculation schemes/methods in a general form so that they are applicable to interacting and non-
interacting systems alike. In Ch.VI, we apply the canonical ensemble method and discuss the statistical
physics of two-level systems, theory of paramagnetism, collection of oscillators and the heat capacity of
insulating solids. These examples can be found in standard textbooks such as Mandl, Rossner, Yoshioka,
and Bowley and Sanchez. Chemists also learn and use stat mech., as they need to understand a gas
of diatomic or polyatomic molecules, where there are translation, vibrational (oscillators), and rotational
motions. Statistical Mechanics is an important part of physical chemistry. For a good discussion on
chemistry applications of stat mech, see “Physical Chemistry: A molecular approach” and “Statistical
Mechanics” by D. McQuarrie.

Background for Problem Set 3 (See Ch.V and Ch.VI)

This Problem Set focuses on the Partition Function and how to make use of it. The partition function
Z(T, V,N) is the key quantity in the canonical ensemble theory. It first appeared as a normalization
constant to the result that the probability P (Ei) (or equivalently Pi) that a system is in a N -particle state
of energy Ei when the system is in thermal equilibrium with a heat bath at a temperature T , i.e.,

P (Ei) ∝ e−Ei/kT .

It follows that the partition function is given by:

Z(T, V,N) =
∑

all N -particle states i

e−βEi (1)

=
∑

all N -particle levels i

W (Ei, V,N) e−βEi (2)

=

∫

W(E, V,N) e−βEdE (3)

Equations (1) and (2) are completely general, i.e., they work for both interacting and non-
interacting systems. In Eq. (1), the sum is over all states, i.e., when some states are of the same energy,
we include them one by one into the sum. In Eq. (2), the sum is over all levels, i.e., over the different
allowed values of energy (or energy levels) Ei and the factor W (Ei, V,N) (the degeneracy) in the sum takes
care of how many states there are at an energy Ei. Eq. (3) is also general and it takes the N -particle states
as being continuously distributed in energy. Here W(E, V,N)dE is the number of N -particle states in the
energy interval from E to E + dE. Once Z(T, V,N) is obtained, other thermodynamic quantities can be
calculated. Practically, this is all about the canonical ensemble theory.

3.1 (Closely related SQ12.) Be very careful of what are being summed up in getting Z

To apply Eq. (1) and Eq. (2) to get Z, it is important to understand what are being summed up. A way
(not the cleverest way perhaps, but works) is to list clearly the N -particle states or levels together with
degeneracy that are to be summed over. The list will depend on whether the particles are distinguishable
particles, identical bosons or fermions, i.e., the quantum nature of the particles really matters! Here, you
will explore this crucial point by yourself.

(See SQ12 for a similar exercise.) Consider two particles which are to be placed in 5 single-particle
states (i.e., assuming non-interacting particles). Two of these states have energy 0, two have energy ε, and
one has energy 2ε. Find the partition function Z for each of the following cases.

(a) Two distinguishable particles. By listing out all the two-particle states to be summed up
in Eq. (1), find Zdistinct. Hence, relate your result to Eq. (2). In this case, show explicitly that
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Zdistinct can be factorized into a product of single-particle partition functions. Point out what the
single-particle partition function is referring to.

(b) Two identical fermions (don’t worry about spin, just impose the Pauli exclusion rule that says two
identical fermions cannot occupy the same state). Find Zfermion.

(c) Two identical bosons. Find Zboson.

(d) Look at your results in (a)-(c). Some students thought that the Pauli exclusion rule applies to fermions
only, and therefore Zfermion 6= Zdistinct is reasonable. But the Pauli exclusion rule does not apply to
bosons and therefore it is not too obvious why Zboson is different from Zdistinct. From your results,
explain why Zboson and Zdistinct are different.

Intermission-what’s next: The following two parts serve to illustrate why (sometimes) a correction
factor 1/N ! could turn the distinguishable particles result in part (a) into useful result for indistin-
guishable but classical particles. Part (e1) shows that the correction factor does not always
work. Part (e2) shows that sometimes it works and why we have the idea of classical particles.

(e1) Many tried to make a correction to the counting of states for distinguishable particles and use the
modified result for indistinguishable particles (and hopefully for bosons and fermions). A standard
(and lazy) way is to introduce a factor 1/N ! and thus 1/2! = 1/2 to our two-particle problem. The
idea is to correct for the over-counting in 2-particle states in the distinguishable case. State what
“over-counting” refers to? Examine whether a factor 1/2 works in correcting Zdistinct into Zboson

or Zfermion? If not, why not?

(e2) Sometimes, the correction factor 1/N ! actually works! Let’s say we impose an additional condition
that the two particles cannot occupy the same single-particle state into the counting in each of the
three cases in (a)-(c). Show that the correction factor 1/2! works in correcting the over-counting of
states in the distinguishable particle case.
Important remark: This is exactly the 1/N ! that we included in the counting of states for the
classical ideal gas problem (see microcanonical ensemble approach). “Classical” here means that we
don’t need to worry about the particles are bosons or fermions at all (as they will not occupy the same
state anyway). This is the same physics behind the condition (λth � (V/N)1/3 ≈ particle-spacing) in
the ideal gas argument. Thus, the correction factor 1/N ! is also included in doing classical statistical
mechanics within the canonical ensemble.

3.2 Two-level systems: Getting Z by Eq. (2). (See SQ13.)

In Problem 2.2, you did the problem of two-level systems in microcanonical ensemble. For N independent
particles (distinguishable), each can be in one of two energy states ε1 = 0 (not excited) or ε2 = ε > 0
(excited), you counted the number of microstates W (E,N) for a given total energy E. The counting is easy
to do by invoking the binomial coefficients.

Insert W (E,N) (Problem 2.2) into Eq. (2) and find Z(T,N) by summing over all allowed values of the
total energy E. Check against class notes (Ch.VI Part 1) that it is the same Z that can be obtained by
other ways.

Remark: From Z, then everything follows, as discussed in Ch.VI.

3.3 Estimating how much less oxygen at an altitude of 5000 m.

Without considering the variation of temperature with altitude, i.e., ignoring the fact that it is cooler the
higher you go, use the Boltzmann factor to explain why there is less oxygen up on a mountain. Estimate
the percentage of oxygen left at an altitude of 5000 m, when compared with the sea level.

Remark: In a very physics textbook manner, the problem can be stated as a huge column (cylinder) of
oxygen with the same temperature T maintained throughout the column, and finding the distribution of
the molecules as a function of the height. But this is too formal. The point is that most people will find it
hard to breathe at such altitude without preparation and the help of equipment.

3.4 J = 1 case of the paramagnetic problem: three-level particles

The case of J = 1/2 paramagnetism is discussed in class. It is a realization of two-level systems. A simple
review is that when there is no external magnetic field Bext, there are two degenerate states (i.e., with the
same energy) for a magnetic moment. When Bext = Bextẑ, these states take on different energies. There
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is one state with the z-component of the magnetic moment µz = +µB , i.e., aligned along the external field
direction with a lower energy of −µBBext. Another state has the z-component of the magnetic moment
µz = −µB , i.e., anti-aligned with the external field and thus has a higher energy of +µBBext. It then follows
that we have a compact equation for 〈E〉 and 〈µz〉 and then the magnetization M .

Now, let’s consider the J = 1 or three-level case. Now it is your turn to practice. To make it simple, the
z-component of a magnetic dipole moment is assumed to take on +µB , 0, and −µB . The possible energies in
the presence of an applied Bext in the +z-direction are then −µBBext, 0, and +µBBext. The mathematics
may not be as elegant/simple as the J = 1/2 case, but the physics will come out clearly.

(a) Identify which alignment of µ corresponds to which energy level.

(b) Show that Z = zN , for N magnetic moments in a uniform B-field.

(c) Calculate the single-magnetic-moment partition function z. For this single-particle partition function,
a “particle” refers to a magnetic moment.

(d) Calculate the average z-component of a magnetic moment 〈µz〉, given that it is at equilibrium at a
temperature T . You may either use physical reasoning or plug formula.

(e) Write down an expression for the magnetization M (defined as the magnetic moment per unit volume
in electromagnetic theory), with N = N/V being the number of magnetic moments per unit volume.
Discuss the physics in the two limits (what limits?). In particular, work out how M depends on
the temperature in the limit of low applied field and high temperature and relate your result to the
Curie’s law.

3.5 Z in Eq. (1) is also good for classical statistical mechanics. (See Problem 1.1(b)(c).)

Equation (1) also works for classical statistical mechanics, i.e., when the discretized (or quantized) features
can be ignored. The key point is, again, to express “summing over all N -particle states” correctly. Generally
in classical physics, a state in an N -particle system is described by a point in the 6N -dimensional phase
space (Γ-space). Then summing over all states can be realized by integrating over the phase space. So, the
expression for the partition function for classical statistical mechanics is

Z(T, V,N) =
1

N !

1

h3N

∫

d3x1

∫

d3p1 · · ·

∫

d3xN

∫

d3pN
︸ ︷︷ ︸

sum over all N -particle states

e−βH({x,p}) (4)

where H({x, p}) is the Hamiltonian of the N -particle system. Equation (4) is the starting point of all
classical statistical mechanical calculations within the canonical ensemble. Non-ideal (real) classical gases
and liquid state physics all start from here. The pre-factor 1/N ! is introduced to take care of over-counting in
situations where the particles are indistinguishable (see discussions in Problem 3.1(e)). For distinguishable
classical particles, omit the 1/N ! factor.

(a) Let’s see that Eq. (4) works in a familiar case. Consider a monatomic ideal gas. There are N particles
in a volume V . The Hamiltonian is then given by

H({x, p}) =
N∑

i=1

(

p2i,x
2m

+
p2i,y
2m

+
p2i,z
2m

)

, (5)

which is independent of the positions {x}. Show that

Z(T, V,N) =
1

N !
zN (6)

where z is a single-particle partition function. Write down a formal expression (as integrals) for z.
Hence evaluate z (recall gaussian integrals) and hence find Z. (Hint: You did it in Problem 1.1.)

(b) Obtain the Helmholtz free energy by F (T, V,N) = −kT lnZ(T, V,N) and then take derivatives to
obtain the entropy S, the pressure p and the chemical potential µ.
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(c) Check that the Helmholtz free energy so obtained is an extensive quantity. What if we left out the
factor 1/N ! in obtaining Z?

[Remark: The results should look very familiar – the standard ideal gas results. See, you just re-do
the classical ideal gas problem yourself using the canonical ensemble method! Now you can compare
which ensemble is more convenient, for this particular problem.]

3.6 A first taste of Interacting Systems – Exact partition function of the one dimensional Ising
model of interacting spins/moments.

We stress that Eq. (1) is generally valid. Up to now, all the problems are related to non-interacting systems.
Equation (1) also works for interacting systems. However, very seldom can we calculate Z exactly
for an interacting system. Here is one of the very few examples. It is called the one-dimensional (1D) Ising
model.

1D Ising Model: In words, let’s consider a very long linear chain (say along x-axis) of N (with N � 1)
magnetic moments. For simplicity, each moment can either point up (+z direction) or down (−z direction).
Each magnetic moment can only interact with its two nearest neighboring moments (left and right). There
are two possibilities. If two neighboring moments are pointing in the same direction (aligned), then the
interaction energy is lower with a value of J . If two neighboring moments are pointing in opposite directions
(anti-aligned), then the interaction energy is higher with a value of −J . This is the Ising model described
in words. Of course, it can be expressed in terms of a Hamiltonian. But I intentionally do not give you
the Hamiltonian. Note that if J < 0, then aligned neighboring moments is preferred. If this preference
is obeyed by all nearest neighboring moments, we have global alignment with all moments pointing in the
same direction, thus it is a ferromagnetic case. Therefore, J < 0 for ferromagnetic interaction. Making
J > 0 will lead to anti-ferromagnetic interaction.

(a) Show that the partition function Z of the system can be exactly evaluated to be

Z = 2N coshN−1

(
J

kT

)

. (7)

[If you need help, follow the hints: It will be useful to introduce Np and Na for the numbers of
neighboring pairs with parallel moments and anti-parallel moments, respectively. These numbers
are not independent. Find an equation that governs the sum of these numbers. Then, consider what
is the energy of a state for a given Np (and thus given Na) and count how many such states are there.
Knowing the number of states of a certain energy, one can evaluate Z exactly. Thus, this constitutes
a clever move to consider bonds/links instead of sites.]

About Ising model: The Ising model is the simplest model of ferromagnetism. As such, it is the
most important model for studying second order phase transitions. It first appeared in a paper by
Ising in 1925 and he studied it in his thesis without solving it! (He just gave the model and became
well known!) His thesis was supervised by Lenz (of the Lenz Law). There had been much effort on
solving the Ising model in 2D and 3D and in various lattices. The problem attracted many famous
physicists, including Kramers, Wannier, Onsager, CN Yang, T.D. Lee, Jaynes (information theory and
large deviation theory), and Fisher. Lee and Yang (1952) pointed out a theorem related to the zeros of
the partition function for the Ising model. Ising model in 2D square lattice can be solved exactly (with
rather difficult mathematics and required someone like C.N. Yang to work it out). In 3D, it cannot be
solved exactly but very detailed numerical simulations have been done. Those interested are referred
to the chapter in Kerson Huang’s Statistical Mechanics.

(b) The thermodynamics follows from Z. Find the Helmholtz free energy F and the entropy S. Sketch
how the entropy S/Nk depends on the temperature kT/J . Discuss the high-temperature limit of the
entropy. Hence, find the mean energy E by E = F + TS and the heat capacity. Sketch the heat
capacity C/Nk as a function of the temperature kT/J .

[Remarks: Inspecting F and its derivatives at some temperature (Curie’s temperature) for signature
of a phase transition, it was found that the Ising model in 1D does not show a (disorder to aligned)
transition at any finite temperature. Disappointing though, but here at least you worked out an exact
partition function and its consequences for an interacting system. In 2D and 3D, there is a transition
between a ferromagnetic phase and a paramagnetic phase.]
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