
PHYS4031 STATISTICAL MECHANICS Problem Set 2 Due: 30 September 2016 (Friday)
“T+2” buffer = 3 October 2016
All problem sets should be handed in not later than 5pm on the due date. Drop your assignment in the PHYS4031
Box outside Rm.213. Work out the steps of the calculations in detail. While discussions with your classmates are
encouraged, you should write up your answers independently.

2.0 Reading Assignment: Chapters III and IV laid the foundation of statistical mechanics (the postulate and
microcanonical ensemble). Two other ensemble theories will be developed based on these fundamentals.
It is, therefore, important to understand Ch.III and IV completely and to do/see more examples. A list
of golden standards include: the classical ideal gas (class work/notes), defect (2-level) problems (class
notes, Problem 2.2), harmonic oscillators (Problems 1.6 and 2.6) and Einstein’s solid (SQ1, Problem
1.6), and a polymer chain (Problem 2.3). Every student should be familiar with these standard examples
and Ch.III and IV, before we move forward.

References on Ch.III and IV: Read class notes Chapters III and IV. For discussions on the funda-
mental concepts of Stat Mech similar to our Chapters III (and IV), see Rossner (Ch.2), Mandl (Ch.2),
Bowley/Sanchez (Ch.3,4), Guenault (Ch.2), Trevena (Ch.2), Yoshioka (e-book, Ch.2). For a detailed dis-
cussion on microcanonical ensemble approach to the classical ideal gas, see Ch.5 of Thermodynamics and
Statistical Mechanics by Greiner, Neise, and Stöcker. See book list for details.

2.1 Marcostate, distributions, microstates, most probable and averaged distributions, thermodynamic limits.
(Class notes Ch.III and SQ6.)

Read Chapter III before working this out. In Ch.III, we considered a system of N = 3 distinguishable
particles with 3 units of energy and found W = 10 microstates. Later, for N = 6 particles with 6 units of
energy, W = 462 microstates. Here is your turn to count.

Statement of the problem. Let there be N = 8 distinguishable particles. Each of these particles
has allowed single-particle energy levels (obtained, say, by solving the Schrödinger equation with the
assumption that the particles are only weakly interacting and hence independent – thus, a single-particle
Schrödinger equation suffices; but the details of how to obtain these states are not our concerns here! Some
quantum person solved that for you!) labelled by ε0 = 0, ε1 = ε, ε2 = 2ε, ε3 = 3ε, · · ·, εj = jε, and so on.
Thus, a particle can take on any integer units of energy.

Given that there are 8 units of energy, i.e., the total energy E = 8ε. Thus, N = 8 and E = 8ε defined the
macrostate. Note that the energy per particle is the same as the (N = 3, E = 3ε) and (N = 6, E = 6ε)
cases that we discussed in Ch.III.

(a) The total number of accessible microstates is W (E,N). These microstates fall into different distribu-
tions. Identify the possible distributions and the number of microstates for each of the distributions.
Find the total number of accessible microstates W (E,N) specified by N = 8 and E = 8ε macrostate?
You may want to list them out as a table (e.g. see class notes for N = 6 and E = 6ε case).

(b) Based on the postulate of statistical mechanics, what is the probability of finding the system to be in
one of these accessible microstates when the system is at equilibrium?

(c) The average distribution. Based on “every accessible microstate is equally probable”, find the
average number of particles in the levels ε0, ε1, · · ·, ε7, ε8, etc. This is called the averaged
distribution. Sketch the averaged distribution, i.e., average number of particles at energy εn (y-
axis) versus εn (x-axis).

Why is that the numbers are generally not integers? We don’t have a fraction of a particle. What
does it mean then? Give an explanation and try to make sense out of them.

We emphasized that the idea of equal a priori probabilities tells us a way to do averages. Point out
where did you use the idea in getting the average distribution.

(d) Back to the result in (a). Which distribution is the most probable distribution? Let Wmp (or
Wmax in some books) be the number of microstates associated with the most probable distribution.
Evaluate the ratio lnWmp/ lnW . This shows how representative the most probable distribution is.
Compare this number with what we got for (N = 3,E = 3ε) and (N = 6,E = 6ε) (see class notes).

Important Take-Home Ideas:
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∗ Convince yourself that for a constant E/N , lnWmp becomes more and more representative of
lnW when a system is scaled up. This is important because for macroscopic systems, N is huge
(not 8, not 8888, but ∼ 1025 in a m3 of air!). Strictly speaking, S = k lnW and we need lnW
(total number of accessible microstates) to obtain the entropy S, but W is hard to find for a
large system. If we can get lnWmp instead (the number of microstates corresponding to the most
probable distribution, which is an easier problem), then we have a very good approximation to
lnW , as long as N � 1, i.e., S ≈ k lnWmp and the approximation is very good!
This idea gives a short-cut to get at the Bose-Einstein distribution, Fermi-Dirac distribution, and
Maxwell-Boltzmann distribution - these are most probable distributions in systems consisting of
non-interacting particles! The mathematical skill needed is the method of Lagrange undetermined
multipliers. (See Ch.VII and Ch.VIII later)

∗ In PHYS4031, you take the longer path by first introducing the general ensemble theories, as
they are good (i.e., generally applicable) even for systems consisting of interacting particles.

(e) Thermodynamic limit – The above discussion of scaling up E and N while keeping E/N a constant
is related to a step of taking the thermodynamic limit. Below we illustrate the idea using N and V .

To illustrate the point that limits must be taken properly and carefully, consider the combination
NV/(N + V 2).

(i) Find

lim
N→∞

lim
V→∞

NV

N + V 2

(ii) Find

lim
V→∞

lim
N→∞

NV

N + V 2

Comment on the results in (i) and (ii).

(iii) However, the thermodynamic limit is not only N → ∞ and it is not only V → ∞. The proper
thermodynamic limit is N → ∞, V → ∞, with N/V = finite. The physical meaning is that the
number density, i.e., number per unit volume, is a constant (and finite). Take the thermodynamic
limit of NV/(N + V 2). Does the result depend on the order of taking the limits?

(f) Another important point in this problem is that when the system carries more energy, the number of
microstates increases. Let’s say for N = 8, the total energy is E = 12ε. Find W (N = 8, E = 12ε).
Comment on how W (N,E) behaves as E increases. [Note: Here, each particle can take on any units
of energy, i.e., the spectrum for a particle is unbounded. The behavior is quite different if the spectrum
is bounded, as you will see in Problem 2.2.]

2.2 Very important – Two-level Systems and features due to bounded single-particle energy spec-
trum.

In Problem 1.6 (also 2.1), you worked out how M units of energy quanta (h̄ω) could be distributed among
N distinguishable oscillators and each of them can take on 0, 1, 2, 3, . . . units of energy. The important point
is that the single-particle energy spectrum is unbounded, i.e., no ceiling on how much energy an oscillator
can take. You then worked out the heat capacity C(T ).

There is another class of problems in which the single-particle energy spectrum is bounded, i.e., there
is a ceiling. The key point is to know that they exhibit qualitatively different behavior.

Consider a system consisting of N independent (i.e., not interacting) particles with N � 1. Each particle
can be in one of two energy levels ε1 = 0 (not excited) and ε2 = ε > 0 (excited). [Many physical problems
belong to this class. Consider magnetic moments (atoms may have magnetic moments) sitting at their
equilibrium positions in a solid. When a magnetic field is applied, Zeeman splitting leads to a finite number
of levels for each moment. For J = 1/2, we have two levels for each atom. Another example is the Schottky
defect problem in solids where ε1 = 0 refers to an atom sitting in its crystalline (right) position and ε2 = ε
is the excitation of an atom to a wrong position.]

(a) Given ε1 and ε2, a macrostate can be described by E and N . To satisfy the given E and N , we need
to put N1 particles in level ε1 and N2 particles in level ε2. Find N1 and N2, in terms of E, N , and ε.
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(b) Counting comes in. The question is about dividing N objects into two groups of N1 and N2. Find the
number of microstates W (E,N). Hence obtain an expression for the entropy S(E,N). Simplify
the expression using the Stirling’s formula, assuming N ,N1,N2 � 1.

(c) Derive an expression for the temperature T , in terms of N1 and N2. Hence, obtain N2/N1 as a
function of temperature and sketch the result.

(d) Next, turn the result to obtain E(T ). Hence, obtain the heat capacity by dE/dT and sketch C(T ).

Important remarks: The form of C(T ) is called the Schottky heat capacity. Contrast Schottky C(T )
(bounded spectrum) with that of a collection of oscillators (unbounded spectrum), as obtained in Problem
1.6. These are the TWO classes of C(T ) behavior in physics – they are fundamental different.

– With bounded spectrum, C(T ) goes up and down and shows a peak.

– There is also an unusual behavior in the (derived) “temperature” as a function of N1/N2. Could we
have N2 > N1 for any positive temperature?

– What happens if we have N2 > N1?

– You may want to work out the more general answer in terms of ε1 and ε2.

– You may try 3-level, 4-level,... systems. They are just further examples of bounded single-particle
levels.

2.3 A model of polymer chain or rubber band - Microcanonical Ensemble. The counting problem here is math-
ematically related to some other problems: two-level system (see Problem 2.2), paramagnetism (see class
notes later), and random walk (Week 1 class work on gas molecules).

In applying Stat Mech to real systems, modelling plays an important role, i.e., we need to construct models
that we can handle, e.g., counting the microstates, etc. Modelling is arts and science COMBINED! Here
is a simple but non-trivial model of a polymer chain. This problem is taken from Chapter 6 of Yoshioka’s
Statistical Physics (e-book available via CU sites).

Physical Set up: Consider a one-dimensional chain consisting of N (N � 1) segments. Let a be the length
of each segment. (A picture is that a segment is an arrow. The segments are joined together tail to head.)
Each segment can either point to the right or to the left. Let L be the distance between the two end-points
of the CHAIN. [Preview: The physics of polymers is very different from that of gases. The reason is that
the physics is driven by entropy, instead of energy. Think about it – At temperature T = 0, S should be
zero and thus there should only be one microstate. Which one? The one with the chain straightened out
with the end-to-end distance being Na. But at higher temperature, then some folding may occur, i.e., the
polymer chain (or your DNA, they aren’t so different) may want to tangle up when one heats it up under
tension. In fact rubber bands show this phenomenon – tangle up when it is heated, and thus giving out
heat when it is stretched (since it wants to be cooler when stretched). In polymer science, the segments are
called monomers.]

(a) For simplicity, we assume everything happens on a line. (Thus, you may think of the segments being
going right or going left. A flavor of random walks enters.) So starting from the origin and with N
segments, let the last segment end at a distance L (to the right, for simplicity). Find the entropy
of a long chain as a function of the end-to-end distance L of the chain. [Hint: Count the number of
ways of getting a particular vale of L and then use Boltzmann formula for S.]

(b) In the simplest model, one assumes that the joints between segments can move freely and the segments
do not interact. There is NO bending energy and the internal energy E does not depend on L (it
is just a constant, say zero). Instead of the −pdV term for work done in a gas-and-piston system,
we have a FdL term instead, where F is the tension and dL is an infinitesimal extension. Thus the
thermodynamic identity becomes

dS =
1

T
dE −

F

T
dL

From the entropy S, find the ratio “tension over temperature” F/T . Feel free to use the Stirling’s
formula. Show that

F

T
=

k

2a
ln

(

N + L
a

N −
L
a

)

.

3



(c) Assuming Na � L, show that L ∼ F/T . In words, the extension L is proportional to the tension F

with a proportionality constant that goes like 1/T . DONE! (See Remarks for the physics.)

Remark 1: From (c), you showed that the polymer chain obeys the Hooke’s law, i.e., F ∝ L, with
the elasticity constant (or Young’s modulus) being proportional to T . Note that the Hooke’s law is
rather general. It holds for a bar of copper and also for a piece of rubber (polymer). The point is that
their origins are very different. The Hooke’s law you found in rubber bands (polymer chains) here does
not come from the inter-molecular forces (which are electrostatic in nature) as in ordinary solids, but
instead from the entropy. Since extension ∼ (1/Y oung′s modulus)× tension, the Young’s modulus
is proportional to T . Compared with copper (with Young’s modulus = 1.3× 105 MPa), rubber has a
much small (∼ 1 to 3 MPa) Young’s module. It makes sense, as a small Young’s modulus means that
one can easily deform it, e.g., one can elongate it to twice its length easily. These properties: Easily
deformed by weak forces, Young’s module ∼ T , and shrinking when warmed (recall T = 0 for the
longest chain length) are all observed properties of polymer chains. In a subject called Soft Matter
Physics, the physics of polymers is a significant part. For a concise introduction to polymer physics,
see Introduction to Polymer Physics by M. Doi.

Remark 2: The above problem can be mapped into other problems. For example, the net magnetic
dipole moments of spin-1/2 particles in a magnetic field. This is just the two-level particles in Problem
2.2. What you considered as LLRLR... (L=left and R=right) now becomes DDUDU... (U = spin
up and D = spin down). The length L becomes a net magnetic dipole moment. Instead of tension,
we have the magnetic field. The behavior F/T in the above problem is related to the B/T behavior
in the magnetization, which gives the 1/T behavior of the magnetic susceptibility χ(T ) ∼ 1/T in
paramagnetism (known as Curie’s law after Pierre Curie). We get this here from the microcanonical
ensemble by mapping. This problem will be discussed later an example of the canonical ensemble
theory.

2.4 The factor of 1/N ! and extensive quantities, as illustrated by the classical ideal gas.

(a) When we did the classical ideal gas problem, we introduced a pre-factor 1/N ! to take care of the
indistinguishable nature of the particles. Let’s say a “careless” mistake is made in omitting the factor
1/N ! in front of the integrals. One is then led to the result W (E, V,N ;∆E) for the number of
microstates in the energy interval between E and E +∆E given by

W (E, V,N ;∆E) =

[

V

(
2πmE

h2

)3/2
]N

1
(
3N
2 − 1

)
!

∆E

E
. (1)

Applying S = k lnW to the above expression and ignoring terms that are small, show that one gets
the following result

S(E, V,N) = Nk ln

[

V

(
4πmE

3Nh2

)3/2
]

+
3

2
Nk . (2)

Now you will see how “right” and how “wrong” this result is.

(i) Derive an expression for 1/T and express E in terms of kT .

(ii) Derive an expression for p/T and hence express pV in terms of kT .

(iii) Entropy should be an extensive quantity (see SQ4), i.e., S(λE, λV, λN) = λS(E, V,N) when we
scale the system by a factor λ. Discuss the extensivity of this expression for the entropy by
scaling extensive quantities by a factor λ. What’s wrong?

Part (a)(iii) thus serves to show the necessity of including the factor 1/N ! in evaluatingW (E, V,N ;∆E).

(b) Now with the factor of 1/N ! in the calculation, we have (obtained in class and class notes)

S(E, V,N) = Nk ln

[(
V

N

)(
4πmE

3Nh2

)3/2
]

+
5

2
Nk (3)

Check that this expression of the entropy is extensive.
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Eq. (3) can be written in terms of the temperature by using E = 3
2NkT (classical ideal gas) as:

S(E, V,N) = Nk ln

[(
V

N

)(
2πmkT

h2

)3/2
]

+
5

2
Nk , (4)

which is the famous Sackur-Tetrode equation. It is so accurate that it is being used to tabulate values
of S cited in handbooks of physics and chemistry.

(c) Entropy of Mixing: Using the wrong result Eq. (2), which can be rewritten as:

S(E, V,N) = Nk ln

[

V

(
2πmkT

h2

)3/2
]

+
3

2
Nk . (5)

Consider an ideal gases. Initially, NA atoms occupy the left hand side of a box of volume VA and NB

atoms occupy the right hand side of a box of volume VB . They are separated by a wall, but the two
sides are at thermal and mechanical equilibrium. That is to say, they are just one ideal gas with an
inserted partition into (NA, VA) one one side and (NB , VB) on another.

(i) Using Eq. (5), write down Sinitial when the gas is partitioned into two sides.

(ii) Now the partition is removed. Using Eq. (5), write down Sfinal.

(iii) Hence, obtain the change in entropy ∆S.

(iv) Comment on the correctness of the result in (iii) and point out what’s wrong.

(d) Entropy of mixing: Using the correct result Eq. (4). Repeat part (c) and find ∆S when the
partition is removed.

[Remarks: Part (c) is referred to the “Gibbs paradox”. I avoided using the term because there is
nothing mysterious, as you resolved it here.]

(e) Using the correct expression Eq. (3) in part (b), derive an expression for the chemical potential µ.
Show that it is negative for a classical ideal gas. Argue that it should be a negative quantity
based on the definition that

µ =

(
∂E

∂N

)

S,V

(6)

Hint: Pay attention to the condition of “constant entropy”, and thus it requires the constant number
of microstates be kept constant when one more particle is added to a system. How can one achieve
this in a classical gas?

[Remarks: Here, you should see the familiar equations of states for an ideal gas also come out in part
(a), even if S is slightly wrong. Of course, the correct expression for S in part (b) also gives the same
results. Why is it? Equation (4) is the Sackur-Tetrode equation. Another remark is that in doing stat mech
calculations, one often can get the correct answer simply using a number related to W (E, V,N ;∆E) but
not W (E, V,N ;∆E) itself. For example, you may try to get S by S = k lnW<(E, V,N) and see what it
will lead to. How about S = k ln[W(E, V,N) · E]? Try them! No bonus though.]

2.5 The factor 1/h for every dx dp in getting W<(E, V,N) for classical ideal gas.

This problem serves to convey the necessity of including a factor of 1/h for every dx dp in the integrals in
doing classical stat mech calculations (see, e.g., classical ideal gas calculation).

(a) In the ideal gas problem, we introduced 1/h3N and thus a factor of 1/h for every dx dp. To get a sense
of the factor 1/h, quantum mechanics is obviously useful, as the Planck constant h is a signature of
quantum physics.

Ignoring interaction between the gas atoms, the simplest QM problem emerges – the particle-in-a-big-
box problem. Consider a 1D infinite potential well (box) of length L. As a test of your QM, write
down the energy and wavefunction for the ground state, 1st excited state, 2nd excited state, and
(n− 1)-th excited state.

(b) Let’s consider the ground state. Identify the range of of x-space that the particle can be found. For
the momentum, show that p = h̄k is quantized and it can take on two possible values, corresponding
to going to the left and one going to the right (i.e., one positive and one negative value).
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(c) Let’s display the answer to (b) in the phase space. It is a two-dimensional space (for a 1D problem)
with the x-axis being the position (thus with a range) and the y-axis being the momentum p that
ranges from negative values to positive values. Marking the momentum values on the phase space
and considering the range of positions, show that the ground state “occupies” a phase space of area
h. The moral of the story: a quantum state (ground state in this example) occupies h of phase space.

(d) Now consider the first excited state in a similar way. Show that an area of 2h of phase space is
occupied by two allowed states (ground and 1st excited states). Similarly, find the area of phase
space in which there are three allowed states.

(e) Generalize your discussion to the (n − 1)-th excited state. Hence, show that each allowed state
(energy eigenstate) occupies an area of h of phase space. This is the reason of having a factor 1/h for
every

∫ ∫
dxdp.

[Remark: Although the quantum signature h gets in, we are still working on the classical ideal gas. It
is “classical” in the sense that we don’t need to consider the nature of the particles, i.e., whether they
are identical fermions (where Pauli exclusion principle applies) or bosons (no Pauli exclusion principle).
It is because the gas is dilute and at high temperature that two particles do not get close to the same
single-particle state.]

2.6 Classical Statistical Mechanics (Microcanonical Ensemble for a Collection of Distinguishable Oscillators).

Introduction: (1) In Problem 1.6, you did the correct calculation of a collection of oscillators. By correct
we mean that you took into account of the quantized energy spectrum of each oscillator. (2) In class, we
did the classical ideal gas. Here is your turn to apply the techniques in the classical ideal gas calculation to
a collection of distinguishable classical oscillators. By classical we mean that the quantized nature of
the energy levels in an oscillator is ignored.

To build up your maturity in doing physics problem, I will NOT break this problem down into parts.
Instead, I will let you work out the problems, compare results with Problem 1.6, and discover what you will
get when you start with a classical approach at the very beginning. Hints will be given.

Consider a collection of N distinguishable (1D) oscillators. In classical mechanics, the Hamiltonian of each
oscillator is

h(p, x) =
p2

2m
+

1

2
mω2x2 .

The total Hamiltonian is given by summing over all N oscillators. [Thus, we have one more term in oscillator
when compared with free particle.]

Approaching the stat mech problem classically, you may start with the following expressions for the number
of microstates with energy less than or equal to a given energy E,

W<(E,N) =
1

hN

∫

dp1

∫

dp2 · · ·

∫

dpN

∫

dx1

∫

dx2 · · ·

∫

dxN

︸ ︷︷ ︸

∑
N

i=1
(

p2
i

2m
+ 1

2
mωx2

i
)≤E

.

There is no 1/N ! here because the oscillators are distinguishable (by their locations). The question is:
Obtain all results and discuss the physics.

Hints: You may want to follow this path. Digest what the math expression means; evaluate W<(E,N)
(volume of high dimensional sphere?); obtain W (E, V ;∆E); evaluate the entropy S(E,N); evaluate the
temperature; turn the result into E(T,N); and then obtain the heat capacity C(T ). At the end, you will
see a rather boring result for C(T ) when compared with what you got in Problem 1.6. It is this boring
result that Einstein didn’t like and eventually introduced his Einstein’s model.

Remarks - Classical versus Quantum Oscillators. At this point, compare result with Problem 1.6.
Note that in Problem 1.6, we take into account the quantum discrete nature of oscillator energies (n+ 1

2 )h̄ω
from the very beginning. The result there is more general, i.e., applicable to situations when quantum effect
is important (what does it mean) and also to situations when quantum effect is not important. In this
problem, the quantum nature of oscillator is completely ignored. It is educational to point out (discover)
when the result here and Problem 1.6 agree as well as when they do not agree.

Problem 1.6 and this problem form an additional appendix to Chapter IV.
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