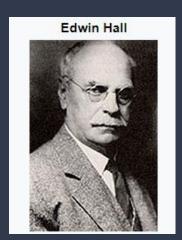
Quantum Hall Effect


What so special about Quantum Hall Effect?? What is the difference between Classical and Quantum?

Leung Man Yin Jerry
Lau Chi Shing Kenneth

Outline

- 1. Background
 - 1. Classical Hall effect
 - 2. Quantum Hall effect
- 2. The various QHEs
 - 1. Integer QHE
 - 2. Other types of QHE (Fractional, anomalous, spin)
 - 3. Edge state
- 3. Some experimental observations of QHEs
 - 1. Universality of QHE
 - 2. An interesting material: Stanene
- 4. Implications
 - 1. Significance
 - 2. Branching with other fields in physics
- 5. Outlook

Background

Credit: Wikipedia

Classical Hall Effect (Some Recap)

- Discovered by Edwin Hall in 1879
- Occurs when we apply a B-field perpendicular to the current (x-y plane)
- The electrons will experience a Lorentz force and being pushed to the sides
- Creating a potential difference across

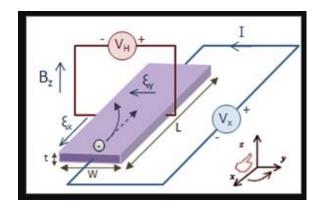
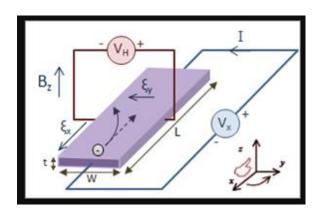


Fig.1: Schematic Diagram for Classical Hall Effect

Classical Hall Effect

- When we apply a B-field in the z-direction, perpendicularly to a 2-D material
- The Lorentz force is, using the Drude model:


$$\vec{F} = m \frac{d\vec{v}}{dt} = -|q|\vec{E} - |q|\vec{v} \times \vec{B} - \frac{m\vec{v}}{\tau}$$
; τ is the average collision time between electron and ion

We know:
$$\vec{v} = \frac{\vec{J}}{n_e|q|}$$

• At equilibrium, we have:

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix} = \frac{1}{\sigma_D} \begin{bmatrix} 1 & \omega_B \tau \\ -\omega_B \tau & 1 \end{bmatrix} \begin{bmatrix} J_x \\ J_y \end{bmatrix}$$

$$\sigma_D = \frac{|q|^2 n_e \tau}{m}$$
, $\omega_B = \frac{|q|B\tau}{m}$

Classical Hall Effect (cont.)

$$\rho_{xx} = \frac{1}{\sigma_D} = \frac{m}{|q|^2 n\tau}$$

$$\rho_{xy} = \frac{\omega_B \tau}{\sigma_D} = \frac{B}{|q|n}$$

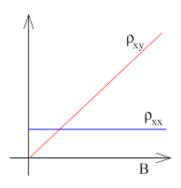


Fig.2: Resistivity against B-field

• We can see ρ_{xx} (Longitudinal resistivity) and ρ_{xy} (Hall resistivity) are constant and proportional to B respectively

The leap: From classical to quantum

- Klaus von Klitzing made an unexpected discovery in 1980 when he applied very strong B-field under extremely low temperature (~4.2K) on 2D electron gas.
- What he expects: Resistance should be $\propto B$ (Classical)
- What he gets: The resistance depends only on **fundamental constants** and **integer numbers** only!!
- A Nobel prize is awarded (1985)

Credit: wiki/Klaus_von_Klitzing

The discovery of Quantum Hall Effect (QHE)

- Hall coefficient turns out to be quantized
- ρ_{xx} only exist where Hall coefficient is not constant
- Vanishing as much as 13 order of magnitude at the plateau
- For a filling factor $v = \frac{n_e h}{aB}$ (which we will address later), the Hall resistivity:

$$\rho_{xy} = \frac{h}{v a^2}$$
 where $v = 1,2,3...$

• When $\nu = 1$, we have the **von Klitzing constant**, where

$$R_{k-90} = 25812.807 \Omega \text{ (exact)}$$

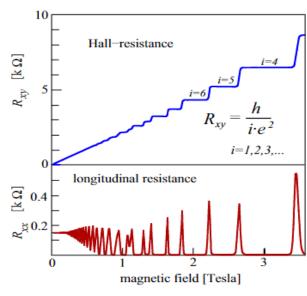


Fig.2: Resistance against B-field

The various QHEs

 Here we will provide a more quantum mechanical view on the various QHEs

2D Electron Gas

- 2D electron gas:
- Electrons can only move in 2D and being confined by some potential tightly in the third (infinite potential well)
- Hence, we can separate the z-direction eigenenergy out, which can be easily solved
- Therefore, the eigenenergies in the z-direction can be "ignored" in most problems

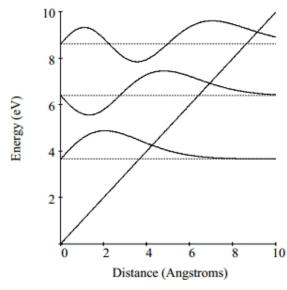


Fig.4: Triangular potential well
Adapted from http://transport.ece.illinois.edu

Integer QHE

• For a 2-D electron gas along the x-y plane and an external B-field applied in the z direction, the Schrödinger equation gives:

$$\widehat{H}\psi(x,y) = \left[\frac{1}{2m}(\widehat{P}_y + exB)^2 + \frac{1}{2m}(\widehat{P}_x)^2\right]\psi(x,y); \widehat{P}_{x/y} = \frac{\hbar}{i}\frac{d^2}{d\left(\frac{x}{y}\right)^2}$$

• As the vector potential doesn't depend on y, we can simply assume a solution:

$$\psi(x,y) = e^{ik_y y} f(x)$$

i.e. the wave propagate freely in the y-direction

$$\widehat{H}\psi(x,y) = e^{ik_y y} \left[\frac{\left(\hbar k_y + exB\right)^2}{2m} + \frac{1}{2m} \left(\widehat{P}_x\right)^2 \right] f(x)$$

Integer QHE

$$=e^{ik_{y}y}\left[\frac{m\omega_{B}^{2}}{2}\left(x+k_{y}l_{B}^{2}\right)^{2}+\frac{1}{2m}\left(\widehat{P}_{x}\right)^{2}\right]f(x);\;\omega_{B}=\frac{eB}{m},l_{B}=\sqrt{\frac{\hbar}{eB}}$$

• Which is just a 1-D harmonic oscillator model shifted by $x_0 = k_y l_B^2$, thus we have eigenenergy:

$$E = \hbar \omega_B \left(n + \frac{1}{2} \right)$$
; $n = 0,1,2,3$... (This is our Landau Level)

- Note: As the energy does not depend on k_y , for a given n, it can have any k_y
- To consider degeneracy, we require:

$$e^{ik_y(0)} = e^{ik_y(L_y)} = 1$$

 $k_y = \frac{2\pi m}{L_y}$; $m = 0,1,2...$

Integer QHE: Density of States

• How many k_{ν} states are there?

$$x_0 = k_y l_B^2 = \frac{\hbar k_y}{eB}$$

• As x_0 must be within the sample, so

$$L_x \ge \frac{\hbar k_y}{eB} \to k_y \le \frac{eBL_x}{\hbar}, \qquad k_{y,max} = \frac{2\pi m_{max}}{L_y} = \frac{eBL_x}{\hbar}$$

$$m_{max} = \frac{L_x L_y}{2\pi l_B^2}; l_B = \sqrt{\frac{\hbar}{eB}}$$

- Hence, the no. of k_y states per unit area for a given n is $\frac{eB}{h}$; we get the filling factor $v = \frac{n_e h}{eB}$
- Assume B is strong enough such that s Landau Levels provide enough k_y states for all electron, then:

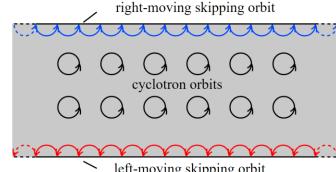
$$\rho_{xy} = \frac{B}{|q|n_e} = \frac{B}{|q|\left(s\frac{|q|B}{h}\right)} = \frac{h}{sq^2}$$

Fractional, Spin and Anomalous QHE

Fractional QHE

- When the B-field is further increased, electrons finally ends up in the lowest Landau level, the electron-electron interaction become dominant.
- The Hall resistance now depends on some **fractional numbers.**

• Spin QHE


- Due to the spin-orbit interaction of the electrons and no strong B-field is need to apply
- $\bigcirc \quad \text{Conductance} = \frac{2}{R_{K-90}}$

Anomalous QHE

- o Quantum version of the classical anomalous hall effect, which exist in ferromagnetic material without B-field
- Much greater contribution than conventional QHE
- The integer of this QHE is equal to the Chern Number

Edge State

- It is easy to see whyd edge state exist, circular orbit for electron under perpendicular E and B field
- When orbit radius > length of sample \rightarrow they bounce back
- Skipping orbits occur
- **Impurities will not affect edge state!!**
- The electrons are immune to backscattering topologically protected
- There can be multiple edge states near the edge of the material
- Used to make conducting material with extremely high conductivity

left-moving skipping orbit

Deriving Hall Resistivity from Edge States

- At the edge state, the electrons are not allowed to reverse their velocity
- These states act as a transport channel with highest conductance, each with $\sigma_{max} = \frac{q^2}{h}$
- For a potential V, with n said channels, we get:

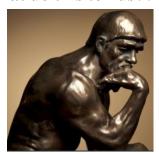

$$I_H = n \frac{q^2}{h} V$$

$$\sigma_{\!\scriptscriptstyle H} = n \frac{q^2}{h}$$

• Which agrees with our derivation before

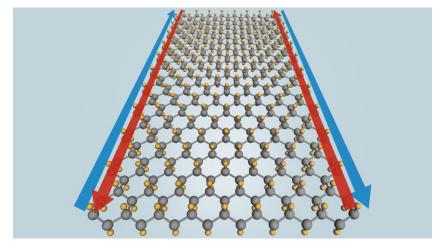
Some Experimental observation

• Here we introduce some experimental results related to QHE



Credit: makeameme

Universality of QHE


- In 1987, 4 different sets of GaAs were used to measure the Quantum Hall Resistance (QHR)
 - Their results agree in the range of 5×10^{-9}
- Further experiments were conducted with using **Si-MOSFET** and **GaAs** to probe the QHR
 - $_{\odot}$ The difference was found to smaller than 3.5 $\times\,10^{-10}$
- Evidence that the **QHR** is the same!
 - O Despite any shape, material, fabrication process or other factors
 - Showing his value is indeed fundamental
- Nowadays, the QHR is used by all the institute as a standard for resistance
- What can we further explore on this standardization??

What do this tell us??

Edge state related experiment: Stanene

- The "cousin' of **graphene**, hexagonal structure but with **Tin** (**Sn**) as the atom
- A relative new type of material
 - First introduced in **2013**
- It conduct electricity on the edge, due to edge state,
- The **interior part** acts as an electrical insulator
- A topological insulator!

Adapted from: https://www.extremetech.com/

Stanene: what so special about it?

- Theoretically, Stanene is predicted to conduct electricity with **no dissipation** under **room temperature**
- The current will **not dissipate** even when there are **impurities** (Again due to properties of edge state)
 - o unlike other materials such as silver or copper
 - A very special superconductor!
- This year, coexistence of these two properties have been observed on a few-layer Stanene
- Researchers grow Stanene successfully on the **Bi** (**Bismuth**) substrate
 - Stable in room temperature
 - Exhibit stable edge states and superconducting properties
- What can we further exploit from this Stanene??

Implication and outlook

Significance

- The **universality** of QHR provide us a way to redefine many units with fundamental constants, such as:
 - \circ Ω , from the **von Klitzing constant**
 - V, by Josephson effect
 - o kg, by using Kibble balance setup
 - o you name it....
- Further improvement on the value of Fine-Structure constant α
 - An important measure on the strength of electromagnetic interaction

$$\alpha^{-1} = \frac{2R_k}{\mu_0 c} = 137.036$$
 ...with uncertainty = $10^{-9}!!$

• The more precise the better!

Significance

- Material revolution, Stanene for example
 - A superconductor in **room temperature**, low temperature is no longer a concern
 - **ZERO** energy dissipation energy saving

- The "Quantumness" of nature
 - The QHE demonstrate evidence that our world is quantum in nature
 - Many units can be expressed by the **Planck constant** *h*
 - Our quantum theory works well on solving these phenomenon

Branching with other fields of physics

- QHE is not only useful in solid state physics, but also useful in many other modern physics:
 - Particle Physics
 - Quantum Computation (Exploit FQHE to form topologically protected qubit)
 - Even String Theory (String Theory display FQHE)
 - o More...
- When someone make some discovery on QHE, they often win a Nobel prize....
 - Klitzing, 1985 (Integer QHE)
 - Laughlin, Stormer and Tsui, 1998 (Fractional QHE)
 - And there is still Spin and Anomalous QHE left, who is next ??

Outlook

- Fully workable Stanene
 - Even workable in room temperature
 - o Can be **massively** produced
 - Use it to build chips, other electronic devices, even quantum computers....
- Understand more on quantum entanglement & information processing
 - As QHE gives a basic model on quasiparticles such as composite-fermions (**Fractional** QHE)
 - A Nobel Prize is awarded on this topic this year
- To have more development on **3D QHE**, there are many on going research
 - o In 2019, it was observed on ZrTe5 (Zirconium pentatelluride)
 - What can we exploit from this?
 - We already exploit this much merely on 2D QHE!

Conclusion

• what so special about QHE? Is it important?

- Quantum Hall effect is powerful, the geometry, material and many other factor won't affect the results
- Relate units with fundamental constants such as h and e
- Help us to produce extremely useful materials (Not limited to Stanene)
- Connects various fields of our modern physics and again, another triumph for quantum mechanics

*Yet we emphasize, this is just a very brief introduction for QHE, each of these QHE concepts could take significant amount of time to be fully appreciated

The End

Reference

- 1. Abergel, D. Hot quantum spin Hall effect. *Nature Phys* **14**, 108 (2018).
- 2. von Klitzing, K. Metrology in 2019. *Nature Phys* **13**, 198 (2017).
- 3. Klitzing, K. v., Dorda, G., Pepper, M. (1980) New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45 (6). 494-497
- 4. Chenxiao Zhao, Leiqiang Li, Liying Zhang, Jin Qin, Hongyuan Chen, Bing Xia, Bo Yang, Hao Zheng, Shiyong Wang, Canhua Liu, Yaoyi Li, Dandan Guan, Ping Cui, Zhenyu Zhang, and Jinfeng Jia. Phys. Rev. Lett. **128**, 206802 Published 17 May 2022
- 5. Junji Yuhara et al 2018 2D Mater. 5 025002
- 6. Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, and Shou-Cheng Zhang. Phys. Rev. Lett. **111**, 136804 Published 24 September 2013
- 7. Hartland, A. (2005). The Quantum Hall Effect and Resistance Standards. Metrologia. 29. 175. 10.1088/0026-1394/29/2/006.
- 8. *Quantum Hall Effect: Edge States*. Quantum Hall effect: edge states -. (n.d.). Retrieved October 17, 2022, from https://topocondmat.org/w3_pump_QHE/QHEedgestates.html