
Fusion

Chow Ka Chun Cheng Wai Yuen


Introduction of Fusion

- 1.1 Basics of Fusion
- 1.2 Feasibility of Fusion

1.1 Basics of Fusion

- An inexhaustible source of energy for the future
- Mechanism: Under proper conditions,

E.g.

$$D+T \rightarrow {}^{4}He + n \quad (Q = 17.6 \text{ MeV})$$

1.1 Basics of Fusion

Prerequisite:

> Repulsive Coulomb force

Short-range attractive nuclear force →

High temperature

The fusion reaction rate per unit volume can be written

$$R(fusions/m^3) = n_1 n_2 \langle \sigma \nu \rangle_{12}$$

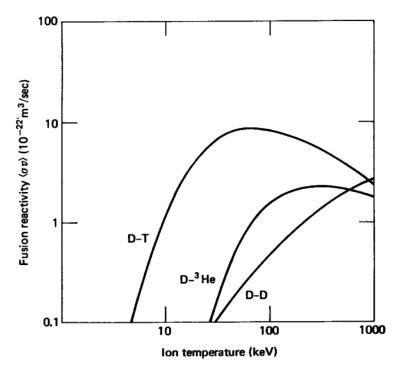


Figure 1.1 Fusion reactivity.

 D-T fusion reactivity is much greater than other fusion reactants

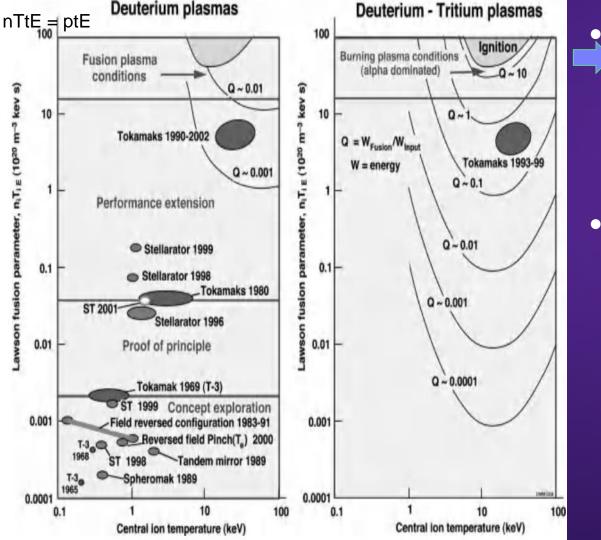
necessary conditions is the principal goal

1.2 Feasibility of Fusion

Scientific Feasibility **Engineering Feasibility** Feasibility **Practical Feasibility** Economic Feasibility & Fuel Resources

1.2 Scientific Feasibility

∵thermonuclear temperatures → sufficient positive energy.


$$Q_p = \frac{\text{fusion power}}{\text{external heating power}}$$

- Using plasma power amplification factor as the measurement
 - →Qp > 1 = breakeven
 - →Qp =∞: ignition
- ∴practical definition= Qp large enough(probably >10) that net electrical power can be economically produced

The plasma power balance can be written as

fusion heating + external heating \ge radiation loss + transport loss

$$rac{1}{4}n^2\langle\sigma v
angle_{fis}U_{lpha}\left(1+rac{5}{Q_p}
ight)\geq f_z n^2 L_z+rac{3nT}{ au_E}$$

- The triple product nTtE = ptE

 High plasma pressure & long
 plasma energy confinement
 time power balance
 at high Qp (all required
 achieving)
- Magnitude of the confining $\beta \equiv \frac{plasma\ pressure}{magnetic\ pressure} = \frac{nkT}{B^2/2\mu_0}$

Sufficiently large values of β (practical scientific feasibility)

1.2 Engineering Feasibility

Plasma support technologies (heat & confine the plasma)

Required technologies

- Systems included: vacuum, magnet, plasma heating, fueling etc.
- Survive in the high particle & heat fluxes
 →ITER & future fusion reactors
- R&D programme to carry out ITER

Nuclear technologies (power reactor)

- To breed tritium required for D-T plasma operation
- Heat removal & power conversion

1.2 Practical Feasibility

- Sustainable modes of operation is the key
 - →E.g. For continuous/ quasi-continuous operation

Preferable

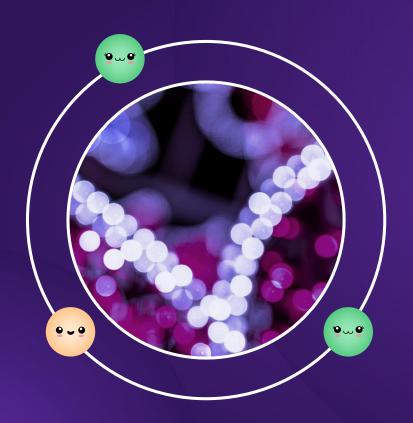
Short-pulse operation with long down-times between pulses

Compared to

- Non-inductive current-drive techniques
- →conventional tokamak confinement concept (plused

Stellarator

Practical feasibility issue

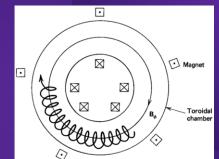

1.2 Economic Feasibility & Fuel Resources

Today's situation

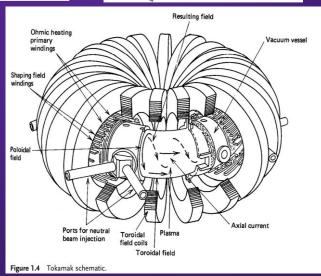
- Cost estimate of fusion electricity is expensive
 →neglected: cost of preventing carbon emission, energy potential of uranium
 - Mainly Fossil fuels

For future consideration

- World's estimated electricity usage in 2050 → fossil fuels gone
- Lithium (fusion)
 would last more
 than 6000 years


Confinement Concepts

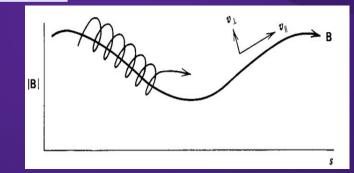
- 2.1 Magnetic Confinement
- 2.2 Tokamaks
- 2.3 Stellarator
- 2.4 Spherical Torus
- 2.5 Reversed-Field Pinch

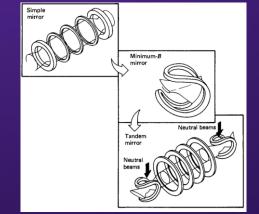

2.1 Magnetic Confinement

Closed Toroidal Confinement Systems

Magnetic Confinement

- Within a confinement chamber by the proper choice of position zand currents in a set of magnetic coils
- Poloidal field produces by a toroidal current flowing in the plasma or by external coils


Open Toroidal Confinement Systems


2.1 Magnetic Confinement

Open Toroidal Confinement Systems

- Specified of confine the confinement of confinement chamber, by trapping the charged particles in a magnetic well
- When particles > values of µ
 →RHS vanishes → reflects &
 travels back along the field
 line→↑ magnetic field strength
 → >RHS vanishes again (simple mirror)

Closed Toroidal Confinement Systems

Magnetic Confinement

2.2 Tokamaks

- closed toroidal confinement concepts
- The toroidal field can be represented as

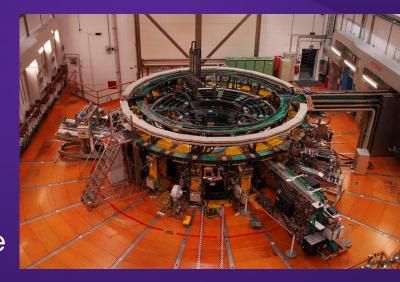
$$B_{\phi}(r,\theta) = \frac{B_{\phi}^{0}}{(1+r/R_{0})\cos\theta} \equiv \frac{B_{\phi}^{0}}{1+\epsilon\cos\theta}$$

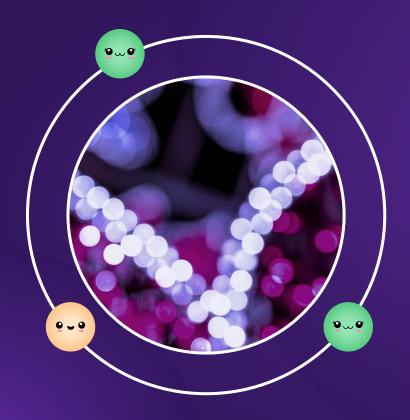
2.3 Stellarator

- toroidal confinement devices
- pairs of helical conductors
- net toroidal field nulled (require toroidal field coils)
- potential advantages
 - 1. no inherent limitation to the length of operation
 - 2. Disruptive termination of the discharge

2.4 Spherical Torus

 minimum size central region tokamak


 lower magnetic field strength to confined plasma pressure



2.5 Reversed-Field Pinch

 toroidal field produced by external coils

- direction of the toroidal field is reverse
- ohmic heating may be possible

Fusion Reactors

3 Fusion Reactors (Future application)

- Plasma physics and fusion technology limits
- 2. Physical characterics of future fusion reactors and neutron sources
- 3. Discussion on the considerations of tokamak

Confinement

$$\tau_E = H_H \tau_E^{IPB98(\gamma,2)}$$

$$\tau_E = H_H \tau_E^{IPB98(\gamma,2)} \quad \tau_E^{IPB98(\gamma,2)} = 0.0562 I^{0.93} B^{0.15} P^{-0.69} \bar{n}_{e20}^{0.41} \times M^{0.19} R^{1.97} A^{-0.58} \kappa^{0.78},$$

→constraint:

- →magnetic field and plasma size → threshold power
- **Density Limit**
 - →require achieving high particle density →high power density

$$\bar{n}_{e20} \leq \frac{I_p(MA)}{\pi a^2}$$

- →plasma current
- →plasma size
- →fusion power

- Beta Limit
 - →The MHD stability limit on the plasma pressure

$$eta_c \equiv rac{\langle n_e T_e + n_i T_i + p_lpha
angle}{rac{B^2}{2\mu_0}} \leq eta_N rac{I(MA)}{aB} = const imes l_i rac{I}{aB}$$

 \rightarrow To achieve high values of β N, /and $B \rightarrow$ high plasma power density plasma size for a given fusion power level

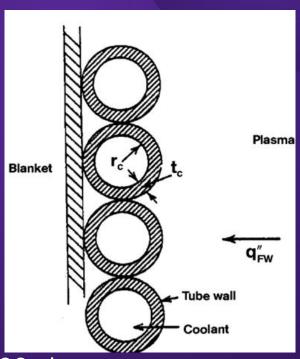
- Kink Stability Limit
 - \rightarrow related to the requirement of where δ is the plasma triangularity
 - \rightarrow limitation on the allowable combination of B,I,R and a

$$q_{95} = rac{5a^2B}{RI} \left(rac{1+\kappa^2(1+2\delta^2-1.2\delta^3)}{2}
ight) rac{\left(1.17-rac{0.65}{A}
ight)}{\left(1-rac{1}{A^2}
ight)^2} \geq 3.$$

- Startup Inductive Volt-seconds
 - →requirement consists of a component
 - 1. induce the plasma current in the absence of resistive losses
 - 2. Overcome resistive losses during startup

$$(\Delta\Phi)_{ind}=\mathit{IL}_{p}$$
 $(\Delta\Phi)_{res}=\mathit{C}_{Ejima}\mu_{0}\mathit{R}\mathit{I}$

- →plasma discharge maintenance after startup determines by a trade-off
- 1. Length of the burn pulse
- 2. Achievable bootstrap current
- 3. Amount of power required for non-inductive current drive
- 4. Overall design of the coil systems


3 Plasma Facing Component Heat Fluxes

Stress Limits pc= coolant pressure rc= coolant tube radius tc= coolant tube thickness pdis 'B2 q=2m0= disruption pressure

$$\sigma_{th} = \frac{\alpha E \left(f_{pfc} q'' t_c + \frac{1}{2} q''' t_c^2 \right)}{2\kappa (1-\nu)} \qquad \sigma_{th} + \sigma_p \le 3S_m$$

$$\sigma_{th} + \sigma_p \leq 3S_m$$

A stress limit on the maximum allowable Heat flux to the plasma facing component q00 stress

3 Plasma Facing Component Heat Fluxes

Temperature Limit
 →surface temperature constrained to below Tmax

$$T_s = T_c + f_{pfc} q''_T \left(\frac{t_c}{\kappa} + \frac{1}{h}\right) + \frac{q''' t_c^2}{2\kappa} \le T_s^{\max}$$

Tc= coolant
temperature
h=surfac heat transfer
'film' coefficient
qT=Maximum
allowable heat flux

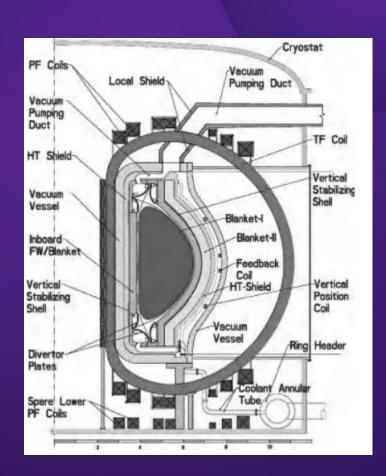
3 Plasma Facing Component Heat Fluxes

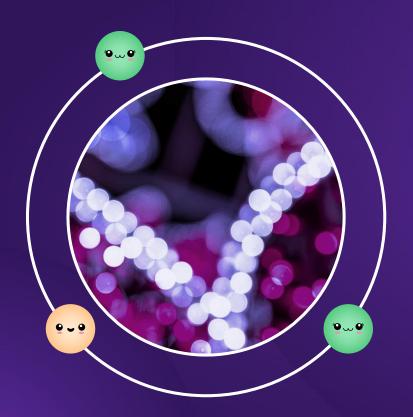
- Fatigue Limit
 - \rightarrow subjected to cyclic loading \rightarrow fail after a mean number of cycles
 - →NS(e) which depends on the material & cyclic strain (e)

$$q_{\mathit{fat}}'' = rac{2\kappa(1-
u)}{f_{\mathit{pfc}}lpha}rac{arepsilon_{\max}(N_D)}{t_c} - rac{1}{2}q^{'''}t_c$$

- Heat Flux Limit
 - ightarrowlimit on three maximum allowable heat flu $q''_{
 m max} = \max \left\{ q''_{th}, q''_{T}, q''_{fat}
 ight\}$
 - →high power density tokamaks may be thwarted by heat flux

limits


3 Future Tokamak Reactors


- ARIES-I
 →designed on relatively modest
 extension of ITER database
- High Field ARIES-I
 →Improvements with extended
 the toroidal field strength at the
 coil from 16 to 19T
- Reverse Shear
 →take advantage of anticipated
 physics avances → operation at
 higher βN with improved plasma
 confinement

	First stability		Reverse-shear	
	ARIES-I	High-field: ARIES-I	ARIES-RS	ARIES-AT
Major radius (m)	8.0	6.75	5.5	5.2
Plasma aspect ratio	4.5	4.5	4.0	4.0
Plasma elongation, κ	1.8	1.8	1.9	2.1
β (%) (β _n)	2 (2.9)	2 (3.0)	5 (4.8)	9.2 (5.4)
Peak field at the coil (T)	16	19	16	11.5
On-axis field (T)	9.0	11	8	5.8
Neutron wail load (MW/m²)	1.5	2.5	4	3.3
ITER89-P multiplier	1.7	1.9	2.3	2.0
Plasma current (MA)	12.6	10	11.3	13
Bootstrap current fraction	0.57	0.57	0.88	0.91
Current-driver power (MW)	237	202	80	35
Recirculating power fraction	0.29	0.28	0.17	0.14
Thermal efficiency	0.46	0.49	0.46	0.59
Cost of electricity (¢/kWh)	10	8.2	7.5	5

3 Future Tokamak Reactors

- ◆ ARIES-AT
 →design for an advance tokamak
 power reactor
- The volume inside of the fusion reactor pressure vessel
 1.considerably larger than Pressurized water Reactor (PWR)
 - 2. Comparable to the volume within the pressure vessel enclosing the reactor system for the gas-cooled 'next generation nuclear plant' (NGNP)

Inertial confinement fusion

- 4.1 Introduction
- 4.2 Direct and indirect drive
- 4.3 Laser interact with matter

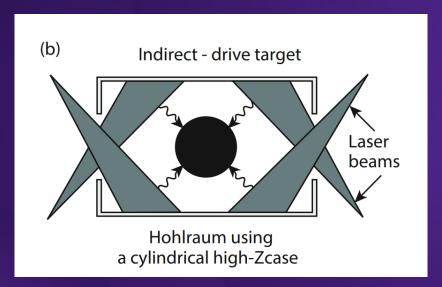
4.1 Introduction

What laser light do

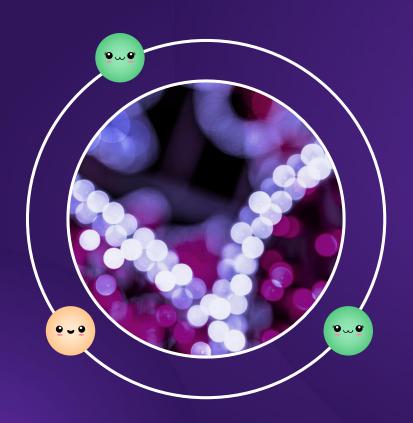
- 1.compress the D-T gas
- 2. heat up the mixture

4.1 Compression

$$Y = Y_0 f_B m_f^{compressed}$$


- Have practical need
 - Less energy is needed

4.2 Direct drive



ablation of the material on the outside of the target capsule causes compression of the capsule

4.2 Indrect drive

laser energy impinges on the inside of the 'hohlraum' Material of 'hohlraum' typically is high-Z material such as gold or uranium and X-rays are emitted.

interaction of laser and matter

5.1 inverse bremsstrahlung

4.3.1 inverse bremsstrahlung

process by which light is absorbed in collisional plasma

$$-\ln(\alpha_T) = 2\int_0^L \kappa_{ib} \, dx = 2\frac{\nu_{ei}(n_{crit})}{c} L \int_0^1 \frac{u^2 du}{\sqrt{1-u}} = \frac{32}{15} \frac{\nu_{ei}(n_{crit})}{c} L.$$
(10.7)

Thus the total reflected energy fraction is $\alpha_{abs} = 1 - \alpha_T$ and thus the absorbed fraction is

$$\alpha_{abs} = 1 - \exp\left(-\frac{32}{15} \frac{\nu_{ei}(n_{crit})}{c}L\right). \tag{10.8}$$

5.2 resonance absorption

process by which light is absorbed at the critical density

$$\Phi(\tau) = \frac{4\left(\tau K_{\frac{1}{3}}\left(\frac{2\tau^3}{3}\right)\right)^{3/2}}{\sqrt{3\pi}\sqrt{K_{\frac{2}{3}}\left(\frac{2\tau^3}{3}\right)}}.$$
(10.12)

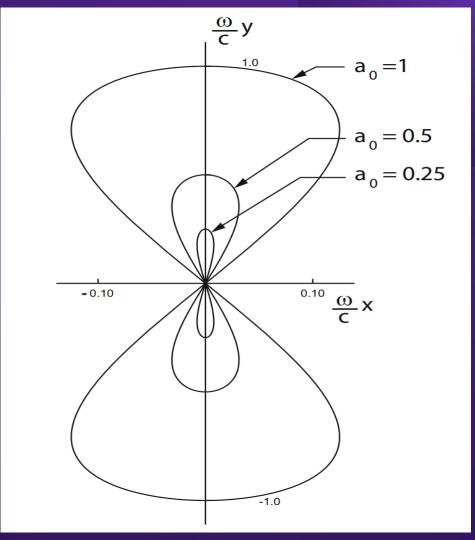
Here K is the modified Bessel function (these functions of order 1/3 and 2/3 are also known as Airy functions). The absorbed energy fraction is

$$f_{abs} = \Phi(\tau)^2 / 2,$$
 (10.13)

with

$$\tau \equiv (L\omega_L/c)^{1/3}\sin\theta. \tag{10.14}$$

5.3 Nonlinear Effects


$$\mathbf{E} = E_0 \hat{\mathbf{y}} e^{i(kx - \omega t)}, \qquad \mathbf{B} = \frac{1}{c} \hat{\mathbf{x}} \times \mathbf{E}.$$

$$y(t) = -\frac{q_e E_0}{m\omega^2} \cos \omega t = -a_0 \frac{c}{\omega} \cos \omega t,$$

$$x(t) = -\frac{q_e^2 E_0^2}{8m_e^2 c} \sin 2\omega t = -\frac{a_0^2}{8} \frac{c}{\omega} \sin 2\omega t.$$

5.3 Nonlinear Effects

The motion of Electrons in High-Amplitude Electromagnetic Field would be nonlinear

End