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What so special about Quantum Hall Effect??

What is the difference between Classical and Quantum? 
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Background

Credit: Wikipedia



Classical Hall Effect (Some Recap)

● Discovered by Edwin Hall in 1879

● Occurs when we apply a B-field perpendicular to the 

current (x-y plane)

● The electrons will experience a Lorentz force and being 

pushed to the sides

● Creating a potential difference across
Fig.1: Schematic Diagram for Classical Hall Effect 



Classical Hall Effect

● When we apply a B-field in the z-direction, perpendicularly to a 2-D material

● The Lorentz force is, using the Drude model:
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Classical Hall Effect (cont.)
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● We can see 𝜌𝑥𝑥 (Longitudinal resistivity) and 𝜌𝑥𝑦 (Hall resistivity) are constant and proportional to B respectively

Fig.2: Resistivity against B-field



The leap: From classical to quantum

● Klaus von Klitzing made an unexpected discovery in 1980 when he applied very strong B-field under extremely 

low temperature (~4.2K) on 2D electron gas.

● What he expects: Resistance should be ∝ 𝐵 (Classical)

● What he gets: The resistance depends only on fundamental constants and integer numbers only!!

● A Nobel prize is awarded (1985)

Credit: wiki/Klaus_von_Klitzing



The discovery of Quantum Hall Effect (QHE)

● Hall coefficient turns out to be quantized

● 𝜌𝑥𝑥 only exist where Hall coefficient is not constant

● Vanishing as much as 13 order of magnitude at the plateau

● For a filling factor 𝜐 =
𝑛𝑒ℎ

𝑞𝐵
(which we will address later), the Hall resistivity:

𝜌𝑥𝑦 =
ℎ

𝜐𝑞2
where 𝜈 = 1,2,3…

● When 𝜈 = 1, we have the von Klitzing constant, where

𝑹𝒌−𝟗𝟎 = 25812.807 Ω (exact)

Fig.2: Resistance against B-field



The various QHEs
● Here we will provide a more quantum mechanical view on the 

various QHEs



2D Electron Gas

● 2D electron gas:

● Electrons can only move in 2D and being confined by some 

potential tightly in the third (infinite potential well)

● Hence, we can separate the z-direction eigenenergy out, 

which can be easily solved

● Therefore, the eigenenergies in the z-direction can be 

“ignored” in most problems

Fig.4: Triangular potential well

Adapted from http://transport.ece.illinois.edu



Integer QHE

● For a 2-D electron gas along the x-y plane and an external B-field applied in the z direction, the Schrödinger equation gives:
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● As the vector potential doesn’t depend on y, we can simply assume a solution:
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Integer QHE
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● Which is just a 1-D harmonic oscillator model shifted by 𝑥0 = 𝑘𝑦𝑙𝐵
2 , thus we have eigenenergy:
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● Note: As the energy does not depend on 𝑘𝑦, for a given n, it can have any 𝑘𝑦
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Integer QHE: Density of States

● How many 𝑘𝑦 states are there?
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● Assume B is strong enough such that 𝑠 Landau Levels provide enough 𝑘𝑦 states for all electron, then:
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Fractional, Spin and Anomalous QHE

● Fractional QHE

○ When the B-field is further increased, electrons finally ends up in the lowest Landau level, the electron-electron 

interaction become dominant.

○ The Hall resistance now depends on some fractional numbers.

● Spin QHE

○ Due to the spin-orbit interaction of the electrons and no strong B-field is need to apply

○ Conductance = 
2

𝑅𝐾−90

● Anomalous QHE

○ Quantum version of the classical anomalous hall effect, which exist in ferromagnetic material without B-field

○ Much greater contribution than conventional QHE

○ The integer of this QHE is equal to the Chern Number



Edge State

● It is easy to see whyd edge state exist, circular orbit for electron under perpendicular E and B field

● When orbit radius > length of sample → they bounce back

● Skipping orbits occur

● Impurities will not affect edge state!!

● The electrons are immune to backscattering — topologically protected 

● There can be multiple edge states near the edge of the material

● Used to make conducting material with extremely high conductivity

Adapted from https://topocondmat.org/w3_pump_QHE/QHEedgestates.html



Deriving Hall Resistivity from Edge States

● At the edge state, the electrons are not allowed to reverse their velocity

● These states act as a transport channel with highest conductance, each with 𝜎𝑚𝑎𝑥 =
𝑞2

ℎ

● For a potential V, with n said channels, we get:
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ℎ
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● Which agrees with our derivation before



Some Experimental observation

● Here we introduce some experimental results related to QHE

Credit: makeameme



Universality of QHE

● In 1987, 4 different sets of GaAs were used to measure the Quantum Hall Resistance (QHR)

○ Their results agree in the range of 5 × 10−9

● Further experiments were conducted with using Si-MOSFET and GaAs to probe the QHR 

○ The difference was found to smaller than 3.5 × 10−10

● Evidence that the QHR is the same !

○ Despite any shape, material, fabrication process or other factors

○ Showing his value is indeed fundamental

● Nowadays, the QHR is used by all the institute as a standard for resistance

● What can we further explore on this standardization??

What do this tell us??



Edge state related experiment: Stanene

● The “cousin’ of graphene, hexagonal structure but 

with Tin (Sn) as the atom

● A relative new type of material

○ First introduced in 2013

● It conduct electricity on the edge, due to edge state, 

● The interior part acts as an electrical insulator

● A topological insulator!
Adapted from: https://www.extremetech.com/



Stanene: what so special about it?

● Theoretically, Stanene is predicted to conduct electricity with no dissipation under room temperature

● The current will not dissipate even when there are impurities (Again due to properties of edge state)

○ unlike other materials such as silver or copper

○ A very special superconductor!

● This year, coexistence of these two properties have been observed on a few-layer Stanene

● Researchers grow Stanene successfully on the Bi (Bismuth) substrate

○ Stable in room temperature

○ Exhibit stable edge states and superconducting properties

● What can we further exploit from this Stanene??



Implication and outlook



Significance

● The universality of QHR provide us a way to redefine many units with fundamental constants, such as:

○ 𝛀, from the von Klitzing constant

○ V, by Josephson effect

○ kg, by using Kibble balance setup

○ you name it….

● Further improvement on the value of Fine-Structure constant 𝜶

○ An important measure on the strength of electromagnetic interaction

○ 𝜶−𝟏 =
𝟐𝑹𝒌

𝝁𝟎𝒄
= 𝟏𝟑𝟕. 𝟎𝟑𝟔…with uncertainty = 10−9!!

○ The more precise the better!



Significance

● Material revolution, Stanene for example

○ A superconductor in room temperature, low temperature is no longer a concern

○ ZERO energy dissipation - energy saving

● The "Quantumness" of nature

○ The QHE demonstrate evidence that our world is quantum in nature

○ Many units can be expressed by the Planck constant 𝒉

○ Our quantum theory works well on solving these phenomenon



Branching with other fields of physics

● QHE is not only useful in solid state physics, but also useful in many other modern physics:

○ Particle Physics

○ Quantum Computation (Exploit FQHE to form topologically protected qubit)

○ Even String Theory (String Theory display FQHE)

○ More…

● When someone make some discovery on QHE, they often win a Nobel prize....

○ Klitzing, 1985 (Integer QHE)

○ Laughlin, Stormer and Tsui, 1998 (Fractional QHE)

○ And there is still Spin and Anomalous QHE left, who is next ?? 



Outlook

● Fully workable Stanene 

○ Even workable in room temperature

○ Can be massively produced

○ Use it to build chips, other electronic devices, even quantum computers....

● Understand more on quantum entanglement & information processing 

○ As QHE gives a basic model on quasiparticles such as composite-fermions (Fractional QHE)

○ A Nobel Prize is awarded on this topic this year

● To have more development on 3D QHE, there are many on going research

○ In 2019, it was observed on ZrTe5 (Zirconium pentatelluride)

○ What can we exploit from this? 

○ We already exploit this much merely on 2D QHE!



Conclusion

● what so special about QHE? Is it important?

● Quantum Hall effect is powerful, the geometry, material and many other factor won't affect the results

● Relate units with fundamental constants such as h and e

● Help us to produce extremely useful materials (Not limited to Stanene)

● Connects various fields of our modern physics and again, another triumph for quantum mechanics

*Yet we emphasize, this is just a very brief introduction for QHE, each of these QHE concepts could take significant amount of time 

to be fully appreciated



The End
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