Superconductivity

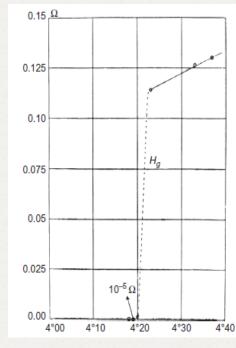
Cheung Man Ping 1155127353 Cheung Siu Fung 1155144539

Properties of superconductor

Brief history

Main theories of superconductivity

1.1 Properties of superconductor


 A perfect superconductor is a material that exhibits two characteristic

Zero electrical resistance perfect diamagnetism

 Zero electrical resistance exhibit perfect electrical conductivity

temperatures (T_c))

-Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print.

Perfect diamagnetism: Two aspects, relevant to **Meissner effect**

1.Flux exclusion:

material in the <u>normal state</u> <u>cooled below Tc</u> to the superconducting state <u>without</u> any <u>magnetic</u> field(zero-field-cooled (ZFC)). Then placed in an <u>external magnetic</u> <u>field</u>, the field will be <u>excluded</u> from the superconductor

1.1 Properties of superconductor:

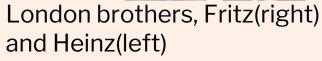
Perfect diamagnetism:

2. Flux expulsion:

material in the <u>normal state</u> placed in an <u>external</u> <u>magnetic field</u> first. Then <u>cooled below Tc</u> in the presence of this field, the field will be <u>expelled</u> from the material.

1.2 Brief history:

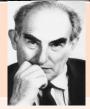
Heike Kamerlingh Onnes


1911: Dc <u>resistance</u> of <u>mercury</u> dropped to zero when temperature below 4.15 K **1912:** strong axial <u>magnetic field</u> restored the resistance to its normal value. 1913: lead was found to be superconducting at 7.2 K.

Walther Meissner and Robert

1933: Meissner effect

Ochsenfeld



1935 :developed London equations explain to Meissner effect

← Lev Davidovich Landau Vitaly Lazarevich Ginzburg →

1950 Ginzburg-Landau theory: describe <u>superconductivity</u> in terms of an order parameter

Bardeen Schrieffer Cooper **BCS Theory**

1957 Bardeen-Cooper-Schrieffer theory (BCS) theory)

9

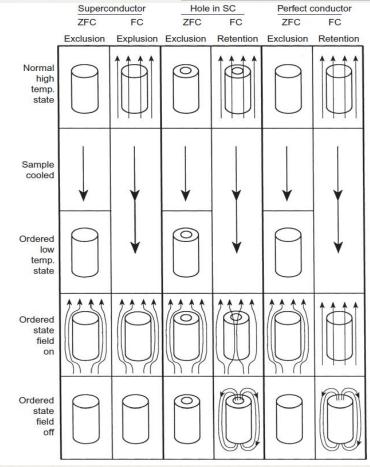
1.2 Brief history:

Superconducting Transition Temperature Records Through the Years:

Material	$T_{c}(K)$	Year
Hg	4.1	1911
Pb	7.2	1913
Nb	9.2	1930
NbN0 _{0.96}	15.2	1950
Nb ₃ Sn	18.1	1954
$Nb_3 (Al_3Ge_1)$	20-21	1966
Nb ₃ Ga *	20.3	1971
Nb ₃ Ge	23.2	1973
$Ba_xLa_{5-x}Cu_5O_y$	30-35	1986
$(La_{0.9}Ba_{0.1})_2CuO_{4-\delta}$ at 1 GPa	52	1986
YBa ₂ Cu ₃ O _{7−δ}	95	1987
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	110	1988
$Tl_2Ba_2Ca_2Cu_3O_{10}$	125	1988
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀ at 7 GPa	131	1993
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ}	133	1993
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ} at 25 GPa	155	1993
$Hg_{0.8}Pb_{0.2}Ba_2Ca_2Cu_3O_x$	133	1994
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ} at 30 GPa	164	1994

Discuss Ba-La-Cu-O system later.

⁻Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print.


1.3 Main theories of superconductivity

- Meissner effect and London equations
- Ginzburg-Landau theory(GL theory)
- Bardeen-Cooper-Schrieffer theory (BCS theory)

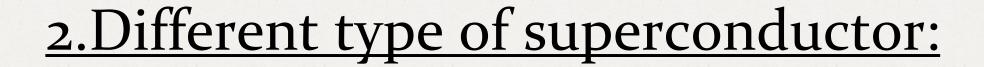
9

Meissner effect and London equations:

$$rac{\partial \mathbf{j}_s}{\partial t} = rac{n_s e^2}{m} \mathbf{E} \dots (1)$$

$$abla imes \mathbf{j}_s = -rac{n_s e^2}{m} \mathbf{B} \dots (2)$$

Combined into a single London Equation in terms of A_s, which is vector potential


$$\mathbf{j}_s = -rac{n_s e^2}{m} \mathbf{A}_s$$

-Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print.

Bardeen-Cooper-Schrieffer theory (BCS theory)

- Microscopic theory of superconductivity
- Explained successfully about lowtemperature superconductivity

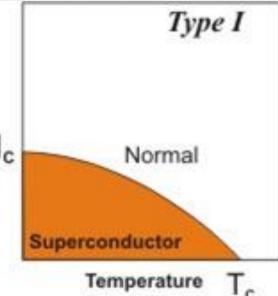
$$H_{\mathit{BCS}} = \sum_{k} \mathcal{E}_{k} \left(c_{k}^{\scriptscriptstyle +} c_{k}^{\scriptscriptstyle +} + c_{-k}^{\scriptscriptstyle +} c_{-k}^{\scriptscriptstyle -} \right) - \sum_{kk'} V_{kk'} c_{k'}^{\scriptscriptstyle +} c_{-k'}^{\scriptscriptstyle +} c_{-k}^{\scriptscriptstyle -} c_{k}^{\scriptscriptstyle -}$$

- Depend on Magnetic field: Type I and Type II
- 2 Depend on Temperature: High Tc and Low Tc

2.1 Magnetic field:

When applied <u>magnetic field(critical field(Hc))</u> become large, superconductivity will breaks down.

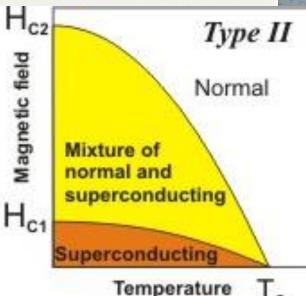
- Type I: The superconductors that are TaSi₂ and metal elements except for Nb & V
- Type II: The superconductors that are Nb, V, alloys & compounds

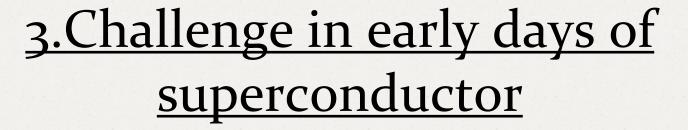


2.1 Magnetic field (Type I:)

- o Only 1 critical field(Hc), which is usually small
- Critical field affected by the Temperatures: For T= Tc,
 the critical field(Hc) = 0

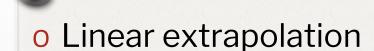
$$H_c(T)=H_c(0)[1-\left(T/T_c\right)^2]$$


- o When H<H_c,Perfect conductor (ρ = 0) and Meissner's effect (B = 0)
- o When H_c<H, normal state $\rho \neq 0$ and B $\neq 0$


2.1Magnetic field (Type II):

- o 2 critical fields:Hc1 and Hc2, which Hc2>Hc1
- When $0 < H < H_{C1}$, same as Type I($\rho = 0$ and B = 0)
- When $H_{C1} < H < H_{C2}$, mixed state ($\rho = 0$ but $B \neq 0$)
- o When $H_{C2} < H$, normal state($\rho \neq 0$ and $B \neq 0$)

- **High-temperature superconductors**(High Tc): Tc>77K
- 77K is the boiling point of liquid nitrogen. For high temperature superconductors, liquid nitrogen can be used for superconductivity
- **Low-temperature superconductors**(Low Tc): Tc<77K
- For low temperature superconductors, required other method for superconductivity (eg. at high pressure)



- How early days look like
- 2. What's the problem?

- Transition-metal alloy compounds
 - A-15
 Ideal formula with A3B
 (A is transition metal, B is right side of the periodic table)

e.g. Nb₃Ge

o 1000 years

o Room temperature

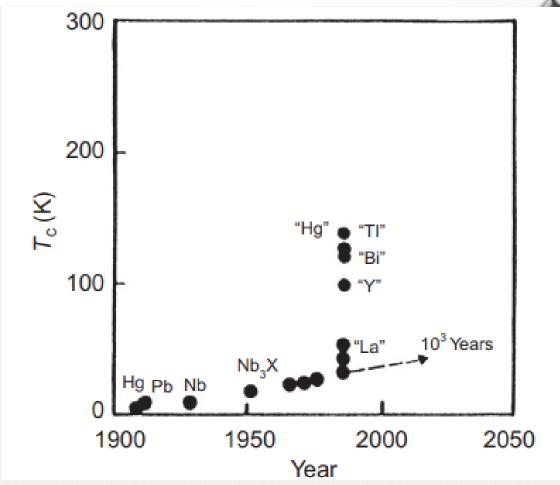


Figure: Increase in the superconducting transition temperature with time Source:Poole et al., Copper Oxide Superconductors. Wiley, New York,NY. 1988.

- o Expensive!!!!
 - Using liquid helium to be coolant

- Not Useful at all
 - Require low temperatures

4.Ba - La- Cu- O System

- 1. What is Ba-La-Cu-O System
- 2. Why it is so important

4.1Ba - La- Cu- o System

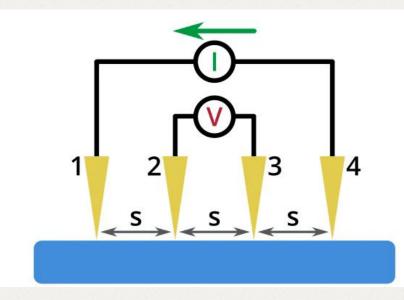
oFirst ceramic material "high temperature" superconductor

•Metallic oxygen-deficient compounds

o With Composition BaxLa₅-xCu₅O5(3-y)

4.1Method of measurement

o Four point method


$$R_S = \frac{\pi}{\ln(2)} \frac{\Delta V}{I} = 4.53236 \frac{\Delta V}{I}$$
(3)

Rs is sheet resistance

 ΔV is change in voltage between inner probes I is current applied between the outer probes

$$\rho = R_{S}. t \qquad \dots (4)$$

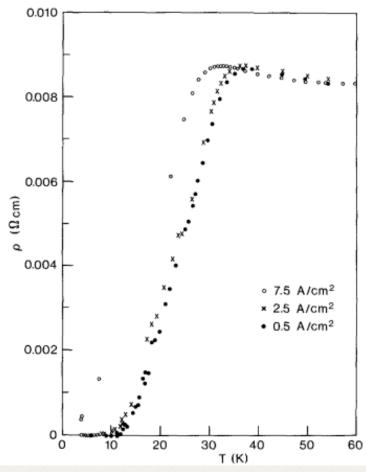
ρ is resistivity T is the thickness of material

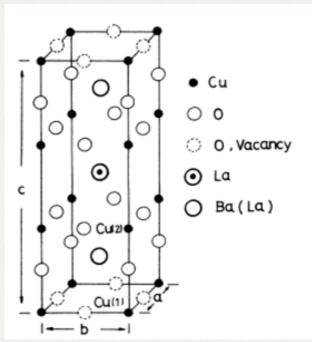
From Ossila Calculate Sheet Resistance Using the Four-Probe Method

4.1Result

Resistivity drop rapidly At around T=30

superconductor




Fig. Resistivity in low temperature (x=0.75) with different current densities

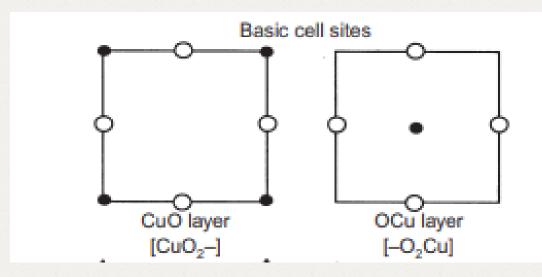
–J.G. Bednorz and K.A. Miiller, "Possible High T c Superconductivity in the Ba - La- Cu- 0 System ", Phys. B -Condensed Matter 64, 189-193 (1986)

9

3D Structure

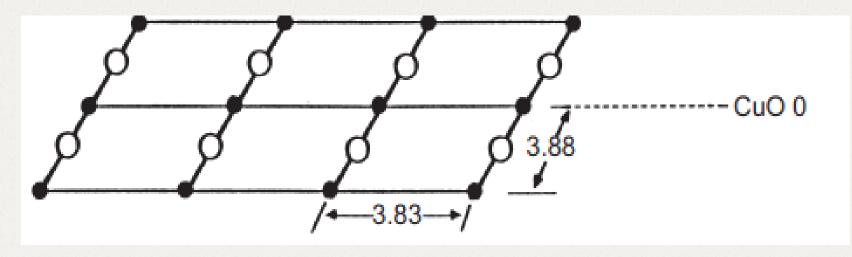
layer structure

Unit cell Ba-La-Cu-O system With lattice constant a=b=c/3


-Cheng Dong et al, "Superconductivity and Crystal Structure in

the La-Ba-Cu-O System ", Physical review. B, Condensed matter (1988)

2D Structure


Cu-O plane

-Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print.

1D Structure

O Fence-like CuO Chain

Source:Poole et al., Copper Oxide Superconductors. Wiley, New York, NY. 1988

Structure

Oxygen locate in b

Become orthorhombic

Superconductor

Unit cell Ba-La-Cu-O system With lattice constant a=b=c/3

-Cheng Dong et al, "Superconductivity and Crystal Structure in the La-Ba-Cu-O System", Physical review. B, Condensed matter (1988)

Cuprate superconductors

o Tc 10 times of A-15 in 8 years

o HgBa2Ca2Cu3O8-δ at 30 Gpa

o 164K

Material	<i>T</i> _c (K)	Year
Hg	4.1	1911
Pb	7.2	1913
Nb	9.2	1930
NbN0 _{0.96}	15.2	1950
Nb ₃ Sn	18.1	1954
Nb ₃ (Al ₂ Ge ₁)	20-21	1966
Nb ₃ Ga	20.3	1971
Nb ₃ Ge	23.2	1973
$Ba_xLa_{5-x}Cu_5O_y$	30-35	1986
$(La_{0.9}Ba_{0.1})_2CuO_{4-\delta}$ at 1 GPa	52	1986
YBa ₂ Cu ₃ O _{7-δ}	95	1987
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	110	1988
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀	125	1988
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀ at 7 GPa	131	1993
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ}	133	1993
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ} at 25 GPa	155	1993
$Hg_{0.8}Pb_{0.2}Ba_2Ca_2Cu_3O_x$	133	1994
HgBa ₂ Ca ₂ Cu ₃ O _{8−δ} at 30 GPa	164	1994

-Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print.

5. Application

Electric power equipment
 Increase the Flux destiny

Reducing the size

Increase the efficiency

5.Application

2022 April Hong Kong

Electricity consumption:1.7x10¹⁶ J

 $0.01\%=1.7 \times 10^{12} \text{ J}$

Reference

- O Poole, Charles P. et al. Superconductivity. San Diego: Elsevier, 2014. Print. (Ch 2,4,5,6,7)
- O https://archive.nptel.ac.in/content/storage2/courses/113104005/lecture33/33_4.html
- Poole et al., Copper Oxide Superconductors. Wiley, New York, NY.1988
- O Cheng Dong et al, "Superconductivity and Crystal Structure in the La-Ba-Cu-O System ", Physical review. B, Condensed matter (1988)
- J.G. Bednorz and K.A. Miiller, "Possible High T c Superconductivity in the Ba - La- Cu- O System ", Phys. B - Condensed Matter 64, 189-193 (1986)