
PHYS4031 STATISTICAL MECHANICS Problem Set 1 Due: 19 September 2016 (Monday)
with “T+2” being 21 Sept 2015 (Wednesday)

Read me: All problem sets should be handed in no later than 5pm on the due date for getting the full mark.
Submit your work into the assignment box marked PHYS4031 outside the Year 1 Lab (outside Rm SC 213) on 2nd
floor. To get a good training, work out the steps in detail. Discussions with your classmates are encouraged, but
you should write up your answers independently. To learn Stat Mech effectively, keep a copy of the problem
sets, your own answers and the TAs’ suggested solutions as you proceed. Sample Questions in exercise
classes before the due date are meant to give useful hints on selected homework questions. Problem Sets submitted
after the due data but before the “T+2” date will get a 20% deduction.

”Academic honesty declaration form” - If you have not signed one in class, you should attach a
copy to your Problem Set 1. A blank form can be found in course webpage.

Problem Sets form an integrated part of PHYS4031. Some materials are introduced in problem sets, and you
learn by working them out. This problem set deals with something that you should have learnt somewhere in
the past (high school or other courses) and some math skills for stat. mech. You should be able to start
working on it immediately.
Layout of Problems:
1.1 Gaussian Integrals and an application (classical ideal gas)
1.2 More on gaussian integrals
1.3 Introducing Gamma Function Γ(n)
1.4 Knowing the Stirling formula for n!
1.5 n! = Γ(n+ 1) and what 0! and 1

2 ! are about
1.6 Your first stat mech calculation - Einstein’s model of solids by microcanonical ensemble theory

1.0 Reading Assignment: (Don’t need to hand in anything. But you should get into the habit of reading and
reviewing regularly. This also gives some references on what we discussed.)

(i) Books! Spend an hour in the University Library to browse through the books reserved under
PHYS4031, as given on the book list. These books explain the same physics, but in different styles.
There must be a few that fit your taste. Also take a look at the e-books (log on from university sites
or use CUHK VPN). Try them out. They are good (and free).

(ii) Background and Math Skills! For thermodynamics, I recommend Equilibrium Thermodynamics by
C.J. Adkins (2 copies reserved in U. Library) and Thermodynamics by Fermi. For a review on ideas in
counting (see Sample Question SQ1 for Week 1 exercise class) and probability, and other mathematical
methods (partial derivatives and integrals) to come, the chapters in The Chemistry Maths Book by
Erich Steiner (1 copy reserved) and in Mathematical Methods for Physics and Engineering by Riley,
Hobson, and Bence (1 copy reserved) are useful. Steiner treated each topic in only a few pages with
examples and exercises. It is perfect for learning the basics quickly.

1.1 Mathematical Skills II – Gaussian Integrals. Here are some integrals that you will use in PHYS4031.

(a) Here is the most important integral. Evaluate the integral (a > 0)∫ ∞
−∞

e−ax
2

dx (1)

Remark: You should have done this in normalizing the ground state wavefunction of a harmonic
oscillator. You also used it in variational calculations in quantum mechanics.

(b) Hence, apply the result to evaluate the following integrals (don’t worry about the meaning of the
symbols for the moment): ∫ ∞

−∞
e−β

p2x
2m dpx (2)

and ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−β
(p2x+p2y+p2z)

2m dpxdpydpz (3)
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(c) Let’s get a quick taste of Stat. Mech. Using the result in part (b), write down the answer to the
following integral:

z(β, V ) =
1

h3

(∫
V

dxdydz

)∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−β
(p2x+p2y+p2z)

2m dpxdpydpz (4)

where the integrals over x, y, z are meant to collectively go over a volume V . If px is a momentum
and m is a mass, what should be the units of β?

Consider the function

Z(β, V,N) =
[z(β, V )]N

N !
(5)

with z(β, V ) given by Eq. (4). Let’s define the pressure p as a derivative

p =

(
∂

∂V
(

1

β
lnZ)

)
β,N

. (6)

Evaluate p and give an expression for pV . If β = 1/kT with k being the Boltzmann constant,
what does the answer refer to? What is the meaning of N?

Next, evaluate

−
(
∂

∂β
lnZ

)
V,N

(7)

and what does the answer refer to?

Remarks: You just derived some properties of an ideal gas by doing gaussian integrals! The quantity
Z will be called the partition function and the calculation method in Eqs. (4)-(7) is referred to as the
canonical ensemble theory. We will explain the formalism and the physics soon. With β = 1/kT , you will
soon see that factors like exp(−p2/2mkT ) appear almost everywhere in statistical physics. You will need
these integrals in many calculations to come.

1.2 Mathematical Skills II: More on Gaussian Integrals

(a) Evaluate ∫ ∞
−∞

x2e−ax
2

dx ,

which is an integral that you worked on in finding the uncertainty in position in harmonic oscillator
ground state.

Consider again the integral∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−β
(p2x+p2y+p2z)

2m dpxdpydpz =

∫
e−β

p2

2m d3p .

The last form implies that the integral can also be evaluated using the spherical coordinates.
Do it and compare result with 1.1(b).

(b) Hence, use the results to evaluate the following quantity (don’t worry about the meaning of the
symbols for the moment) ∫∞

−∞
p2x
2m e−β

p2x
2m dpx∫∞

−∞ e−β
p2x
2m dpx

.

The result is related to what you learned in high-school physics about the meaning of temperature!

Now, evaluate ∫∞
−∞( 1

2mω
2x2) e−β

1
2mω

2x2

dx∫∞
−∞ e−β

1
2mω

2x2
dx

.
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Remarks: What you did up to there are the Gaussian Integrals – integrals that all physics students
must know how to do! More importantly, please remember the answer to the first integral in 1.1(a).
You will need it.

(c) A function of the form ∼ e−ax
2

is called a gaussian function because of the gaussian distribution
function. Useful to quantum mechanics...it is often said that the Fourier transform of a gaussian
is another gaussian. Show it.

[Hint: Starts with ∫ ∞
−∞

dx ekxe−ax
2

and evaluate it by completing a square and using previous result. Then, turn k into ik.]

1.3 Mathematical Skills III - Meeting the Gamma Function Γ(n)

(a) Let’s continue with something related and eventually very useful. Define the integrals

In(a) ≡
∫ ∞

0

xne−ax
2

dx,

where a > 0 and n ≥ 0. Note that the lower limit of the integral is ZERO.

(i) Write down I0(a) (from your result above) and find I1(a).

(ii) Then one needs not evaluate other In(a). Instead, I2(a), I4(a),. . . can be found by taking proper
derivatives of I0(a) with respect to a. Write down a few of them (say three of them).

(iii) Similarly, write down a few In(a) for odd n (n = 3, 5, 7, ...) by taking proper derivatives of I1(a).

(b) Enters the Gamma Function Γ(n). Now make a change of variables y = ax2 in In(a) above and
show that

In(a) =
1

2

1

a(n+1)/2
Γ(
n+ 1

2
),

where Γ is the Gamma Function (related to Euler) defined by

Γ(n+ 1) ≡
∫ ∞

0

xne−x dx (8)

So, we have a compact form for In(a), but we need to learn more about the Gamma Function. (More
on Gamma Function in Problem 1.5.)

1.4 Mathematical Skills IV – Knowing the Stirling’s formula.

In statistical mechanics, we make frequent use of the Stirling’s formula or Stirling’s approximation. It
comes from the fact that when we count, n! for very large n often appears (e.g. n = 1023 particles in a
mole). Boltzmann told us to take a natural log, and thus we often encounter lnn! for large n. The Stirling
formula says ln n! = n ln n − n + O(ln n). The TA will show you how the Stirling formula comes out.
Don’t worry. For you, it is more important to get a sense of how well the formula works!

If you look at mathematical tables, you will find the following (scary) expression for n!

n! =
√

2πn nne−n
(

1 +
1

12n
+

1

288n2
− 139

51840n3
+ · · ·

)
.

Take n = 13, rather arbitrarily, as an example.

(a) Justify that even for n = 13 (which is not-so-big), it is OK to keep only the term “1” in the brackets,
e.g. evaluate the terms inside the parentheses and compare them to 1. The answer tells you that it is
OK to use

n! ≈
√

2πn nne−n. (9)
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Hence, show that

lnn! ≈ n ln n− n+
1

2
ln (2πn)

and evaluate the three terms on the right hand side one-by-one to get ln 13! and compare with
exact value of ln 13!.

(b) Look at the last expression. Mathematically, the first two terms are of order n and the last term is of
order 0(ln n). To get a sense of this statement: Compare 1000 with ln 1000, and 10,000 with ln 10000.
Note that they differ by much! Keep this in mind. Hence, further justify that

lnn! ≈ n lnn− n (10)

is already a good approximation. Remember this – it is the Stirling’s approximation or
Stirling’s formula that we will use in our course. Show that it can be written as

n! ≈ nne−n (11)

which is also useful. [Note: If you are not convinced that the approximation is good, try n = 130 or
13000. These are just “tiny” numbers in stat mech. We treat systems with N ∼ 1020 (gas molecules in
1 cm3 of air) or bigger (typical number of particles in a macroscopic system) in statistical mechanics.
Thus the approximation in Eq. (10) and Eq. (11) is extremely accurate, so accurate that an estimation
of the error becomes difficult to do!]

1.5 Mathematical Skills V – Gamma Function Γ(n).

We need the Gamma Function in Stat. Mech. calculations when we discuss Fermi and Bose gases. The
Gamma function is defined by

Γ(n+ 1) ≡
∫ ∞

0

xne−x dx. (12)

Formally, it is defined for all values of n, although most of the time, integer and half-integer values of n are
of interest to us.

(a) Find Γ(1) and Γ(1/2). [If you find the answer in earlier problems, just use it.]

(b) From the definition in Eq. (12), show that Γ(n+ 1) = nΓ(n). [Hint: Try integration by parts.] Note
that this relation is general, for any n.

This is nice! It says that using Γ(1/2), you can get Γ(n) for n = 3/2, 5/2, 7/2, . . . , and using Γ(1), you
can get Γ(n) for n = 2, 3, 4, . . . . You only need to know Γ(1) and Γ(1/2) for all the other integer and
half-integer Γ-functions.

(c) Hence show that Γ(n + 1) = n!. And factorials are very useful in counting. Putting this result and
the Γ-function together, we have

n! = Γ(n+ 1) =

∫ ∞
0

xne−xdx (13)

Eq. (13) formally relates n! to the Gamma function. The nice feature is that we can talk about any n!,
including 0!, 1

2 !, and 5
2 !. Evaluate them. [Perhaps, 0! is something that you learned in high-school.]

See SQ3 in Week 2 Exercise Classes for a proof of the Stirling’s Formula for n! based on
Eq. (13).

1.6 Einstein’s model of Solid - Dividing energy among oscillators, Stirling formula, and doing derivatives.

Let’s put all we learn together and do a famous real stat mech problem. It is about the heat capacity
of insulators. Each atom is on average sitting at its own location inside the solid. However, with given
energy (or a finite temperature), the atoms vibrate about their equilibrium positions. Therefore, there are
N oscillators corresponding to the N atoms. Let’s say the oscillators are identical (same ω), as Einstein
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assumed in 1907. In addition to the ground state energy Nh̄ω/2 that must be there, let’s say there are
Mh̄ω additional energy to be distributed among the N oscillators. Thus, the total energy is

E = Mh̄ω +N
h̄ω

2

(a) (See SQ1) Count the number of ways W (M,N) of distributing M units of h̄ω (energy) among N
oscillators. Each oscillator can take on zero, one, two, three,... units of energy.

(b) In thermodynamics (see Ch.II), if we have S(E, V,N) for a system, then all thermodynamic quantities
can be found by taking partial derivatives. Statistical Mechanics was founded by Boltzmann’s great
insight. Boltzmann said S = k lnW , where W (E, V,N) is the total number of microstates that are
compatible with the given (E, V,N). Thus, the resulting S is S(E, V,N).

Let’s apply it to the collection of oscillators. Show that formally, we could turn W (M,N) into
W (E,N) as

W (E,N) =
( Eh̄ω + N

2 − 1)!

( Eh̄ω −
N
2 )! (N − 1)!

(14)

(b) Following Boltzmann’s formula, construct the entropy

S(E,N) = k lnW (E,N) . (15)

Now the Stirling’s formula in Problem 1.4 enters! Note that W is a number (no units) and k is the
Boltzmann constant, and thus S has the right units of an entropy. Note that “1” is small compared
with N .

(c) Recall

dS =
1

T
dE +

p

T
dV − µ

T
dN (16)

What matters here is S(E) in part (b). Obtain an expression for 1/T by taking a partial deriva-
tive. The answer is a function of E and N . Here T is the temperature and you have derived the
temperature of the system.

(d) Change the subject of the formula in part (c) to obtain E(T,N). Hence, obtain an expression
for C = ∂E/∂T . Obviously C is a heat capacity. [Remark: For the very careful students, this is
formally CV (heat capacity at constant volume). The physics is that the oscillators are the atoms
vibrating about their equilibrium positions in a solid. For a solid, the expansion is so tiny that the
heat capacity at constant pressure Cp is not much different from CV , unlike in a gas.]

(e) From your answer in part (d), describe the behavior of C in the limit of kT � h̄ω (high temperature
behavior) and kT � h̄ω (low temperature behavior). Hence, make a sketch of C(T ).

Read me - Historical and Physics Remarks: (a) You just did an important piece of physics.
The high-temperature limit, quite boring if you inspect your result, is called the Dulong-Petit limit. It
was known as early as 1819 – well before any microscopic physics was developed. But this cannot be
right for all temperatures, as this would contradict the third law of thermodynamics (Why?). Einstein
developed a theory in 1907 (after wrote up his papers on Brownian motion, photoelectric effect, and
special relativity in 1905) that gives C(T ) a behavior consistent with thermodynamics, for the first
time in history. He had in mind an insulator, with atoms sitting about their equilibrium positions
and vibrating. That’s why we started with dividing Mh̄ω of quanta of energies among N (atoms)
oscillators. (b) In the Stat. Mech. calculation that you just did here, W (E,N) is the number of
microstates for the given macroscopic description (E,N). Boltzmann told us how to get the entropy
S(E,N) by S = k lnW (Eq. (15)), and thermodynamics told us how to get at the temperature T
(Eq. (16)). (c) This is the microcanonical ensemble calculation scheme. The low-temperature
behavior of C(T ) (different from Dulong-Petit behavior) is consistent with the third law – another
important contribution of Einstein to physics (solid state physics that is)! However, it was soon found
that the behavior was not quite right when compared with experimental data. Debye came in to help
in 1912 (Debye model of solid) and got the right answer. You will study the detail in your solid state
physics course. Debye received the 1938 Nobel Chemistry Prize.
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