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Abstract of thesis entitled:
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lar Molecules

Submitted by YE, Xin

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in January 2019

This thesis mainly describes studies on the ultracold collisions with the

ground-state 23Na87Rb molecules. The molecules are produced from a ul-

tracold mixture of Na and Rb atoms via the magnetoassociation near an

interspecies Feshbach resonance and are further transferred to the ground

state via a Raman process. The precise internal state control of the molecule

is achieved with Raman beams and microwaves. Based on the precise inter-

nal state control, a series of experimental studies including collisions with

controlled chemical reactivities, collisions of molecules with induce electric

dipoles, collisions in a molecular mixture and collisions between molecules

and atoms are carried out. These experiments yield precise collision rate

constant values. The comparison between the experimental results and the

theoretical models shed new lights to the underlying interactions of the com-

plicated molecular collisions. Besides, this thesis also presents an investiga-

tion on the molecular coherence to probe the intermolecular interaction and

the recent progress on the optical lattice in our lab.
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摘摘摘要要要

本論文主要敘述了有關基態23鈉87銣分子的超冷碰撞的研究。該分子由鈉

和銣原子的超冷混合物，通過在種間費甚巴赫共振附近進行磁締合產生，

並通過拉曼過程進一步地轉移到基態。通過使用拉曼光束和微波實現了分

子精確的內態控制。基於精確的內態控制，我們開展了一系列實驗研究，

包括受控化學反應性的碰撞，具有誘導電偶極子的分子的碰撞，分子混合

物中的碰撞以及分子與原子之間的碰撞。這些實驗給出了精確的碰撞率常

數值。實驗結果與理論模型的比較，幫助闡明了複雜的分子碰撞背後的相

互作用。此外，本論文還敘述了以探究分子間相互作用的分子相干性的研

究，並報告了本實驗室在光晶格上的最新進展。
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Chapter 1

Introduction

Atomic, molecular and optical (AMO) physics experiments provide a clean

environment for studies of quantum systems with precise quantum controls.

Since the development in the cooling of alkaline atoms in the last two decades

of the 20th century and the great milestone of the realization of the long-

predicted Bose-Einstein condensation (BEC)[2, 3], experiments with ultra-

cold ensembles of atoms have enjoyed great success in research fields such as

precision measurement, many-body physics, few-body physics and quantum

optics. On the other hand, the production of ultracold ensembles of molecules

is difficult compared with atoms mainly due to their complex internal struc-

tures. Difficult as it is, however, the production of ultracold molecules has

drawn more and more interests because of the new application potentials

that are also given by their complexity.

There are essentially two routes to pursue the ultracold molecules. One

way is to directly cool the molecules via cooling techniques such as buffer

gas cooling[4], Stark deceleration[5, 6] and laser cooling[7, 8, 9]. Another

way is to assemble molecules from an ultracold mixture of atoms. So far,

the second way is more successful and has yielded ultracold polar molecules

1
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(UPM) of KRb[10], RbCs[11, 12], NaK[13], NaRb[14], LiNa[15]. Upon the

production of UPMs, researches in the uncharted fields such as collisional

properties[16, 17, 18, 19], coherence properties[20, 21, 22] and many-body

dynamics[23] of UPMs are followed immediately. In this thesis, we focus on

the studies of collisional properties of ultracold NaRb polar molecules.

1.1 Ultracold polar molecule: dipole-dipole

interaction (DDI)

UPM is now an exciting research direction for experiments. This is mainly

due to the electric dipole-dipole interaction (DDI) offered by the permanent

electric dipoles of UPMs. The DDI goes the following way,

Vdd ∝
1

r3

[
~d1 · ~d2 −

3(~d1 · ~r)(~d2 · ~r)
r2

]
, (1.1)

where ~r is the separation of the two dipoles, ~d1 and ~d2.

The electric DDI has essentially the following four important attributes.

First, the interaction is long-range. By long-range, we mean comparing it

with the van der Waals interaction which commonly exists between neutral

particles. The van der Waals interaction, originating between an instanta-

neous dipole and another dipole that induced by it, is short-range and decays

fast with 1/r6. In many cases, the van der Waals interaction can be effec-

tively described by a delta-function pseudo-potential with matched scattering

length. An important consequence is that if simulating spin models with neu-

tral atoms loaded in optical lattices, one can only obtain effective spin-spin

interaction between nearest neighbors mediated from tunneling[24, 25]. On

the contrary, the DDI can go beyond nearest neighbors, offering long-range
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interaction in a lattice system.

Second, the interaction is quite strong. The electric DDI is usually more

intense than its magnetic counterpart. Typical electric dipole a UPM pos-

sesses is of order of 1 Debye, while the magnetic dipole moment that a mag-

netic atom, like Dy and Er, possesses is several Bohr magnetons. Under sim-

ilar density conditions, the electric DDI energy is usually two orders above

the magnetic one.

Third, the DDI is anisotropic. From Eq. 1.1, we see that the strength

and the sign of the interaction depends strongly on the orientations of the

two dipoles. For example, as shown in Fig. 1.1, in a parallel configuration,

the interaction is repulsive while the head-to-tail configuration is attractive.

As a result of the angular dependency, a physical system with DDI has much

richer quantum phases.

Repulsive Attractive

𝑑1 𝑑2

Ԧ𝑟

𝑉𝑑𝑑 ∝
1

𝑟3
𝑑1 ⋅ 𝑑2 −

3 𝑑1 ⋅ Ԧ𝑟 𝑑2 ⋅ Ԧ𝑟

𝑟2

Figure 1.1: The DDI depends on the orientation of the two dipoles. The
interaction is positive (repulsive) with a parallel configuration and negative
(attractive) with a head-to-tail configuration.

Lastly, the electric dipole-dipole is highly tunable. Through the E-field’s

direction control and the trapping geometry control, one can align dipoles

with different configurations, which in turns controls the interaction of the

system, as mentioned above. Also, because the electric dipole is an extrinsic

property (contrary to the magnetic dipole which is an intrinsic property

of a particle), one can control the magnitude of dipoles by controlling the

magnitude of the E-field and obtain a wide range of interaction strengths.
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1.2 Ultracold polar molecule: applications

The DDI together with attributes like rich internal structures make the UPMs

good candidates for a variety of research directions. I list some of the direc-

tions below, but the applications of UPMs are not limited to those directions.

1.2.1 Ultracold chemistry

It has been a long-term challenge to investigate, understand and even control

the chemical reactions with a resolution down to a single quantum state.

UPMs together with the precise control of all degree of freedom of a UPM

including electronic, vibration, rotation, electron and nuclear spin, spatial

orientation etc., provide exciting perspectives on the ultracold chemistry[26].

The works with KRb fermionic molecules in the few hundred nK regime

[16, 18] set up a paradigm for ultracold chemistry experimental research

with UPMs. With techniques to detect reaction products, such as a two-

color resonance-enhanced multiphoton ionization, it is promising to observe

state-to-state chemical reactions in UPM system. Such reactions are already

observed with atoms and non-polar molecules[27, 28]. With optical tweezers,

building one molecule from two individual atoms in a bottom-up fashion is

recently realized[29].

1.2.2 Quantum simulation

Simulating quantum mechanics is a very challenging problem because of the

large amount of computer memory needed to store the quantum state of a

large physical system. The number of parameters grows exponentially with

the system size[30]. One way to circumvent this difficulty is to map the

problem, i.e. the quantum state and the Hamiltonian, to another physical
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system which is more controllable and easier to conduct measurements.

UPMs in optical lattice is considered a great platform for simulating large

physical systems. Such a system combines the advantages of optical lattice,

such as the flawless nature, controllable defect and geometry, and the advan-

tages of UPMs, such as DDI, long lifetime (compared with Rydberg atoms)

and the controllability via external dc and ac fields.

There are now a large number of proposals dedicated to the Hamilto-

nian engineering of UPM in optical lattices[31, 32, 33, 34, 35, 36, 37, 38].

The proposals show the possibilities of simulating and understanding the be-

haviors of quantum magnetism, high-Tc superconductivity and other novel

quantum phases. On the experimental side, JILA Jin and Ye’s group make

the initial exploration of the behaviour of many-body spin models with di-

rect, long-range spin interactions and lays the groundwork for future studies

of many-body dynamics in spin lattices[23].

1.2.3 Quantum computation

Since its inception in 1982 by Feynman[39], the idea of a universal quantum

computer has been pursued in many fields of physics. The UPMs are con-

sidered as potential candidates for the physical implementation of quantum

computation for their potentials on both scalability and fidelity. UPM real-

ization of logic gates such as Hadamard gate, CNOT gate and iSWAP gate

are proposed and are considered of high-fidelity based on simulations[40, 41,

42, 43, 44, 45].

1.2.4 Precision measurements

The UPMs is an ideal system for high-resolution spectroscopy and hence

precision tests of fundamental laws of nature[46]. Measurements of physical
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constants are usually cast to measurements of the energy shift between two

sublevels in a cold polar molecule. For instance, OH molecules allow a high

sensitivity measurement of the fine structure constant variation[47]. The

huge internal electric fields of heavy polar molecules[48, 49] offer a great

sensitivity to the permanent electric dipole moment of an electron and help

to test the violation of discrete symmetries[50].

1.3 Thesis outline

This thesis mainly focuses on the investigation of the collisional properties

of the ultracold NaRb polar molecule. To realize the collision experiments,

necessary steps will be included and described also, such as the creation of

the ultracold NaRb polar molecule, the internal state manipulation of the

ultracold NaRb polar molecule as well as the investigations on the coherence

of the ultracold NaRb polar molecule. In addition, recent progress towards

the ultracold NaRb polar molecules in the 3D optical lattice will also be

covered. The detailed organization of this thesis is as follows.

In chapter 2, the basic theories of quantum scattering and ultracold col-

lisions of molecules are presented.

In chapter 3, the setups of our experimental system are briefly introduced.

Meanwhile, the production of ultracold Na and Rb atomic mixture is also

introduced.

In chapter 4, the production of the ultracold NaRb molecules in the ab-

solute ground state and the internal-state control are described.

In chapter 5. several technical issues are discussed. These issues, such

as the number calibration and the temperature calibration, commonly ex-

ist and matter the accuracy of loss rate constant measurements in collision

experiments.
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In chapter 6, the study of ultracold collisions of NaRb molecules with

controlled chemical reactivities is presented in detail. We observe similar

loss behavior for molecules with or without available reaction channels, and

our result semi-quantitatively agrees with the loss model based on transition

complex formation.

In chapter 7, the study of dipolar collisions of NaRb molecules in the

exposure of an external dc E-field is presented. The existence of E-field

modifies the collision properties between molecules and the loss rate constant

shows a step-wise enhancement as the E-field strength increases.

In chapter 8, the study of ultracold collisions of molecular mixture is

presented, the collisional properties of molecular mixture shows obvious de-

pendence on the state-dependent DDI.

In chapter 9, the collisions of ground-state NaRb molecules with atoms

are presented.

In chapter 10, the investigations on the coherence properties of NaRb

molecules in a bulk sample is presented.

In chapter 11, the most recent progress of the 3D optical lattice in our

lab is presented.

Finally, the conclusions are given in chapter 12.

2 End of Chapter.



Chapter 2

Theoretical backgrounds

2.1 Quantum scattering theory

Collisional study is a primary way to understand the structure and the inter-

action between particles; for example, much of today’s knowledge on chemical

reaction dynamics can be attributed to pioneering studies on elementary reac-

tion processes with crossed molecular beam experiments[51]. To understand

the underlying physics of a collision experiment, quantum scattering theory

is introduced. Not only in the studies of ultracold atoms and molecules,

quantum scattering theory is also an important tool in a variety areas of

research. The most well-known example should be Rutherford’s discovery of

the nucleus.

According to the result of the collisions, they can be roughly divided into

three groups: elastic, with the outgoing state the same as the incoming state;

inelastic, with the outgoing state different with the incoming state while

the particle species unchanged; and reactive, the particle species changed

after collision. The last two kinds of collisions are usually accompanied by

additional kinetic energy transferred from internal degree of freedoms.

8
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2.1.1 Basics

The simplest case considers the elastic collision of a pair of structureless par-

ticles with isotropic interaction. In such a case, the particle number and the

kinetic energy are conserved. Since, the center-of-mass motion is irrelevant

to the collision problem, we can drop out the center-of-mass part after the

variable separation. Therefore, the problem is reduced to a structureless

particle being scattered by an isotropic potential V (~r).

For simplicity, here we consider that the incoming flux is always on and

solve a time-independent Schrodinger equation Eq. 2.1 subject to the bound-

ary condition, ψ(~r) ∼ ei
~k·~r when ~r → ∞. Here, ~k is the momentum of the

particle.

Eψ(~r) =
[
− h̄

2m
∇2 + V (~r)

]
ψ(~r). (2.1)

𝜃

𝑘′

𝑘

Figure 2.1: An illustration of the quantum scattering. The incoming wave
is a plane wave with momentum ~k. The orange target scatters the incoming
wave, generating outgoing waves with momentum ~k′. The outgoing flux is
measured at an angle of θ.

As illustrated in Fig. 2.1, the incoming wave is propagating along the +x
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direction coming from −∞. The interaction potential V (~r) is represented by

an orange target. The incoming wave hits on the target and get scattered all

around with momentum ~k′ and angle θ. For elastic collisions, k = k′.

To quantify the scattering process, the differential cross section dσ/dΩ is

introduced, which is defined as,

dσ

dΩ
=
N

ji
. (2.2)

The differential cross section describes the number of particles N per unit

time received by a detector which has a detection solid angle of dΩ, given

the incoming particle flux ji. The particle flux j can be obtained from wave

function with,

~j = −i h̄
m

(ψ∗∇ψ + ψ∇ψ∗), (2.3)

where m is the particle mass which takes the value of the reduced mass here.

The wave function ψ is naturally divided into two parts,

ψ = eikx + ψsc(r, θ). (2.4)

Put Eq. 2.4 back to Eq. 2.1, we can find scattered wave ψsc is purely spherical.

Thus, the wave function ψ when r →∞ can be formally expressed as,

ψ ' eikx + f(θ)
eikr

r
, (2.5)

where f is called the scattering amplitude. Then, with Eq. 2.2 and 2.3, we

establish the relation between the scattering amplitude and the differential

cross section,
dσ

dΩ
= |f(θ)|2. (2.6)

Integrating the differential cross section over all directions, one get the
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total cross section,

σtot =

∫
dσ

dΩ
dΩ =

∫
|f(θ)|2dΩ. (2.7)

2.1.2 Partial wave expansion

The cylindrical symmetry of the system implies us to expand the wave func-

tion Eq. 2.5 with the Legendre polynomials Pl(cos θ),

ψ(~r) ' i

2k

∞∑
l=0

il(2l + 1)

[
e−i(kr−lπ/2)

r
− e2iδl(k) e

i(kr−lπ/2)

r

]
Pl(cos θ), (2.8)

Or equivalently,

f(θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ). (2.9)

with

fl(k) =
e2iδl(k) − 1

2ik
. (2.10)

Such a decomposition is called the partial wave expansion, with l denoting

the index of the partial waves. By convention, we name l = 0, l = 1, l = 2 ...

as s-wave, p-wave, d-wave ... respectively. Under the partial wave expansion,

the total cross section becomes,

σtot = 4π
∞∑
l=0

(2l + 1)|fl(k)|2 =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k). (2.11)

Here, the phase shift δl is an important quantity in the context of quantum

scattering and is closely related to the scattering length and the unitarity

limit as we will see later.
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2.1.3 Scattering length

For a convenient description of ultracold collisions, the concept of scattering

length is introduced. The scattering length a is defined as,

a = − lim
k→0

1

k
tan δ0(k). (2.12)

The scattering length has the same dimensionality as a length and it

describes the effective size of the collisional target in the low-energy limit.

This can be shown from the relation between the scattering length and the

cross section,

σtot =
4π

k2
sin2 δ0(k)

k→0' 4π

k2

(ka)2

1 + (ka)2
' 4πa2. (2.13)

2.1.4 Unitarity limit

In Eq. 2.11, because the phase shift appears in sinusoidal functions, there

exists a maximum cross section for each partial wave. This maximum value

is called the unitarity limit because it is obtained when the sinusoidal function

takes the unity value. The scattering rates in all situations will be bounded

by this limit. The unitarity discussed above defines the maximum cross

section for a pair of particles. However, when we turn to an ensemble where

the particles are distributed in a Boltzmann distribution, unitarity limit of

the ensemble is obtained via the integration. For identical bosons in low-

energy limit when there is only s-wave scattering, the maximum scattering

rate constant is[52],

βs−limit =
4πh̄

m
〈1/k〉T , (2.14)

where 〈1/k〉 is the thermal average of 1/k and is calculated by,
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〈1/k〉T =

∫ ∞
0

4πv2(
m

4πkBT
)3/2 exp

(
− mv2

4kBT

)
× 2h̄

mv
dv, (2.15)

where m is the mass of the molecule.

2.1.5 Wigner threshold law

The scattering of particles at ultralow energies exhibits a series of universal

behaviors. Those universal behaviors follows the so-called Wigner threshold

law[53, 54], which contains a set of relations between the cross-section (or

rate constant) and the collision energy. Here I list those relations without

proof[55, 56, 57, 58].

Given the interaction potential V (r) = ±Cs/rs, with s > 2. For partial

waves l < (s− 3)/2, the threshold behavior of elastic collisions is given by,

σell ∝ k4l ∝ E2l
c

βell ∝ k4l+1 ∝ E2l+1/2
c .

(2.16)

For partial waves l > (s− 3)/2, the threshold behavior of elastic collision

is given by,

σell ∝ k2s−6 ∝ Es−3
c

βell ∝ k2s−5 ∝ Es−5/2
c

(2.17)

For the description of partial waves l = (s− 3)/2, the contribution from

the above two relations should be taken.

For inelastic or reactive collisions, the behavior is given by,

σ
in/re
l ∝ k2l−1 ∝ El−1/2

c

β
in/re
l ∝ k2l ∝ El

c

(2.18)
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2.2 Ultracold collisions of molecules

2.2.1 Scattering in highly resonant regime

A molecule has a larger number of degree of freedom than an atom, such as

the vibration and the rotational degree of freedom. Therefore, considering

the collision of a pair of molecules, the number of collisional channels is

exponentially larger. For UPMs, the van der Waals interaction coefficient

C6 is generally large. For ground-state NaRb molecules, C6 reaches the

order of 106 atomic unit(a.u.)[59, 60, 61] and results in deep inter-molecular

potentials. Four-body bound states are supported in the inter-molecular

potentials. Therefore, as depicted in Fig. 2.2, due to the large number of

possible channels and the depth of each channel, there is a high density of

four-body bound states at the short range at the level of collisional threshold.

The density of four-body bound states can be estimated with the method

described in Ref. [62]. For NaRb case, the density of states is at least 103

per µK. Since, the typical temperature of our molecular sample is of order

100 nK, it is impossible to resolve the resonances in the experiment. The

existence of the four-body bound state allows a pair of molecules to form

one big molecule during the process of the collision, therefore, we say the

molecules are scattering in a highly resonant regime. Under the poor energy

resolution assumption, one can analytically obtain the bound-state formation

rate constant in the Wigner regime[62],

β(l,ml)
mm = ∆

2−3l+2π5/2R2l+1
vdW

Γ(l/2 + 1/4)2Γ(l + 3/2)

ml−1
r

h̄2l−1
(kBT )l, (2.19)

where van der Waals length RvdW = (2mrC6/h̄)1/4, mr is the reduced mass,

Γ(·) is the Gamma function and ∆ = 2 for indistinguishable particles and

equals to 1 otherwise. Interestingly, Eq. 2.19 gives the same result as the
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rate constant for bimolecular reactions within the framework of the universal

model[63, 64, 65].

R

Energy

Figure 2.2: Origin of high density of four-body bound states. The number
of collision channels is large due to the rich internal structures of a molecule.
Channels in different colors corresponds to different vibrational quantum
numbers. Within each bunch of states of the same color, the splitting is due
to rotational structures and hyperfine structures. Each potential curve is
deep due to the large C6 between a pair of UPMs. Molecular collisions take
place in a highly resonant regime with the large density of four-body bound
states at the short range.

2.2.2 Universal model for bimolecular reaction

For heteronuclear molecules, there is a possibility of having a bimolecular

chemical reaction,

AB + AB→ A2 + B2. (2.20)

To get the reaction rate, one need to solve the quantum scattering problem.

However, in a real calculation of a bimolecular chemical reaction, the poten-



CHAPTER 2. THEORETICAL BACKGROUNDS 16

tial energy surface (PES) at the short range is difficult to accurately model.

The universal model for bimolecular reaction is a simplified model that intro-

duces a boundary between the short range and the long range with a unity

absorption coefficient. It assumes that the ”bad” things will always happen

at the short range when the chemical reaction is energetically allowed. So,

whenever the wave function touches this boundary, its amplitude becomes

zero. The introduction of the absorptive boundary masks out the compli-

cated short range physics that is hard to tackle with. Mathematically, the

model can be analytically solved in the framework of generalized multichan-

nel quantum defect theory[66, 67], or numerically solved with close-coupling

calculation[68, 69, 70, 71].

2.2.3 Coupled equations

Before we get to the close-coupling calculation, we first derive the coupled

equations from the Schrodinger equation.

For a given partial wave l, ml, the Schrodinger equation is,

HψEtotαlml
= Etotψ

Etot
αlml

, (2.21)

where

ψEtotαlml
(~ρ1, ~ρ2, ~r) =

∑
α′

∞∑
l′=0

l′∑
m′
l=−l′

fα′l′m′
l,αlml

(r)

r
Y
m′
l

l′ (r̂)φα′(~ρ1, ~ρ2). (2.22)

Here, the quantum number (αlml) and (α′l′m′l) defines the incoming and

outgoing channels. ρ1 and ρ2 stand for the internal coordinates of the two

molecules and r stands for the separation. The functions fα′l′m′
l,αlml

describes

the strength of the transition from the (αlml) state to the (α′l′m′l) state.
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Here, we use the uncoupled representation of the wave function[72, 73] and

only the channels asymptotically lay below the total energy Etot are included

in this problem.

The Schrodinger equations thus gives a series of coupled equations of

fα′l′m′
l,αlml

. One can arrange fα′l′m′
l,αlml

in a matrix F, with Fi′,i = fEtoti′,i (r),

where i′ and i are the row and the column index of the matrix, and the index

i one-to-one maps to the quantum number (αlml). The coupled equations

can then be expressed in a compact matrix form[68, 69, 70],

(D2 + W)F = 0, (2.23)

where

D2 = I
d2

dr2
, (2.24)

Wi′,i = −2mr

h̄2 [U cent
i′,i (r) + U int

i′,i (r) + (εα′ − Etot)δi′,i]. (2.25)

Here, mr is the reduced mass, εα′ is the asymptotic energy of channel α′,

U cent
i′,i (r) is the centrifugal barrier introduced by partial waves,

U cent
i′,i (r) =

h̄2l′(l′ + 1)

2mrr2
δi′,i. (2.26)

U int
i′,i (r) is the inter-molecular interaction and can be generally described by an

electrostatic multipole-multipole expansion[74]. Because the DDI dominates

for UPMs, given rotational quantum numbers (J ,mJ), the inter-molecular
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interaction is expressed as,

〈J1,mJ1 , J2,mJ2 , l,ml|U int
∣∣J ′1,m′J1

, J ′2,m
′
J2
, l′,m′l

〉
=

−
√

30
d2

4πε0r3

∑
mλ1

,mλ2

(−1)mJ1
+mJ2

+ml

 1 1 2

mλ1 mλ2 −(mλ1 +mλ2)


×
√

(2J1 + 1)(2J ′1 + 1)

J1 1 J ′1

0 0 0

 J1 1 J ′1

−mJ1 mλ1 m′J1


×
√

(2J2 + 1)(2J ′2 + 1)

J2 1 J ′2

0 0 0

 J2 1 J ′2

−mJ2 mλ2 m′J2


×
√

(2l + 1)(2l′ + 1)

 l 2 l′

0 0 0

 l 2 l′

−ml −(mλ1 +mλ2) m′l



(2.27)

where d is the permanent dipole of the molecule and

· · ·
· · ·

 is the Wigner 3j

symbol which doesn’t vanish unless the first-row elements fulfill the triangle

inequality and the second-row elements sum up to zero.

2.2.4 Close-coupling calculation

For the convenience of close-coupling calculation, the log-derivative of the

matrix F(r) is usually calculated, instead of F(r) itself. The log-derivative

matrix Z(r) is defined as,

Z(r) =

[
d

dr
F(r)

][
F(r)

]−1

(2.28)

In a close-coupling quantum calculation, the range of the radial coordinate r

is divided into small sectors with width ∆r from rmin ' 0 to rmax ' ∞. The

log-derivative matrix Z are propagated according to the coupled equations
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sector by sector starting from rmin. If unity loss condition is assumed at the

short range boundary, the boundary condition of Z is[75],

Zi,i(rmin) = −i
√
Wi,i(r = rmin). (2.29)

The generalized boundary condition of Z for non-unity loss can be found in

Ref. [75]. Once the Z matrix is calculated, one can find the scattering matrix

S via its relation to the Z matrix[71]. Finally we find the cross sections

starting in a certain entrance channel i from the facts that,

σel ∝ |Si,i|2

σin ∝
∑
i′,i′ 6=i

|Si′,i|2

σre ∝ 1−
∑
i′

|Si′,i|2,

(2.30)

where el, in and re stands for elastic, inelastic and reactive respectively.

2 End of Chapter.



Chapter 3

Experimental setups

This chapter briefly introduces the experimental apparatus and meanwhile

the production of an ultracold atomic Na and Rb mixture. An ultracold

mixture is the starting point of all molecule experiments mentioned in this

thesis. For more details about the experimental apparatus, see Ref. [76] and

[77].

3.1 Overview

Our experimental system adopts a two-chamber design. Each chamber is a

glass cell. Considering the wide range of laser wavelengths we will use, the

cells are without any particular anti-reflection coating. We name the two

glass cells as the MOT (magneto-optical trap) cell and the science cell. The

dimensions of the MOT cell is 100 mm × 40 mm × 40 mm. The sources

of Na and Rb atoms are commercial dispensers (Alvatec) installed inside the

MOT cell and are activated by applying electric current though them. The

dimensions of the science cell is 100 mm × 20 mm × 20 mm. The smaller

size of the science cell help to obtain stronger dc B-field or E-field with avail-

20
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able current and voltage in our experiments. The centers of the cells separate

by about half a meter. The holders (G11 Glass Epoxy Composite Laminate

Material - Polymer Plastics) of the MOT coils are mounted on a motored

translational stage (Parker). The atoms are mechanically transported be-

tween cells by utilizing the translational stage. On the science cell side, there

is another pair of large coils installed in fixed coil holders. The atoms or the

molecules in the science cell can be manipulated with a variety of external

fields. Standard absorption imaging are provided on the two directions of

the horizontal plane for both Rb and Na atoms.

BA

DC

Figure 3.1: The experimemtal system. (A) An overview of the system. (B)
The translation stage for magnetic transport of atoms. (C) Science cell and
coils. (D) MOT cell and MOT optics.

Photos of the experimental apparatus are shown in Fig 3.1. (A) shows

an overview of the whole system. The MOT cell and the science cell locate

on the right-hand side and the left-hand side respectively. (B) shows the
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translational stage and the coil holders mounted upon it. (C) gives a closer

look at the science cell. The shim coils are winded outside the coil holders.

Near the cell, we can see the large coil sealed in white epoxy and several

square-shaped antennas. There is also a pair of ITO (Indium-Tin-Oxide)

coated glass plates for dc E-field generation, which can hardly be seen in this

figure, locating at the top/down sides of the cell. (D) shows the MOT cell

and the MOT optics surround it.

3.2 Vacuum

The two-chamber design help to circumvent the contradictory demands on

background vapor pressure at MOT stage (high pressure) and the evpora-

tive cooling stage (low pressure). A differential tube between the two cells

maintains the pressure difference between the two cells. From the ion pump

gauges, the vacuum in the MOT cell is lower than 3 × 10−10 Torr. The

reading for the science cell is 1 × 10−11 Torr, which is the lowest reading the

gauge can give. The actual vacuum of the science cell should be better than

this. The pressure difference manifests as different magnetic trap lifetimes in

the MOT cell and the science cell. In the MOT cell, the lifetime is only 4 s,

while the lifetime in the science cell can extend to even more than 3 minutes

as shown in Fig. 3.2.

3.3 Stages in MOT cell

The MOT cell is in charge of the stages before the microwave (MW) evapora-

tive cooling. Those include a MOT stage, a CMOT (compressed MOT) stage,

a molasses stage and a optical pumping stage. We collect Na atoms and Rb

atoms simultaneously in the MOT stage. Light induced atomic desorption
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Figure 3.2: Trap lifetime in the science cell. The remaining Rb atom number
is measurement with different holding times in the magnetic trap. The first-
order exponential decay fitting gives τ = 212 s.

technique is used to enhance the MOT loading with UV LEDs (Thorlabs

M375L3). A near-resonance Rb push beam is applied to push the cold Rb

atoms away from the cold Na atoms. This mitigates the light-assisted in-

elastic collisions between Na and Rb and increases the MOT numbers. The

MOT loading takes 20 s. Afterwards, the CMOT and the molasses stage fur-

ther cool the atomic cloud and increase its phase space density (PSD). The

optical pumping stage prepares both Na and Rb atoms in Zeeman sublevel

|F,mF 〉 = |1,−1〉 and the atoms are then loaded into a magnetic trap with

a gradient of 147 G/cm on the vertical direction in 300 ms and wait for the

transport.
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3.4 Magnetic transport

The magnetic transport of the atoms from the MOT cell to the science cell

takes about 4 s. The displacement of the transport is 612.06 mm with a

maximum velocity of 600 mm/s, a maximum acceleration of 400 mm/s2, a

maximum deceleration of 200 mm/s2, a jerk of 2000 mm/s3 and a jerkdecel

of 200 mm/s3. The short trap lifetime in MOT cell kills the atoms while a

fast transport excites the atoms. The chosen trajectory is thus a result of

the trade-off between the atom number and the temperature of the atomic

cloud, and preserves the PSD as much as possible.

Measured from the fluorescence of a pure Rb cloud with MOT recapture

method, the recapture after loading into the magnetic trap is 75(3)% and

the recapture after a round-trip of magnetic transport is 32(2)%. Therefore,

by calculation, the one-way transport efficiency is 49(3)% starting from the

MOT stage.

As the atoms arrive in the science cell, the magnetic trap at the science

cell side takes over the atoms. The take-over process takes 950 ms by linearly

ramping the currents in the two pairs of coils at the same time.
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Figure 3.3: MW evaporative cooling in a hybrid trap. (A) Typical MW
sweeps for the evaporation. (B) Hybrid trap potential after the magnetic
trap decompression for Na (black) and Rb (red).
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3.5 MW evaporative cooling in hybrid trap

In the science cell, we perform the MW evaporative cooling of the Rb atoms.

The background inter-species scattering length abg = 75.91 a0 between Rb

|1,−1〉 state and Na |1,−1〉 state[78]. Benefiting from this good collisional

property, Na atoms can be sympathetically cooled in this stage efficiently.

The initial B-field gradient of the magnetic trap in the science cell is 178

G/cm in the vertical direction. During the MW evaporative cooling from

6820 MHz to 6830 MHz, the magnetic gradient is gradually decompressed

down to 62 G/cm. An 1064 nm optical dipole trap (ODT) beam is also

turned on to horizontally shift the potential minimum away from the zero B-

field point in order to mitigate the Majorana loss and maintain the efficiency

of the cooling. The ac-Stark shift introduced by far-detuned lasers can be

approximated with the following formula[79],

V (~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω
)I(~r), (3.1)

where ω0 and Γ are the frequency and the line width of the transition re-

spectively, ω0 and I(~r) are the frequency and the intensity of the optical

field respectively. The displacement of the optical potential center from the

magnetic potential center is 183 µm. By convention, we call the trap formed

of the magnetic potential and the optical potential as a hybrid trap[80]. The

typical MW evaporation sequence ending at 6833.1 MHz and the hybrid trap

potential after the decompression of the magnetic trap are shown in Fig. 3.3.

3.6 Crossed ODT

There are about 3×106 Na atoms and about 3×105 Rb atoms left at the

end of the MW evaporative cooling. The PSD of the atomic cloud is 1 to
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2 orders away from the quantum degeneracy. To further increase the PSD,

we load the atoms into a crossed ODT formed of two 1064 nm beams. Since

the majority of the atoms already sit at the bottom of the single-beam ODT

potential at the end of the MW evaporative cooling in the hybrid trap. The

atoms are naturally loaded into the crossed ODT with high efficiency with

the second beam turns up and the magnetic trap turns down in 400 ms. The

angle of the two beam is about 21◦. The resulting geometry is a short cigar

shape. We perform further evaporative cooling, which usually takes 2 s, in the

crossed ODT by gradually lowering the ODT power. According to Eq. 3.1,

the trap depth for Na is about 3 times shallower than that for Rb. Hence, in

the crossed ODT, Rb is sympathetically cooled. Because with background

inter-species scattering lengths, the Na BEC and Rb BEC are immiscible[81],

therefore, a Na BEC with a thermal Rb cloud near quantum degeneracy as

shown in Fig. 3.4 is a good starting point for molecule experiments.

3.7 B-field

Quite a number of experiments in our lab that demand a large bias B-field.

The large bias B-field is generated by the same pair of coils that generate the

magnetic trap in the science cell. The transform from a Helmholtz configu-

ration to an anti-Helmholtz configuration is achieved by an H-bridge, which

consists of four relays (LEV200, Tyco Electronics), that can direct the flow

of the current in either way.

We calibrate the B-field and measure its stability with Rb atomic transi-

tion from the |F,mF 〉 = |1,−1〉 state to the |2, 0〉 state. A MW pulse drives

some Rb population to the |2, 0〉 state and the spin components are sepa-

rated with a magnetic gradient pulse. We get the resonance frequency from

the |2, 0〉 fraction and obtain the B-field from the frequency. Once we find
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the resonance frequency, we can set the frequency half way on the slope and

repeat the experiment several times. The |2, 0〉 fraction fluctuation gives a

measure of the stability of the B-field. Fig. 3.5 (A) shows an example of

such a measurement. The stability of the B-field is 30 ppm. Interestingly,

when we plot the red dots with respect to time, we find an oscillation with

a period of 10.3 min. This may be due to the working cycle of the chiller or

the aliasing of some higher frequency noise.

3.8 LabVIEW control

The time sequence of the experiment is controlled by a LabVIEW program.

It is developed based on a simpler program from JILA KRb group. The

hardware for the digital outputs is PXI-7811R (Virtex-II 1M Gate FPGA)

and the hardware for the analog outputs are PXI-6713 and PXI-6733 from

National Instruments. The overall architecture of the experimental control

is shown in Fig. 3.6 (A).

The logic of the user interface follows the hierarchy of ”module list →

module → command”. The logic of the underlying program is a ”state ma-

chine”. Fig. 3.6 (B) and (C) shows the state flow of the state machines.

The modular programming style makes it easy to maintain and add on new

functions.

The program provides a flexible ”programmable data acquisition” func-

tion where one has the access to control almost all degrees of freedom of

an experiment and allows the experimental system to operate following pro-

grammed instructions.

2 End of Chapter.
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Figure 3.4: The ultracold mixture of Na and Rb atoms. Pictures are taken
after a time-of-flight of 5 ms for Na and 10 ms for Rb. On the left-hand side
plot the optical density distributions along vertical lines slicing through the
centers of the clouds. The Na atoms are partially in BEC state shown clearly
by the bimodal distribution. The Rb atoms are thermal gas but close to the
quantum degeneracy.
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Figure 3.6: (A) The overall architecture of the LabVIEW control. (B) The
state flow of Host.vi. (C) The state flow of FPGA.vi.



Chapter 4

Production of ground-state

NaRb molecule and its internal

state control

4.1 Feshbach resonance

The Feshbach resonance is an essential tool to control the interaction between

particles in ultracold quantum gases. It has found numerous experimental

applications and becomes the key of many great breakthroughs in physics[82].

Because of the difficulties in the direct cooling of molecules, the magne-

toassociation of ultracold atoms near Feshbach resonances is so far the most

successful scheme for producing ultracold molecules[83] since 2002, when the

coherent oscillations between atom pairs and Feshbach molecules was ob-

served for the first time[84].

30
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4.1.1 Basics

The Feshbach resonance can be understood in a simple physical picture. Let

us consider a collision problem with two channels as illustrated in Fig. 4.1(A).

One of the channels is the ”entrance channel” where a pair of free atoms enter.

The other one is the ”closed channel” with its asymptotic energy higher than

the collisional threshold. When one of the bound states in the closed channel

is energetically close to the collisional threshold, the free atom pair state could

couple to the molecular bound state and the Feshbach resonance happens.

Collision channels can have different magnetic dipole moments due to

the different coupling schemes of the angular momentums of the collisional

partners. Therefore the energy difference between channels can be tuned

by an external magnetic field and that leads to the so-called magnetically

tuned Feshbach resonances. Because of the coupling, near the Feshbach

resonance, the eigenstates become superpositions of the atom pair state and

the molecule state and the avoided crossing emerges as depicted in Fig 4.1(B).

Adiabatically tuning the B-field across the Feshbach resonance allows the

atom pair to follow one of the branches and become a molecule.

R
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gy Entrance channel

Closed channel

Bare atomic state
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B − field
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Figure 4.1: Basic two-channel picture of a Feshbach resonance. (A) Fesh-
bach resonance happens when one bound state in the closed channel gets
energetically close to the collisional threshold. (B) Avoided crossing of a
magnetically tuned Feshbach resonance and adiabatic B-field ramping for
molecule association.
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4.1.2 Production of NaRb Feshbach molecule

In our previous study, we identified a series of Feshbach resonances between

Na and Rb atoms[78]. The resonance that we use in experiment for molecule

association is locating at 347.64(3) G with a width of 5.20(27) G between

Na |F,mF 〉 = |1, 1〉 state and Rb |1, 1〉 state. The magnetic dipole moment

difference δµ between the entrance and the closed channel is 2.66(29) µB,

where µB is the Bohr magneton[85]. The Feshbach resonance have a domi-

nant fraction of the closed channel quantum state a3Σ+ |v = 21, J = 1〉. The

coupling strength of this resonance is in the intermediate regime with the

dimensionless resonance strength parameter sres[86] of 0.72.

To utilize the resonance, atoms are transferred from the |1,−1〉 state to

the |1, 1〉 state with an adiabatic rapid passage (ARP) pulse. At low field,

the Zeeman sublevel structures are quite similar for Na and Rb, and the

transition frequencies from the |1,−1〉 state to the |1, 0〉 state are slightly

higher than that from the |1, 0〉 state to the |1, 1〉 state. Benefited from the

above two facts, the population transfer can be achieved with one single radio-

frequency pulse with the frequency chirped from 2.985 MHz to 1.985 MHz

in 10 ms with a quantization field of 3.4 G. For Na, the ARP performance

is always good and no population in other states can be observed. For Rb,

there are sometimes 1% to 2% of the atoms left in the |1, 0〉 state. Those

atom can be removed from the trap by holding the atoms several hundreds

of milliseconds near the Feshbach resonance between Rb |1, 0〉 state and Na

|1, 1〉 state at 388 G.

To produce the molecules, we first turn on the bias B-field with a value

above the resonance point, and then ramp the B-field across the resonance

with ramping rate of -2.2 G/s. The conversion efficiency is below 10% and

we observe that the produced molecular sample has a temperature higher
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than the atomic sample. While the downward B-field ramp associates the

molecule, a reversed one dissociates the molecule. So far, we don’t have the

imaging of the molecule, so the creation of molecules is confirmed by the

atomic signal revival after the dissociation as shown in Fig. 4.2(A).
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Figure 4.2: The NaRb Feshbach molecule near the 347.6 G Feshbach reso-
nance. (A) Creation of NaRb Feshbach molecule confirmed by the atomic
signal revival after the dissociation. (B) The B-field dependent magnetic
dipole of the Feshbach molecule extracted from measurements of the binding
energy.

4.1.3 Residual atom removal

The relatively low conversion efficiency of magnetoassociation means that

there are still plenty of atoms left in trap after the molecules being formed.

To obtain a pure molecular sample, one needs to selectively remove those

atoms while leave the molecules unaffected. The residual atoms also limit

the molecule number obtainable because of the inelastic collisions between

the atoms and the molecules. Hence, one needs the atom removal, and also

to make it happen as soon as possible.
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Remove with magnetic gradient pulse

The old method we use is using a magnetic gradient pulse. The Na and Rb

atom in the state |F,mF 〉 = |1, 1〉 have magnetic dipole moments, and feel a

force pushing them out of trap in an inhomogeneous B-field. On the other

hand, the Feshbach molecule’s magnetic dipole moment is a function of the

B-field. At B-fields close to the Feshbach resonance, the magnetic dipole

moment is close to the total magnetic dipole moment of the free atom pair.

The dipole gradually transits to the dipole of the deeply bound molecular

state as the B-field gets away from the resonance. Fig.4.2(B) shows the

molecule’s dipole extracted from binding energy measurements. We see that

below 340 G, the dipole of the molecule is no larger than 0.05 µB. We

perform the removal at 335.2 G B-field and we indeed see that the magnetic

gradient pulse exert only slight effect on the molecules. The pulse length is

typically 2 to 3 ms and the maximum gradient can be generated is 168 G/cm

by calculation. The major shortage of this method is that the removal is not

fast enough since the B-field value need to be shifted to the desired 335.2 G

and the pulse can only be applied after the B-field settles down. This process

usually takes several ms because of the finite bandwidth of the B-field servo.

Remove with MWs and lasers

To overcome the shortages, we switch to a removal scheme using MWs and

lasers. The idea is to remove the atoms by photon recoils when the atoms

are consistently driven in a cycling transition. Starting from the |1, 1〉 state,

there is no cycling transition. We therefore apply extra MW pulses first

to transfer the population to the |2, 2〉 state, which has a cycling transition

with the |3, 3〉 state. There are basically two approaches for the population

transfer, either perform a π-pulse or an ARP. Considering the stability of
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our B-field of about 10 mG, using π-pulse is not a good idea, so we choose

the more robust ARP method.

To get the best population transfer efficiency, we demand large Rabi fre-

quencies for the MW transitions that suppress the Landau-Zener tunneling

during the ARP. Fig. 4.3(A) and (B) show the MW Rabi oscillations of Na

and Rb atoms with a Rabi frequency of 2π×45 kHz and 2π×39 kHz respec-

tively. For Rb, the MW circuit is the exact circuit for the MW evaporative

cooling. The emission end uses a WR-137 waveguide. For Na, we use an

one-loop square-shaped Q-section antenna[87] and a 16W amplifier (Mini

Circuits ZHL-16W-43+).

Using the MWs and lasers at first glance may still be troubled by the slow

settlement of the B-field, since usually the ARP is done with a fixed field and

a driving MW with a varying frequency. However, we can exchange the role

of the field and the MW. We can slow vary the B-field while keeping the MW

at a fixed frequency. Naturally, the ramp for the ARP follows immediately

the ramp for the magnetoassociation but with a reduced ramping rate from

-2.2 G/s to -1.7 G/s. A single MW transfer takes 65 µs with an efficiency of

about 80% to 90%. After the MW transfer, a 15 µs laser pulse resonant with

the high-field |2, 2〉 to |3, 3〉 transition can completely remove the population

on the |2, 2〉 state.

Usually, we repeat the MW and the laser pulse for 5 times for a thorough

removal. For each time, the B-field value is different, so we also dynamically

change the MW frequency with the signal generator in frequency modulation

mode and an external step-wise voltage control. The frequency shift is -360

kHz and -380 kHz per pulse for Na and Rb respectively. The optical transition

line widths are fairly large, so we don’t need to fine tune the frequency of

the lasers.
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Figure 4.3: MW Rabi frequencies for the residual atom removal. MW transi-
tion from |1, 1〉 to |2, 2〉. (A) The Rabi frequency for Na is Ω = 2π×45 kHz.
(B) The Rabi frequency for Rb is Ω = 2π×39 kHz

4.2 Stimulated Raman Adiabatic Passage (STI-

RAP)

The Stimulated Raman Adiabatic Passage (STIRAP) is right now the most

successful way of creating ground-state molecules start from a gas of weakly-

bound Feshbach molecules. The STIRAP solves the problems that usually

occurs in a single-photon process, such as the bad Franck-Condon factor

(FCF), or that the transition is forbidden by the selection rules[88]. The

Raman process is a coherent process that removes the huge binding energy

difference between the molecular states without heating the molecular sample

and thus preserves the PSD. The method has been proved to be rubust and

efficient in systems either homonuclear or heteronuclear.

4.2.1 Basics

In the production of ground-state molecule, the STIRAP is usually im-

plemented in a three-level system with a Λ configuration as depicted in
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Figure 4.4: (A) A sketch of a three level system. (B) The STI-
RAP scheme for ground-state NaRb molecule production. The ini-
tial state is a3Σ+ |v = 21, J = 1〉, the intermediate state is the coupled
21Σ+/13Π |v′ = 55, J ′ = 1〉. The target state is X1Σ+ |v = 0, J = 0〉. (C)
Feshbach molecule number evolution during a double STIRAP process to-
gether with the STIRAP pulse shape.

Fig. 4.4(A). Here, we label the three states as |a〉, |b〉 and |i〉, where |a〉

is the Feshbach state (initial state), |b〉 is the ground state (target state)

and |i〉 is the intermediate state in this context. Two Raman beams with

phase coherence couples the three-level system. Conventoionally, we name

the beam that couples |a〉 and |i〉 as the pump beam, and the beam that cou-

ples |i〉 and |b〉 as the dump beam. Under the rotating wave approximation,

the Hamiltonian is described by a three-by-three matrix.
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Ĥ =
h̄

2


0 ΩP (t) 0

ΩP (t) −2∆ ΩD(t)

0 ΩD(t) −2δ

 (4.1)

Here, ΩP and ΩD are the Rabi frequencies that correspond to the pump

beam and the dump beam respectively. ∆ is called the one-photon detuning

and is equal to ∆P . δ is called the two-photon detuning defined as ∆P -

∆D. ∆P and ∆D are defined in Fig 4.4(A) with negative values correspond

to red-detunings.

When the system is on the two-photon resonance, namely δ = 0, the

Hamiltonian yields three eigenstates.

∣∣a+
〉

= sin θ sinφ |a〉+ cosφ |i〉+ cos θ sinφ |b〉 (4.2)

∣∣a0
〉

= cos θ |a〉 − sin θ |b〉 (4.3)

∣∣a−〉 = sin θ cosφ |a〉 − cosφ |i〉+ cos θ cosφ |b〉 (4.4)

where θ and φ are mixing angles defined as,

tan θ =
ΩP

ΩD

(4.5)

tan 2φ =

√
Ω2
P + Ω2

D

∆
(4.6)

What makes STIRAP possible here is |a0〉 which emerges as only a su-

perposition of |b〉 and |a〉. We name this state as the dark state because

the intermediate is usually lossy and short-lived. Another important point
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here is two components of this eigenstate completely depends on the Rabi

frequency ratio of the two Raman beams. Therefore, if the powers of the

two beams are tuned adiabatically, we can achieve the population transfer

by making use of, but not really occupying the intermediate state. In order

to initially project |a〉 to |a0〉, we need θ = 0, that is ΩD >> ΩP . To have

the final |a0〉 overlap with |b〉. we need θ = π/2 which means ΩP >> ΩD.

4.2.2 Ground-state NaRb molecule production and in-

ternal state control via STIRAP

Fig. 4.4(B) shows the scheme for the ground-state NaRb molecule production.

The STIRAP is usually implemented at 335.2 G B-field. The intermediate

state is the coupled 21Σ+/13Π |v′ = 55, J ′ = 1〉, which has 95% 13Π0 and 5%

21Σ+ character[89]. With the help of the intermediate state, the molecules

start at the triplet Feshbach state a3Σ+ |v = 21, J = 1〉 and end up in the

singlet ground state X1Σ+ |v = 0, J = 0〉. The pump beam has a frequency

of 8012.7 cm−1 and a π polarization while the dump beam has a frequency

of 12989.8 cm−1 and a σ+/σ− polarization.

Fig. 4.4(C) shows an example of the pulse sequence of the Raman beams.

Here, a double-STIRAP sequence is shown with the STIRAP and the re-

versed STIRAP directly connected. The disappearance and the revival of

the Feshbach state population indicates the population is transferred to the

target ground state. In most experiments that will be mentioned afterwards,

the parameters used for the STIRAP is as follows. The Rabi frequencies

of pump beam and dump beam are about 2π×1.2 MHz and 2π×1.3 MHz

respectively. The two beams have a 50 µs overlap in the time domain. The

single STIRAP transfer efficiency is calculated by taking the square root of

the recover rate after the double-STIRAP pulse. With the above settings,
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single STIRAP transfer efficiency can readily reach around 93 %.

Several factors limit the STIRAP efficiency. Those factors are: the life-

time of the intermediate state, the one-photon detuning, the two-photon

detuning, the Rabi frequency, the phase coherence between Raman lasers,

etc. Although the intermediate state is not really occupied in an idealis-

tic STIRAP process, its lifetime sets a charateristic energy (or time) scale

of the parameters needed for an efficient transfer. The one-photon detun-

ing can effect the efficiency but very weakly. In practice, we use about 1

MHz one-photon detuning, but the performance is basically the same as the

on-resonance case. The two-photon detuning has a strong influence on the

transfer efficiency and we always tune it on-resonance. We perform the STI-

RAP in trap, so the spatial-dependent or time-dependent ac-Stark shift from

the trapping beams will cause two-photon detuning. However, the energy

shift should be small compared with the STIRAP transition linewidth of

about 80 kHz. Therefore, so far, the major factors limit the efficiency are the

phase coherence between the lasers and the Rabi frequencies. The relative

laser linewidth estimated from current efficiency is about 2π×1 kHz. The

efficiency can be further increased with narrower linewidths. On the other

hand, numerical calculations show that with Rabi frequencies up to 2π×2

MHz and 7 MHz, the efficiency can go to 97% and 99%.

As long as the selection rules permits, a bunch of states at the bottom of

the X1Σ+ potential can be accessed via STIRAP owing to the similar FCFs.

Thus, STIRAP itself provides us a simple way to control on internal degrees

of freedom. Fig.4.5 shows the successful control of the internal degrees of

freedom directly via STIRAP. Here, v stands for the vibrational quanta and

J stands for the rotational quanta.
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Figure 4.5: Internal state control via STIRAP. (A), (B) STIRAP spectra of
the (v = 0,J = 0), (v = 1,J = 0) with dump beam of mixed polarization. (C)
STIRAP spectra of (v = 0,J = 2) with dump beam of π polarization (black)
and σ+/σ− polarization (red). Spectra are obtained by tuning the wavelength
of the dump beam. The vertical colored bars indicate the quantum number
MF with MF = 3 in red, MF = 2 in blue, and MF = 1 in green

4.3 One-photon MW transition

Because the selection rules for Hund’s case (a)[90] forbid the transitions with

∆J = 0 and Ω = 0 → Ω = 0, the ground states with J = 1 can hardly be

accessed directly via STIRAP. To access J = 1 states, we can first prepare

the molecules in the J = 0 states and then drive them with a MW pulse. The

MW couples to the permanent dipole of the molecule and results in strong

E1 transition with moderate MW power. The nuclear spins essentially don’t
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flip during such transitions.

Fig. 4.6(A) shows the MW transitions starting from the absolute ground

state with mNa = 3/2 and mRb = 3/2. The six dips here correspond to six

J = 1 states with considerable components of mNa = 3/2 and mRb = 3/2.

With the molecules already in J = 1 states, one can further apply a MW

pulse to get to other hyperfine states in the J = 0 manifold. The mixing

between different nuclear spins is critical for such population transfers. The

mixing in J = 1 states is mainly a physical consequence of the rotation-

nuclear spin coupling.

Fig. 4.6(B) shows a ”upward” one-photon transition as well as two ”down-

ward” one-photon transitions to two other hyperfine states. The Rabi oscil-

lations here indicate the coherence of such transitions. The coherent MW

transfer here provides a simple way to either prepare a pure molecular sam-

ple in a certain state or a molecular mixture of two states with an arbitrary

ratio. In principle, one could also get to J = 2 states with successive MW

pulses.

4.4 Two-photon MW transition

Prepare a hyperfine mixture with two successive MW pulses doesn’t guaran-

tee the coherence between the two states. This is because an excited state

with J = 1 is really occupied via this route and during this occupation,

dephasing or relaxation may kill the coherence. To better preserve the co-

herence, one can resort to the two-photon process.

The molecule population can be coherently transfered between hyper-

fine states in the J = 0 manifold. Recall Eq. 4.1, we have the Schrodinger

equation in the matrix form,
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Figure 4.6: Internal state control via one-photon MW transition. (A) MW
transitions to the J = 1 rotational state from the absolute ground state.
The colored vertical bars indicate the calculated positions of the relevant
hyperfine levels of J = 1. Note some transitions are not observable due to
the weak transition dipole. (B) Coherent population transfer between the
hyperfine levels of the J = 0 and J = 1 states with MW pulses. J = 1
states possess considerable mixing between different nuclear spins due to the
rotation-nuclear coupling

i
d

dt


ca

ci

cb

 =
1

2


0 Ωa 0

Ωa −2∆ Ωb

0 Ωb −2δ



ca

ci

cb

 . (4.7)

The solution of the coefficient ci(t) has the following integral form,

ci(t) = −i
∫ t

0

ei∆(t−t′) × Ωaca(t
′) + Ωbcb(t

′)

2
dt′. (4.8)

When one-photon detuning ∆ is much larger than the two-photon detuning δ

and Rabi frequencies Ωa,b, the dynamics of ci has a shorter time scale (defined

by the large ∆). Hence, we can regard ca(t
′) and cb(t

′) as constants in the



CHAPTER 4. PRODUCTION OF GROUND-STATE NARB
MOLECULE AND ITS INTERNAL STATE CONTROL 44

610 615 620

80

100

120

140

160

180

 
p

e
a

k
 O

D
 (

1
0

-3
)

  

4179 MHz + x (kHz) 
0 1 2 3

0

50

100

150

200
 

p
e

a
k
 O

D
 (

1
0

-3
)

  

pulse duration (ms) 

BA
Ω𝑒𝑓𝑓 = 2𝜋 × 530 Hz

w/ one MW source

Figure 4.7: Internal state control via two-photon MW transition. The two-
photon transition starts from the absolute ground state |J,mJ ,mNa,mRb〉
= |0, 0, 3/2, 3/2〉 to the third lowest state |0, 0, 3/2, 1/2〉. The intermediate
state is the lowest state in the J = 1 manifold. The one-photon detuning
∆ is -2π×200 kHz, the Rabi frequency of the two MWs are 2π×12 kHz and
2π×19 kHz. The pulse duration is 500 µs in (A). The two red point are
only with either one MW source and confirm the observed transition is a
two-photon transition. (B). The two-photon Rabi oscillation, the measured
effective two-photon Rabi frequency is 530 Hz

above integral and ci(t) can be approximated as,

ci(t) ≈
1− ei∆t

2∆
[Ωaca(t

′) + Ωbcb(t
′)]. (4.9)

We can see that the magnitude of ci is always little. Drop the oscillating

term ei∆t in Eq. 4.9 and substitute it into Eq. 4.7, the three-level system can

be effectively reduced to a two-level system,

i
d

dt

ca
cb

 =
1

4∆

 Ω2
a ΩaΩb

ΩaΩb Ω2
b − 4∆δ

ca
cb

 . (4.10)

An intermediate from the J = 1 manifold need to be chosen for the coher-

ent two-photon transfer. The choice of the intermediate state depends on the

target hyperfine state. A good choice of the intermediate state is the lowest

state of J = 1 that has 82% |1, 0, 3/2, 3/2〉 component and 18% |1, 1, 3/2, 1/2〉
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component and therefore can be used to connect the |0, 0, 3/2, 3/2〉 state and

the |0, 0, 3/2, 1/2〉 state. Since it is the lowest one, we can get rid of un-

expected couplings between other undesired states when large red-detuned

MWs are used. The situation might be tricky if some other state is used,

considering the complex internal structures of the molecule.

Fig. 4.7 shows the result of the two-photon coherent transfer. We get two

outputs from two signal generators and combine them with a splitter used in

a reversed way. Each output is controlled by an individual MW switch. Here,

∆ = -2π×200 kHz, Ωa = 2π×12 kHz and Ωb = 2π×19 kHz. The calculated

effective Rabi frequency Ωeff = ΩaΩb/4∆ is 570 kHz. In Fig 4.7(A), we fix

the frequency of one generator and scan the other one. The pulse duration is

500 µs. The two red points show the result with only either one of the MW

source and confirm that the signal observed due to a two-photon process.

Extending the MW pulse at the two-photon resonance, we observe the two-

photon Rabi oscillation and extract an effective Rabi frequency of 530 Hz.

2 End of Chapter.



Chapter 5

Technical issues

Before moving forward to collision experiments, several technical issues should

be taken care of. One of the central tasks of a collision experiment is the

determination of the collision rate constants, in particular, the inelastic or

the reactive collision rate constants in the context of this thesis. One typical

way of extracting these rate constants is measuring the trap loss, i.e. the

number evolution inside a trap with a variable holding time. This is because

traps like ODT are usually extremely shallow compared to the kinetic energy

released during an inelastic or a reactive collision process. Since the collision

products are too kinetic to be trapped anymore, the decrease of the in-trap

particle number faithfully reflects the number of the collision events. In light

of this, an accurate determination of the number is demanded. This leads to

the number calibration as well as the image denoising when dealing with low

optical density images.

Generally, the number evolution can be modeled with the following ex-

pression,
dn

dt
= −

∑
i

βin
i, (5.1)

where summation index i iterates over positive integers. The index i labels

46
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the i-body process. For example, i = 1 term is a one-body process which

usually means the collisions of the particles from the ensemble with the par-

ticles from the background or the reservoir. On the other hand, i = 2 term

describes a process happens between a pair of particles from the ensemble.

Note that although macroscopically we measure the total particle number N ,

microscopically the rate constants βi are naturally defined with the particle

density n. Hence, only an accurate determination of the number is no enough.

We also need the ability to extract the accurate in-trap density. Given a to-

tal particle number, the in-trap density depends on the temperature of the

ensemble as well as the geometry of the trapping potential. This leads to

the temperature calibration as well as the trap frequency measurement. For

a simple determination of the in-trap density, an implicit prerequisite is the

thermal equilibrium assumption. Although we are not always guaranteed

to have the thermal equilibrium, we should manage not to induce undesired

out-of-equilibrium dynamics. This leads to the suppression of the in-trap

motions of the molecules.

5.1 Number calibration

In our experiment, we measure the atom number with the standard absorp-

tion imaging technique. Probe laser beams resonant with certain atomic

transitions are shined onto the ultracold atomic cloud and the shadows are

cast and imaged onto the CCD chip. The attenuation of the beam inten-

sity after passing through reveals the column density of the atomic cloud.

Integrating over the column density distribution and knowing the photon

scattering cross section of the atomic species, one can get the total atom

number of the cloud.

Ideally, the photon scattering cross section σ0 for a certain probe beam
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polarization and a certain atomic transition can be found from existing data.

In practice, however, we always face different sorts of imperfections. For

instance, the slight misalignment of the quantization field and the impurity

in probe beam polarization components will effectively make the cross section

smaller than that in the ideal case and lead to the underestimation of the

atom number. The errors in the determination of atom number directly affect

the accuracy of the extracted rate constants in Eq. 5.1 with i > 1.

We follow the method described in Ref.[91] to calibrate our absorption

imaging. Optical depth defined as

od0(x, y) ≡ σ0

∫
n(x, y, z)dz = −α× ln

(
If (x, y)

Ii(x, y)

)
+
Ii(x, y)− If (x, y)

Isat0

(5.2)

is a quantity that only depends on the atomic density distribution while

independent on the intensity of the probe beam. Here, α is the parameter

we need to figure out, Isat stands for the saturation intensity of the transition,

Ii and If denote the probe intensity before and after the cloud respectively.

According to this optical depth definition, as long as the ensemble is the

same, we should get the same values according to Eq. 5.2 even if profoundly

different probe intensities are used. This lays the foundation for extracting

the value of α. In practice, we take a series of images with different probe

intensities ranging from 0.136 to 5.29 times saturation factor. Then, we

tweak the value of α and try to best balance all the optical depths calculated

according to Eq.5.2. Fig. 5.1 shows the result for the number calibration. In

panel (A), optical depths calculated with different choices of α are shown.

In each set, there are six points. Panel (B) shows the standard deviation of

each set with respect to the α value. A minimum fit for Fig. 5.1(B) gives α

equal to 1.21 in our experiments.

Once we obtain the value of α, together with the saturation factor s =
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Figure 5.1: Number calibration, extraction of number correction parameter
α (A) The calculated peak optical depth of absorption images according to
Eq. 5.2 with different given value of α under different probe intensities rang-
ing from 0.136 to 5.29 times saturation intensity (B) The standard deviation
of the six optical depths with respect to α value. A minimum fit to the
standard deviations gives the optimal α = 1.21.

Ii(x, y)/Isat0 and the appeared optical depth δ(x, y) = − ln(If (x, y)/Ii(x, y)),

the ratio between the appeared optical depth and the actual optical depth is

expressed as,
od0(x, y)

δ(x, y)
= α + s

1− e−δ(x,y)

δ(x, y)
. (5.3)

Because the intensity Ii almost doesn’t vary within a region of an atomic

cloud size, we can take s as a constant. Finally, we can obtain the cor-

rection factor by numerically integrating od0(x, y)/δ(x, y) over the Gaussian

distribution of δ(x, y),

N correction # =

∫∫
od0(x, y)

δ(x, y)
dxdy. (5.4)

Within the optical depth range we normally obtain, the correction factor can

be well approximated with the below formula,

N correction # = A+B × δ(0, 0), (5.5)
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where A = 1.191 + 0.972s and B = −0.165s.

5.2 Temperature calibration

The most standard way to measure the temperature of a atomic cloud in trap

is to measure the expansion of it after an abrupt switch-off of the trapping

potential. Usually, the temperature is extracted from a plot of cloud size

with respect to different TOFs. The model of the size expansion during the

TOF is,

σ(t) =

√
σ2

0 +
kBT

m
t2 (5.6)

where σ0 is the initial cloud size in trap, kB is the Boltzmann constant, T is

the temperature, m is the mass of the particle and t is the total TOF.

However, in a collision experiment where the temperature need to mea-

sured for lots of times, this method is time-consuming. In practice, one can

only measure the size of it after one specific TOF, and determine the tem-

perature from such a single-shot measurement. Such measurements need a

calibration.

Another reason to have a calibration arises from the difficulty of perform-

ing measurements on molecules. The rich internal structures of molecules

make it difficult to find a cycling or near-cycling transition for the direct

absorption imaging. Since we so far haven’t developed the direct absorption

imaging for the molecule yet, molecules always need to be dissociated back

to atoms first before the imaging. Therefore, the scheme of measuring the

molecular temperature becomes, first let the molecular cloud expands during

a TOF, then manage to dissociate them back to atoms and finally image the

size of the atomic cloud.

Then, another problem comes into play. After dissociation, we need in
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fact one more millisecond for the settlement of the B-field that switched off

from about 350 G (because the dissociation is done near the 347.6 G Feshbach

resonance). Consequently, if we take the image of Rb in the end, the size we

see is actually from t ms of molecular TOF plus 1 ms of Rb TOF. Such a

situation will introduce a systematic error in the temperature determination

especially when total TOF is short.

In practice, the total TOF chosen for the single-shot temperature deter-

mination is 3 ms. The temperature Ti in i-dimension can be calculated from

the following expression,

Ti = α′
mσ2

i

kB(1/ω2
i + t2)

. (5.7)

Here, σi is the size of the cloud in i-dimension, ωi is the trap frequency in

i-dimension, and α′ is the correction factor to find out. Excluding factor α′,

Eq. 5.7 is the exact formula of the normal single-shot temperature extraction

for atoms.

The calibration is done over temperatures ranging from 350 nK to 1.3

µK. We compare the temperatures from Eq. 5.7 with the single-shot mea-

surements and that from the standard TOF method with total TOF from 2

ms up to 7 ms. In the standard TOF method, to some extent, the effect of the

common 1 ms Rb TOF of all data points is ”absorbed” by the free parameter

initial size σ0 in Eq. 5.6. The temperature fitted then is very close to the real

temperature. By simulation, with the given TOFs, the fitted temperature is

systematically higher than the real temperature with a percentage less than

3%. With all above things, we find factor α′ is nearly constant over the whole

range as shown in Fig. 5.2(A). The weighted mean gives α′ = 0.90(1).

We have also cosidered another easier way of temperature determination

besides the above mentioned method. The idea is that we only measure the
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temperature of the Rb atoms from the dissociation. Assuming the dissocia-

tion process is adiabatic, the Rb temperature should equal to the molecular

temperature. Or, the dissociation process is not adiabatic, some linear re-

lation is still expected. In addition to its easiness, another benefit of using

this method is that it is possible to determine the number and temperature

together in one single shot. We check the relation of the two temperatures

experimentally. The result is shown in Fig. 5.2(B). Indeed, we see that the

mean molecular temperature and the mean atomic temperature more or less

the same, showing our dissociation process is nearly adiabatic. However, we

also see large fluctuations in each of the three sets of data (labeled by color)

with different ODT conditions. Such fluctuation hinders a reliable measure-

ment of the temperature evolution shown in later chapters. Therefore, we

adopt the first method but not this method.
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Figure 5.2: Temperature calibration. (A)The extracted temperature correc-
tion parameter α′ within a range from 350 nK to 1.3 µK by comparing the
results from the single-shot measurement and the standard TOF method.
(B)Relation between the temperature of the ground-state molecule and the
temperature of the product Rb atoms from dissociation. Dots with different
colors are with different ODT depths. The x coordinate and y coordinate of
each point are from successive two experimental shots. A linear fit gives a
slope of 1.15 and an intercept of -0.11.
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5.3 Suppression of molecular motion

How well can one control the motion of the molecules in trap really affect the

accuracy of the loss rate constant determination. In the fitting model, we

always assume that the system is in thermal equilibrium and the density dis-

tributes in some Gaussian profile. However, if molecular sample has a motion

in trap, especially the breathing motion, the model would fail to faithfully

describe the experimental reality. The breathing motion means that the

molecular density suffers a considerable modulation during the holding time

and that makes the data analysis more complicated.

The motion, i.e. a kind of excitation, can be induced by all kinds sources.

In our case, the motion is essentially induced after the STIRAP process. The

source of it is the polarizability difference at 1064 nm between the Feshbach

state and the ground state. When the transfer has been done, the density

profile, which is originally in thermal equilibrium, is no longer in and the

breathing motion will arise.

To get rid of this issue, we need to make the potential experienced by the

ground-state molecules be the same as what Feshbach molecules experience

at the beginning. What we do here is to change the ODT power according

to the polarizability ratio abruptly and immediately after (<10 µs) after the

completion of the STIRAP. At 1064 nm, the polarizability of the Feshbach

state is 909 a.u. while the polarizability of the ground state is 674 a.u.[92].

With the starting ODT power control voltage at 0.3 V, Fig. 5.3 shows the

resulting amplitude of both the slosh motion and the breathing motion with

different final ODT power control voltages. We see indeed a significant sup-

pression of motions at a final control voltage equals to 0.409 V, which is close

to the prediction (0.3V×909 a.u./674 a.u.= 0.405 V).

In another set of measurement, we delay the rise of the ODT power,
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investigating the time scale that significant breathing motions emerge. The

result is shown in Fig. 5.4. We find that the delay time is not that critical.

No amplification of the breathing motion is observed with the delay time

shorter than 500 µs. However, if delay time is more than 1 ms, the breathing

motion amplitude is significantly larger.
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Figure 5.3: Suppress the molecular motion by tuning the ODT control DAC
voltage immediately after STIRAP. The Feshbach state is initially in an ODT
with DAC voltage = 0.3V. When the final DAC to initial DAC ratio is close
to the polarizability ratio of the Feshbach state and the ground state, both
the slosh and the breathing motion can be greatly suppressed. The weighted
average of the minimum fit results of the four figures gives a target DAC of
0.409 V for an initial DAC = 0.3 V.
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Figure 5.4: Time scale of the emergence of significant breathing motions.
The resultant amplitude of the breathing motion is measured with respect
to the delay time of the rise of the ODT power after STIRAP. There is no
recognizable difference for delays shorter than 500 µs while for delay times
larger than 1 ms, the amplitudes of the breathing motion are significantly
larger.

5.4 Trap frequency

Because of its ultracold temperature, the ensemble only explores the bottom

region of the ODT. As the ODT potential is neither a linear potential nor a

box potential, locally the potential at the bottom can be approximated by a

quadratic function as,

V =
∑
i

1

2
mω2

i x
2
i (5.8)
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A thermal gas in such a quadratic trap obeys the following density distribu-

tion,

n(~r) =
N

π3/2

∏
i

e
− x2

i
R2
i /Ri, (5.9)

where R2
i = 2kBT/mω

2
i . Here, the parameter ωi is called the trap frequency.

With the number N and the temperature T in hand, one knows the ensem-

ble’s density once the trap frequencies are obtained. We measure the trap

frequencies by measuring the period of the slosh motions of the molecules

in trap. We deliberately delay the ODT power increase after STIRAP for

about 1 ms to amplify the in-trap motion. We measure the oscillating posi-

tion of the cloud after typically a 2 ms TOF. Usually, we also observe a slow

damping aside of the oscillation. An Underdamped oscillator oscillates as,

x ∝ e−γt sin(ω′t− φ). (5.10)

Fit the oscillation with the above simple model, and then we get the trap

frequencies from,

ωi =
√
ω′2i + γ2

i . (5.11)

5.5 Image denoising

The background fringes of images, which comes from the interference of sev-

eral reflected beams from different interfaces along the optical path, is a

common issue of the absorption imaging. The existence of the fringes lowers

the signal-to-noise ratio and hinders the correct extraction of number and

size from the image especially when the optical depth is low. Therefore,

when dealing with those low signal images, one needs to find a way to safely

remove the fringes and make the real signals to stand out, if necessary.
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Figure 5.5: Determination of trap frequency of molecules in ODT. The ODT
power rise after STIRAP is deliberately delayed to induce motions. The
molecules are held in trap with various holding times, dissociated into Rb
atoms and immediately released from the trap. The position of the Rb atom
cloud is measured after typical TOF of 2 ms. The oscillation of the position
is fit with a damped oscillator model.

Mathematically speaking, an image is a point in a linear space with ex-

tremely high dimensions. For example, a 100×100 image is a 100×100 matrix

or 10,000-component vector if flattened, which lays in a 10,000-dimension lin-

ear space. One could notice that the background fringes are not exactly the

same from shot to shot, but are more or less similar. There are several spe-

cific kinds of pattern repeatedly appear. This phenomenon indicates that

the images containing only the background fringes live in a subspace and the

size of the subspace is considerably smaller than the size of the whole space.
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The key point of doing denoising is then to reconstruct the basis that can

span the fringe subspace.

To reconstruct the basis, we first take nmax images without the atoms,

only capturing the background fringes. Then, we flatten the images into vec-

tors and perform the Gram-Schmidt process[93] to obtain nmax orthonormal

basis of the spanned space by the nmax vectors.

The Gram-Schmidt process is as follows. First we define the projection

operator as,

proj~u(~v) =
〈~u,~v〉
〈~u, ~u〉

~u (5.12)

Now, with nmax vectors ~v1, ~v2, ~v3,...,~vnmax , we can construct nmax orthogonal

vectors with the following process,

~u1 = ~v1

~u2 = ~v2 − proj~u1
(~v2)

~u3 = ~v3 − proj~u1
(~v3)− proj~u2

(~v3)

...

~unmax = ~vnmax −
nmax∑
n=1

proj~un(~vnmax)

(5.13)

Then, to have an orthonormal set, we just normalize the vector ~u’s.

~en =
~un
||~un||

(5.14)

By reshaping the orthonormal vector back to the shape of the image, a set

of basis images are constructed. With the basis images, we can now denoise

the images. We first mask the region where the atom signal appears in an

image. Then, we find out the image’s components in the fringe subspace by
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taking the inner products,

αj = 〈IMGmasked, IMGbasis,j〉. (5.15)

Subtracting all those components that fall into the fringe subspace, we get

the denoised image.

IMGdenoised = IMGunmasked −
nmax∑
j=1

αj · IMGbasis,j (5.16)

Fig. 5.6 sketches the aforementioned procedures. An example image is de-

noised with 59 constructed basis. Indeed, the background fringe is reduced

and the image quality is improved. With a higher number of basis, one could

expect a better performance.

2 End of Chapter.
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Gram-Schmidt process

Construction of basis images

mask

original processed

Image denoising

Figure 5.6: A sketch of the image denoising process. A bunch of basis images
are constructed from a same number of raw images with only the background
fringe via the Gram-Schmidt process. To denoise a image with the atom
signal, the region contains the atom signal is masked and the rest of the image
takes the inner products with the basis images. The inner products give the
components of the image that fall into the fringe subspace. Subtracting these
components, the image gets denoised. The image on the right hand side is
denoised with 59 basis images.



Chapter 6

Collisions with controlled

chemical reactivities

6.1 Overview

The UPMs can be roughly divided into two groups according to their chemical

reactivity in the absolute ground state. The reactive species include KRb,

LiNa, LiK, LiRb etc., while the nonreactive species include NaK, NaRb,

RbCs etc. Such a classification makes sense because, on one hand the reac-

tive ones are ideal candidates for ultracold chemistry researches, while on the

other hand nonreactive ones are expected to possess extremely long trap life-

time for other research purposes. However, the extremely long trap lifetime

doesn’t show up along with the advent of several nonreactive UPM species

in the recent years[11, 12, 13, 14].

The nonreactive UPMs can be easily tuned to be reactive by the method of

vibrational excitation, which has already been established as an efficient way

to control both the chemical reaction rate and the outcome since the 1970s[94,

95, 96, 97]. In most cases, one or two quanta of vibrational excitation are

61
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enough to switch on the chemical reactivity for UPMs. One can easily prepare

molecules with those excitations by simply tuning the wavelength of the

dump beam of STIRAP. Such ability is already demonstrated in the previous

chapter.

Equipped with the control ability of the vibrational degree of freedom and

driven by the mysterious trap loss for nonreactive UPMs, we describe in this

chapter our investigation on the collisions of ultracold NaRb polar molecules

with controlled chemical reactivities. The reactive collision is considered to

be a simpler scenario as described in the universal model, which has already

been mentioned in chapter 2. A comparison between the reactive collision and

the nonreactive collision should give insights to the physics of the nonreactive

collision and check the validity of proposed models such as the highly resonant

scattering picture of molecules mentioned in chapter 2.

6.2 Chemical reactivity of Na and Rb system

The main feature of the Na and Rb diatomic molecules that enables our

investigation is illustrated schematically in Fig. 6.1. For NaRb molecules in

the absolute ground state, the reaction

NaRb(v = 0, J = 0) + NaRb(v = 0, J = 0)

→ Na2(v = 0, J = 0) + Rb2(v = 0, J = 0)
(6.1)

is endothermic by 47 cm−1[98, 99, 100, 101]. Here, v and J are the vibra-

tional and rotational quantum numbers, respectively. The situation is starkly
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different for NaRb in the first excited vibrational level because the reaction

NaRb(v = 1, J = 0) + NaRb(v = 1, J = 0)

→ Na2(v = 0, J = 0) + Rb2(v = 0, J = 0)
(6.2)

is exothermic by 164 cm−1[98, 99, 100, 101]. This large amount of energy

released can be disposed into many vibrational and rotation levels of the

Na2 and Rb2 product molecules as well as the relative translational motions

(partial waves) between them when two (v = 1, J = 0) NaRb molecules

react. This reaction, as well as all other bimolecular reactions between alkali

molecules[98, 102], should be barrierless with the Na2Rb2 potential well lying

thousands of wave numbers below both the NaRb + NaRb and the Na2 +

Rb2 asymptotic limits.
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Figure 6.1: The schematic reaction coordinates for the NaRb + NaRb →
Na2 + Rb2 process are shown. (A) In the lowest rovibrational level (v =
0, J = 0), the reaction is endothermic by 47 cm−1 and thus forbidden at
ultracold temperatures. (B) In the first excited rovibrational level (v = 1, J
= 0), the same reaction is already exothermic by 164 cm−1 and thus allowed.
Molecules can also relax from v = 1 to v = 0 following the collision, but
experimentally, this cannot be distinguished from chemical reactions. The
ground Na2Rb2 tetramer level, which has much lower energy than both the
reactant and product molecule pairs, is also shown. Near the NaRb + NaRb
collision threshold, the density of Na2Rb2* states is estimated to be too large
to be resolved. As a result, the collision is in the highly resonant regime.
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Besides the above dimer + dimer to dimer + dimer reaction, several other

types of reactions including atoms or trimers can happen in such a Na and

Rb system. To facilitate the discussion not only in this chapter, but also

later chapters. I list here all relevant energy levels in Table. 6.1.

Table 6.1: The binding energies of ground-state dimers and trimers of Na
and Rb system

Species Binding energy (cm−1) Ref.
Na2 5942.688(5) [99]
Rb2 3965.8(4) [103]

NaRb 4977.308(3) [89]
Na2Rb 7649 [98]
NaRb2 6783 [98]

6.3 Procedures

The starting point of the experiment is an ultracold mixture contains about

2×105 atoms prepared in |F,mF 〉 = |1, 1〉 state for both species at the high

B-field condition, with Na partially in the BEC state and thermal Rb near

the BEC critical point. The acquisition of the ultracold mixture has already

been described in chapter 3. Here F stands for the total angular momentum

of the atom and mF is its projection on the quantization axis.

The typical experimental time sequence is plotted in Fig. 6.2. Before

the magneto-association of the Feshbach molecules, the B-field is at 349.5 G

which is above the interspecies Feshbach resonance locating at 347.64 G. The

B-field ramps across the resonance with a rate of -2.2 G/s and the Feshbach

molecules are produced. Immediately after the association, the ramping rate

is reduced to -1.7 G/s for the removal of the residual atoms with MWs and

lasers. Once we get a pure sample of Feshbach molecules, the B-field quickly

ramps to 335.2 G at which the Feshbach molecules are transferred to the
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ground states via the STIRAP. The ODT power is immediately increased

with the production of the ground-state molecules to suppress the molecular

motion. Then, a 2 ms long magnetic gradient field pulse is applied to ensure

the purity of the sample as atoms are pushed away while the ground-state

molecules are left unperturbed due to the negligible magnetic dipole moment.

The molecules are then held in the ODT for variable holding times. After the

holding, the ODT power returns to its lower value and the STIRAP transfers

the molecules back to the Feshbach state. For the measurement of number

N evolution (as shown in Fig. 6.2), the B-field is quickly raised to 348 G to

dissociates the molecules and then cut off. The atoms are further held in ODT

for 20 ms to let the B-field settle down. The atomic loss during the low-field

holding is verified to be negligible. The atoms (usually Rb) are imaged after

an 2-ms TOF. For the measurement of temperature T evolution, the ODT

is cut off immediately after the backward STIRAP while the dissociation is

delayed for a 2-ms molecule TOF. The temperature is determined via the

single-shot method with a total TOF of 3 ms.

6.4 Exclusion of dependencies on several fac-

tors

Although the ensemble in an AMO experiment in many sense is a clean

and isolated system, the ensemble still inevitably interacts with external dc

or ac fields. Since the trap loss of nonreactive NaRb molecules can not be

trivially understood in terms of chemical reaction or relaxation of internal

degree of freedoms, one should be suspicious about that the loss may be some

”catastrophic” consequence of some factors from the technical aspect. In our

case, those factors includes the non-100% STIRAP efficiency, the choice of
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Figure 6.2: The experimental time sequence for collision experiments. The
sequence is mainly divided into seven phases, i.e. the pre-association, the
association, the atom removal, the ground-state molecule (GSM) holding, the
dissociation, the low-field holding and the probe. B-field, ODT power control
voltage and other relevant pulses that involves molecular state transfer and
residual atom removal are shown.
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the ODT wavelength and the choice of the B-field value. Logically, to perform

a rigid investigation on collisions with controlled chemical reactivities, one

need to first identify the roles and evaluate their effects of these factors.

6.4.1 Exclusion of dependency on STIRAP efficiency

Since the STIRAP efficiency is never 100% in reality, there is always a small

portion of the Feshbach molecules that leave the Feshbach state but does not

reach the target state. These molecules may occupy a series of rovibrational

levels of the X1Σ+ and a3Σ+ potentials. It is always a concern that these

populations in the“dark” states can cause unexpected and unaware losses

for the ground-state molecules via collisions. In order to evaluate this effect,

we measure the two-body loss rate constant β of the ground-state molecule

at STIRAP efficiencies from 63% to 91%. The reduction of the STIRAP

efficiency is achieved by reducing the STIRAP power delivered. With the

same 50 µs overlap of the pump and the dump beam, the maximum transfer

efficiency is achieved with a pump/dump Rabi frequency of 2π×1.2 MHz

while the lowest corresponds to 2π×0.3 MHz. As can be seen from Fig.6.3, β

only has a very weak dependence on the STIRAP efficiency. A linear fit gives

an increase of 1.8% in β per 10% decrease of the STIRAP efficiency. The

result indicates the molecule population not in the ground state is not the

major cause of the loss. And, under a typical STIRAP efficiency of more than

90%, the influence of the molecules not in the target level can be neglected.

6.4.2 Exclusion of dependency on ODT wavelength

Because the molecular ground state is a singlet state with no electronic mag-

netic dipole, we lack of the ability of magnetically trapping of those molecules.

Therefore, the optical trapping potential is inevitably involved in the exper-
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Figure 6.3: The effect of STIRAP efficiency on the resulting loss rate constant
β. STIRAP efficiency are controlled by varying the power of the Raman
beams. STIRAP efficiencies from 63% to 91% is achieved with pump/dump
Rabi frequencies from 2π×0.3 MHz to 2π×1.2 MHz. A linear fit shows
an 1.8% increase of β per 10% decrease of STIRAP efficiency. The result
indicates the molecule population not in the ground state is not the major
cause of the loss of the ground-state molecules. Besides, the result shows
we can neglect the effect from the non-100% STIRAP efficiency given our
STIRAP efficiency higher than 90%
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Figure 6.4: The effect of ODT wavelength on the ground-state NaRb
molecule’s loss. The number of remaining molecules in trap after a cer-
tain holding time is measured under different ODT wavelengths. (A) No
loss resonance is observed at the vicinity of 1064.4 nm, which is the ODT
wavelength used in collision experiments. (B and C)Two of the broad loss
features due to resonances of the Feshbach molecule but not the ground-state
molecule.

iment. Clearly from the NaRb potentials, there is no state available for

a one-photon process to happen starting from the ground state. However,

considering the large intensity involved in the optical trapping, there is, in

principle, a possibility to have a two-photon process or a photoassociation

process of two molecules.

We investigate the dependence of molecule’s trap lifetime on the wave-

length of the ODT beams. In this set of measurement, we tune the wave-

length of the seeding diode laser of the ODT beams, and measure the num-

ber of remaining molecules in trap after a certain holding time. We scan the

wavelength from 1064 nm to 1069 nm. Here, in Fig. 6.4 show some parts of

the result. We do see some resonances as shown in panel (B) and (C). The

resonances are quite wide because of the large intensity of the ODT beams

(>10 kW/cm2) and the long interaction time (∼10 ms). We double check the

existence of those resonances without the STIRAP and find all resonances

still exist. This indicates that the signals are all due to the transitions of the

Feshbach molecule but not the ground-state molecule. Panel (A) shows the
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situation at the vicinity of 1064.4 nm, the wavelength which we eventually

choose for all of the collision experiments. No resonance and no wavelength

dependent loss behavior are observed here.

6.4.3 Exclusion of dependency on B-field

Also because the ground-state molecule doesn’t have electronic magnetic

dipole, it seems that the choice of the background bias B-field is arbitrary.

However, the B-field somehow may matter. In Innsbruck’s paper on the

production of ground-state RbCs molecule, a B-field dependent loss behavior

is observed. When the B-field is lower than a critical value, the molecule’s

loss greatly enhanced. It is conjectured that the enhanced loss is due to the

hyperfine-changing collision as the ”ground state” is no longer the ground one

below that critical B-field[11]. In our experiment, we also investigate the B-

field’s role in the collision experiments. The number of remaining molecules

in trap is measured after the molecules being held at different B-fields. Fig 6.5

shows a large scale scan from 5.6 G to 339.2 G. The ”ground state” is no

longer the ground one below 16 G here. We see no obvious B-field dependent

loss behavior from the result. Besides the possible loss enhancement from the

hyperfine relaxation, we also scan the B-field at the vicinity of 335.2 G where

we perform the experiments and exclude the existence of loss resonances in

smaller B-field scales.

6.5 Loss comparison and loss model

To best compare the collisions of different chemical reactivities, and also to

best understand the underlying mechanism of the loss of the nonreactive

case, the evolution of N and T are measured with the most holding times.
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Figure 6.5: The effect of B-field on the ground-state NaRb molecule’s loss.
The remaining molecule number are measured after a certain fixed holding
time under different B-field. Below 16 G, the ”ground state” is no longer the
ground one. The loss of the ground-state molecule show no dependence on
the B-field from 5.6 G to 339.2 G.
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Figure 6.6: Inelastic collisions with different chemical reactivities. (A and
B) Time evolutions of (A) molecule numbers and (B) temperatures for both
nonreactive (v = 0, J = 0) (filled circles) and reactive (v = 1, J = 0)
(filled squares) samples. The temperature measurement, which stops at 0.1 s
because of reduced signal-to-noise ratio following the time-of-flight expansion,
is obtained separately from the number evolution with samples of essentially
identical conditions. Error bars represent 1 standard deviation. The blue
dashed and red solid curves are fitting results using Eq. 6.3 with temperature-
dependent loss rate constants obtained from Fig. 6.8. The measured trap
oscillation frequencies are [ωx, ωy, ωz] = 2π × [217(3), 208(3), 38(2)] Hz for
the (v = 0, J = 0) molecules and 2π × [219(3), 205(2), 40(2)] Hz for the (v
= 1, J = 0) molecules. The calculated initial peak densities can reach 6 ×
1011 cm−3.



CHAPTER 6. COLLISIONS WITH CONTROLLED CHEMICAL
REACTIVITIES 73

Imaging along the long axis of the trap enables the N evolution as long as 3 s

as shown in Fig. 6.6. The dynamical range of N is then nearly 40 times. The

temperature evolution however, because of its longer TOF, has the largest

holding time of 0.1 s. A very striking feature in Fig. 6.6 is the number

loss and the heating of the two cases being nearly identical, despite their

distinctly different chemical reactivities and the very large range of number

variations. Both the nonlinear appearance of N evolution in the log-linear

plot and the increase in the T evolution indicate the loss is not one-body

process. On the other hand, if we attribute the loss to a three-body process,

we find the loss rate constant is way beyond the unitarity limit. Hence, to

obtain a more quantitative picture, we simultaneously fit the number and

temperature evolutions for each case to the two-body loss model[104]

dN(t)

dt
= −βA N(t)2

T (t)3/2

dT (t)

dt
= −βAN(t)

1/4 + h0

T (t)1/2

(6.3)

to extract the loss rate constant β. Here, A = (ω2m/4πkB)3/2 is a constant,

where m is the mass of the molecule and ω is the geometric mean of the trap

frequencies, which is measured to be 2π×119.9(1.5) Hz for (v = 0, J = 0)

molecules and 2π×122.0(1.5) Hz for (v = 1, J = 0) molecules.

The heating phenomena here is called the ”anti-evaporation effect”. It

is due to the fact that the average energy of lost particles is lower than the

ensemble average. The 1/4 term on the right-hand side of the T evolution is

from the trapping potential part. For a two-body process, whose chance of

occurrence is proportional to the square of the local density, one can easily

find that the average potential energy of lost particles is merely 3/4 × kBT

instead of the ensemble average of 3/2 × kBT in a 3-dimensional harmonic
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trap. The h0 term deals with the momentum dependence of β as well as any

other possible heating contributions. Assuming β(T ) = β0(T/T0)b, where β0

is the rate constant at a selected sample temperature T0, one can find h0 =

-b/6[104]. Note that although the number loss and heating in Fig. 6.6 appear

identical for the two cases, the β values are actually slightly different because

of slight difference of the trap frequencies and the initial molecule numbers.

6.6 Segment fit

There is an annoying loop in the data analysis of the collision experiments.

We know that the sample temperature evolves during the holding. Hence,

a correct modelling needs the correct β(T ) function. However, on the other

hand, it is exactly this function that we want to find out through the model

fitting. Therefore, we need to find a way to break the loop.

Fig. 6.7 shows the way we break the loop. To extract the T dependence

of β, we first pick four segments from a whole measurement based on the

criteria that the change of T is less than 20% during each segment. The

segments partially overlap with each other. The segments here are 4 ms ∼

21 ms, 12 ms ∼ 33 ms, 27 ms ∼ 60 ms and 41 ms ∼ 100 ms. Given the

relative small variation of T , we assume the change of β is also small and

take it as a constant in each of these segments. Here, only data from the

first 100 ms are used since we cannot measure the temperature reliably for

holding times beyond that.

For each segment, the evolutions of N and T are fitted simultaneously

with the two-body loss model Eq. 6.3 by minimizing the total dimensionless

χ2, defined as

χ2 ≡
∑

i; y=N,T

(yi − yi)2

∆y2
i

. (6.4)
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Here, yi is the fitted value, yi and ∆yi are the mean and the standard devia-

tion of the measurements respectively. The free parameters of the fit are the

initial number N(0), the initial temperature T (0), β and h0. In Fig. 6.7, the

fitting results of each segments are color coded.
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Figure 6.7: Extraction of β with segment fit. The number evolution (A) and
the temperature evolution (B) are measured from holding time = 4 ms to
holding time = 100 ms. The each whole curve, it is divided into four seg-
ments, coded with different color. In each segment, the temperature evolution
doesn’t exceed 20%, so that we can neglect the temperature dependence of β
and treat β as a constant parameter in the fitting model Eq. 6.3. The num-
ber and the temperature in each segment are fitted together by minimizing
a joint χ2.

6.7 Temperature dependence

The segment fitting procedure is repeated for several data sets with initial

temperatures ranging from 370 nK to 1.4 µK. The different temperature

of the molecules are inherited from the temperature of the ultracold mix-

tures prepared in ODTs of different trap depths. Following the temperature

increase, this has allowed us to sample β from 390 nK to 1.85 µK for the

nonreactive molecules and from 500 nK to 1.85 µK for the reactive molecules.

Fig. 6.8 shows the results with the mean temperature of each corresponding
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segment as the horizontal axis. Within the temperature range covered, the

lowest and the highest β values only differ by a factor of 2. This small dynam-

ical range and the relatively large error bars prevented us from confirming

any structures in β, although an overall decrease toward higher temperatures

is obvious for both cases. In addition, the measured β values for nonreac-

tive samples are all larger than those for the reactive ones within the same

temperature range. In the log-log scale, forcing linear fits to the data points

in Fig. 6.8, slopes of b = -0.38(4) and b = -0.27(8) can be obtained for

nonreactive and reactive samples, respectively. Thus, approximately, during

each set of measurements, the loss rate constant follow a power-law func-

tion β(T ) = β0(T/T0)b. Substituting b in Eq. 6.3 with this function and h0

with -b/6, the number and temperature evolutions in Fig. 6.6 can be fitted

again to obtain the β0 values. The solid and dashed curves in Fig. 6.6 shows

this fitting result. For the data set of nonreactive molecules, this kind of

modeling gives β0 = 3.4(2)×10−10 cm3 s−1 at T0 = 0.97(9) µK. For the reac-

tive molecules, β0 = 2.7(2)×10−10 cm3 s−1 at T0 = 0.97(2) µK is obtained.

Within the mutual error bars, the two β0 values obtained this way agree with

the corresponding data points around 0.97 µK in Fig. 6.6. This agreement

verifies self-consistently that the β values obtained by the segment fitting

method are reasonable.

A temperature-dependent β signifies the collisions are not in the Wigner

threshold regime in which β ∝ T l should be a constant for s-wave (l =

0) collisions. This non-Wigner behavior can be understood by the much

smaller characteristic temperature of the van der Waals potential TvdW =

(h̄2/mr2
6)(1/kB) for NaRb[64], which is only 2.8 µK because of the very large

long-range C6 coefficients[59, 60, 61]. Here, r6 = (mC6/h̄
2)1/4 is the charac-

teristic length. The Wigner threshold regime which requires that T << TvdW,
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is thus not reached with the current sample temperature.
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Figure 6.8: Temperature dependence of β for different chemical reactivities.
Each β is obtained from a fit to Eq. 6.3 to a segment of one full loss and
heating measurement. The solid lines are from fits of β to power-law functions
of T . Theoretical results based on the CC calculation are also shown. The
dashed vertical line marks the position of TvdW. The error bars represent 1
standard deviation.

6.8 Comparison with close-coupling quantum

calculations

For the reactive case, the loss can be well understood with the universal

model with the rate constant and its temperature dependence determined

by the long-range collision dynamics[16, 64, 105, 106, 107]. For the non-
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reactive case, in the framework of the highly resonant scattering picture of

UPMs[62], the loss of the dimer molecules is think of as a result of the forma-

tion of tetramers. If a unity probability is assumed for the formation of the

tetramers at the short range, we reach the same universal model as already

be pointed out in chapter 2. On the basis of this model, we performed close-

coupling (CC) quantum calculations for both (v = 0, J = 0) and (v = 1, J =

0) NaRb molecules using a time-independent quantum formalism, including

the rotational structure of the molecules and a partial wave expansion[75].

As shown in Fig. 6.8, semi-quantitative agreements between the calculations

and the data can already be obtained without any free parameters in terms

of the absolute value of β. However, from the calculation, because the C6

coefficient between two (v = 0, J = 0) NaRb molecules is nearly identical

to that between two (v = 1, J = 0) NaRb molecules[59, 60, 61], the com-

plex formation rate constant for nonreactive molecules (blue dashed-dotted

curve) is essentially the same as the loss rate constant for reactive molecules

(red dashed curve). This actually cannot explain the apparently larger β

measured for nonreactive molecules. This discrepancy could reflect the idea

that the short-range physics for chemical reaction and complex formation

are not exactly identical. It is possible to modify the rate constants for bet-

ter agreements if more elaborate short-range models, including a non-unity

reaction probability and the phase of the reflected scattering wave, were

considered[75].
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6.9 Post-complex formation dynamics

6.9.1 Rice-Ramsperger-Kassel-Marcus (RRKM) the-

ory

The Rice-Ramsperger-Kassel-Marcus (RRKM) theory is theory of chem-

ical reactivity[51][108][109], developed by Rice and Ramsperger[110] and

Kassel[111] and generalized in by Marcus[112]. In chemistry, RRKM success-

fully explains the long lifetime before dissociation for a energy-rich polymer.

The RRKM theory is a transition state theory and in the context of ultracold

bimolecular collision, the transition complex is the tetramer and its lifetime

is predicted as,

τRRKM =
2πh̄ρ

No

. (6.5)

Here, ρ is the density of transition complex states at the collisional threshold,

No is the open channel number. The lifetime can be viewed as a result of the

competition of the internal and external degrees of freedom. In an intuitive

picture, the extra energy randomly flows among different degrees of freedom

and the complex only dissociate when the external degree of freedom gains

enough energy. More density of states here means more ways to distribute

the energy internally, while less open channel number means less way to

dissociate the complex.

Although the theory yields quite simple results, one need to remember

that it is only an approximation whose core assumptions are the thermal equi-

librium assumption and the no return assumption. That is, the molecules’

configurations are in equilibrium until they cross a reaction surface, and once

the crossover has been, the molecules never cross back again[51].
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6.9.2 The complex-mediated collision model

To investigate the post-complex formation dynamics, one needs to develop

a more complete loss model instead of the simple two-body loss model. The

existence of the complexes in the trap provides two additional physical pro-

cesses, the molecule-complex collision and the complex dissociation,

NaRb + Na2Rb2 → ”lost”

Na2Rb2 → 2NaRb
(6.6)

The molecule-complex collision kills one more molecule in trap and in to-

tal kills three molecules, while the complex dissociation returns back two

molecules. The dissociation is the reverse process of the complex formation,

so there is no additional energy released and the product molecules can be

further trapped. Ref.[62] gives a model that include the post-complex for-

mation dynamics, consisting of two coupled rate equations of the number

densities of the molecule n and the four-atom complex nc

dn

dt
= −βmmn2 + 2γcnc − βcmncn (6.7)

dnc
dt

=
1

2
βmmn

2 − γcnc − βcmncn, (6.8)

with βmm and βcm the complex formation and complex-molecule collision

rate constants respectively, and γc = 1/τ the complex dissociation rate. In

principle, the model is correct, but it is inconvenient to use because the

differential equations are written in terms of densities instead of the numbers

that we measure in the experiment. Thus, we develop a full model in terms

of molecule numbers as well as the evolution of the temperature.

If we think of trappable complexes, basically we assume that the com-
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plexes are loosely-bound. A loosely-bound molecule’s polarizability can be

approximated by the sum of the polarizabilities of its constituents. So the

first assumption we take in the derivation is, the polarizability of a complex

is twice than that of a molecule. Then, since we know that the mass of

a complex is also twice than that of a molecule, we can conclude that the

trapping frequencies of a complex are exactly the same as that of a molecule.

αc = 2× αm

fc,i = fm,i

(6.9)

We still assume that the sample is always in thermal equilibrium. And

moreover, the complexes and molecules share the same temperature. There-

fore, the distribution of particles all obeys the Boltzmann distribution. For

the convenience of the following derivations, we separate the spatial part and

the momentum part of the Boltzmann distribution, and define them as two

functions, F and G,

F (x, y, z,m, T, fi) := 2
√

2π3/2fxfyfz(
m

kBT
)3/2

× exp

[
−

2π2m(f 2
xx

2 + f 2
y y

2 + f 2
z z

2)

kBT

] (6.10)

G(p,m, T ) := C × exp

[
− p2

2mkBT

]
(6.11)

The β’s are defined with the density. Switching to number evolutions, we

use β̃. Let β̃mm = Amm × βmm/T 3/2, β̃cm = Acm × βmm/T 3/2, we find,

Amm = T 3/2

∫∫∫
F (x, t, z,m, T, fi)F (x, y, z,m, T, fi)dxdydz

=
fxfyfzπ

3/2m3/2

k
3/2
B

(6.12)
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Acm = T 3/2

∫∫∫
F (x, t, z, 2m,T, fi)F (x, y, z,m, T, fi)dxdydz

=
8fxfyfzπ

3/2m3/2

3
√

3k
3/2
B

(6.13)

The derivation of the temperature evolution is based on the conservation

of energy. From

dNm

dt
= −β̃mm ×N2

m + 2γ ×Nc − β̃cm ×NmNc

dNc

dt
= −1

2
β̃mm ×N2

m − γ ×Nc − β̃cm ×NmNc

(6.14)

we have,

(Nm +Nc)T −
3

4
dNm,1T +

3

4
dNm,2T −

2

3
dNm,3T + dNc,1T

−dNc,2T −
5

6
dNc,3T = (Nm + dNm +Nc + dNc)(T + dT )

(6.15)

where dNm,1 = β̃mmN
2
mdt, and the rest terms are defined in a similar way

according to the order of their appearance in Eq. 6.14. dNm = dNm,1 +

dNm,2 + dNm,3, and dNc = dNc,1 + dNc,2 + dNc,3.

Eq. 6.15 describes the energy flow in and out of the ensemble in a small

time interval dt without an overall constant 3kB. The sign of each terms

marks the direction of particle flow and the factor is the fraction of the

average energy of the particles compared to 3kBT . For example, the 3/4

factor before dNm,1T terms is a sum of 1
4
(3kBT ) from the spatial potential

energy and 1
2
(3kBT ) from the kinetic energy. The spatial potential energy is

calculated from∫∫∫
V (x, y, z,m, T )F (x, y, z,m, T, fi)

2dxdydz∫∫∫
F (x, y, z,m, T, fi)2dxdydz

. (6.16)

One can then expand the expression, discard the second order small quan-
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tities,

−3

4
dNm,1T +

3

4
dNm,2T −

2

3
dNm,3T + dNc,1T − dNc,2T −

5

6
dNc,3T

= NmdT + dNmT +NcdT + dNcT

(6.17)

After some substitutions, rearrangements and a division on both sides

with dt,

1

4
β̃mmN

2
mT −

1

2
γNcT +

1

2
β̃cmNcNmT =

NmdT

dt
+
NcdT

dt
(6.18)

Finally we obtain the full model that include the molecule-complex colli-

sion and complex dissociation,

dN

dt
= −Ammβmm

N2

T 3/2
+ 2γcNc − Acmβcm

NcN

T 3/2

dNc

dt
=

1

2
Ammβmm

N2

T 3/2
− γcNc − Acmβcm

NcN

T 3/2

dT

dt
=

1

4

AmmβmmN
2 + 2AcmβcmNcN − 2γNc

(N +Nc)T 1/2

(6.19)

The best fit of the nonreactive loss and heating data is shown in Fig. 6.9.

The fitting results in a complex lifetime of τ = 1/γ = 0.038(6) s, which is

shorter than the lower bound of our estimation from the RRKM theory, and

a complex-molecule loss rate constant of 4.4(6)×10−9 cm3 s−1, which is more

than one order of magnitude larger than the s-wave unitary limit and is thus

nonphysical. Although this seems to support the absence of the complex-

mediated collisions, we think that it is still not conclusive because of the

crudeness of the approximations made in the model.

Why no post-complex formation dynamics observed? Here, we provide

two plausible explanations. Considering the large density of states of tetramer

almost everywhere, one thing very likely to happen is that the photons from
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Figure 6.9: Fit the nonreactive collisions with the full loss model including
the post-complex formation dynamics. (A)The N evolution and (B)the T
evolution are fitted simultaneously with Eq. 6.19. The fitting extracts a
complex lifetime τ = 1/γ = 0.038(6) s and a non-physical complex-molecule
loss rate constant βcm = 4.4(6)×10−9 cm3s−1

the trapping beams can interact with (for example, excite) the complexes and

somehow make them no longer in trap quickly. Another possibility is that

the complexes are not trappable at 1064.4 nm because of unfavorable polariz-

abilities. The naive assumption that the complex has twice the polarizability

than a molecule is actually questionable here.

6.10 Conclusion

We report in this chapter a detailed study on the inelastic loss with and

without the NaRb + NaRb → Na2 + Rb2 chemical reaction. Contrary to

intuitive expectations, we observe very similar loss and heating, regardless

of the chemical reactivities. In addition, as evidenced by the reducing loss

rate constants with increasing temperatures, we find that these collisions

are already outside the Wigner region although the sample temperatures are

sub-microkelvin. Our measurement agrees semi-quantitatively with models

of the resonant scattering picture based on long-range interactions, but calls



CHAPTER 6. COLLISIONS WITH CONTROLLED CHEMICAL
REACTIVITIES 85

for a deeper understanding on the short-range physics for a more complete

interpretation.

2 End of Chapter.



Chapter 7

Collisions with induced electric

dipoles in E-fields

7.1 Overview

The dipolar collisions, or collisions with DDI of UPMs are basically uncharted

so far. On the other hand, it is critical to investigate such collisions. For

example, measuring collision rate constants in dc E-fields can provide us

a more comprehensive understanding of the underlying mechanisms of the

nonreactive UPM losses. In Ref. [65], it is pointed out that the short-range

physics can manifest as peaks and valleys in rate constants as the E-field

rises. Based on the understandings of the dipolar collisions, one can harness

the elastic and the inelastic collisions and enable the evaporative cooling

of UPMs[113, 114, 115, 116, 117] just like that for the atoms. The evapo-

rative cooling of UPMs can then lead to the BEC of polar molecules with

strong DDI. Even a dipolar BEC of molecules in bulk is going to bring lots

of fascinating observations, let alone the Hamiltonian engineering in an op-

tical lattice. In the recent years, the fast developing field of dipolar BEC of

86
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magnetic atoms has already made some important observations, such as the

d-wave patterned collapse[118], the droplet stabilization[119, 120, 121] and

the roton quasiparticles[122].

In this chapter, we describe our investigation on the collisions of ultracold

nonreactive NaRb polar molecules in a dc E-field. The induced electric dipole

reaches as large as 0.7 D. The DDI modifies the collisional behavior and a

step-wise enhancement of loss is observed.

7.2 Induction of electric dipole moment

There exists a permanent electric dipole moment for a NaRb molecule due to

the asymmetric distribution of the electron cloud in the molecular frame of a

NaRb molecule. However, when there is no external E-field, the orientation

of the molecular axis has no preference when we project the system from the

molecular frame to the lab frame. Therefore, in the lab frame, the molecules

are not polarized and don’t have electric dipoles. To induce the electric

dipole, one needs to exert an E-field.

The E-field in our experiment is generated by a pair of high voltage am-

plifiers (Matsusada AMT-5B20). The amplifier amplifies an external control

voltage by 500 times. The output voltage’s range is -5 kV to 5 kV. Although

so far, we’ve only used dc outputs, the amplifiers have a slew rate of 360

V/µs and accept modulated signals up to 40 kHz. The control voltages are

given by RIGOL DG1022 aribitrary waveform generators and calibrated by

an Agilent Technologies U3402A multimeter. The output cables of the am-

plifiers are connected to a pair of ITO-coated glass plates with conductive

silver adhesive. The plates are 80 mm×23 mm×0.7 mm large and separated

by about 25 mm.

Quantum mechanically, the induction of the electric dipole in an E-field
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can be understood in terms of symmetry. Since the ground state NaRb

molecules are in a 1Σ potential, they have no total electronic orbital angular

momentum or electronic spin. Neglecting the hyperfine structures, we can

describe the molecular state with only the rotation angular momentum J

and its projection onto the quantization axis mJ . We define the bare states

|J,mJ〉 under the zero E-field condition and those states are the eigenstates

of the parity operator. This means that each |J,mJ〉 state has a certain

parity, either odd or even. The dipole operator d̂ is a rank-1 tensor oper-

ator and inverts the parity symmetry of a state, thus the observable of d̂,

〈J,mJ | d̂ |J,mJ〉, becomes an inner product of two states with different pari-

ties and results in a zero value. When there is an E-field, the new eigenstates

are no longer the eigenstates of the parity operator, but superpositions of the

bare states with different parities and that leads to non-zero dipoles.

To be specific, one can show that the Hamiltonian can be expressed as,

〈J,mJ | Ĥ |J ′,m′J〉 = Bv · J(J + 1)δJJ ′,mJm
′
J

−d · E ·
√

(2J + 1)(2J ′ + 1)(−1)mJ

 J 1 J ′

−mJ 0 m′J

J 1 J ′

0 0 0

 ,
(7.1)

where Bv is the rotational constant, d is the permanent dipole, E is the E-

field magnitude.

· · ·
· · ·

 is the Wigner 3j symbol which doesn’t vanish unless

the first row fulfill the triangle inequality and the second row sum up to zero.

Therefore, the E-field couples directly the two states that gives ∆mJ = 0

and ∆J = ±1, and indirectly couples all the states with the same mJ .

Diagonalizing Eq. 7.1, we get the dc Stark shift for NaRb ground states

with J truncated at Jmax = 9. Fig. 7.1 shows the calculation result for

the lowest three rotational levels of NaRb molecule with Bv = h×2.0896628
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GHz[123] and d = 3.2 D[14].
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Figure 7.1: dc Stark shift of NaRb molecules in the lowest three rotational
levels (J = 0, 1, 2). Energy levels are calculated by solving the eigenvalues
of Eq. 7.1 with J truncated at Jmax = 9.

From the dc Stark shift, we can obtain the induced dipole moment from

µind = −∂E
∂E

. (7.2)

Note that there is a clear distinction between an electric dipole and a mag-

netic dipole. The electric dipole moment as an extrinsic property, its magni-

tude can be readily tuned by the strength of the external field as shown in

Fig 7.2, while the magnetic dipole moment as an intrinsic property always

takes a fixed value.
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Figure 7.2: Induced electric dipole of NaRb molecule in the lowest three
rotational levels (J = 0, 1, 2). Dipoles are calculated according to Eq. 7.2
based on the results in Fig. 7.1.

7.3 Modification to molecule-molecule inter-

action potentials

The E-field modifies the molecule-molecule interaction potential by intro-

ducing the DDI term. The effective potential for molecules in the absolute

ground state can be written as[106, 63]

〈LML|V (R) |L′M ′
L〉 =

[
h̄2L(L+ 1)

mR2
− C6

R6

]
δLL′,MLM

′
L
− C3(L,L′;ML)

R3
δMLM

′
L
.

(7.3)

Here the first term is the centrifugal potential which will take non-zero value

for non-zero L. The second term is the van der Waals interaction character-

ized by the C6 coefficient. The first two terms are diagonal terms. The third
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term is the DDI which is off-diagonal and is characterized by C3. The C3

coefficient can be expressed as

C3(L,L′;ML) =
µ2

4πε0
2(−1)ML

√
2L+ 1

√
2L′ + 1

×

L 2 L′

0 0 0

 L 2 L′

−ML 0 ML

 .

(7.4)

From the Wigner 3j symbol in the expression of C3, we find that the DDI

introduces coupling between different partial waves. Channels with ∆L = ±1

and ±2, and ∆ML = 0 are directly coupled. Since the NaRb molecules are

identical bosons, there are only even partial waves, so ∆L can only take ±2.

The same ML components from all even partial waves are then mixed either

directly or indirectly. Due to the coupling, the partial wave L doesn’t remain

a good quantum number. However, for the convenience of the discussion, we

still label them as what they should be at the infinity far away.

To map out the interaction potentials, we have to diagonalize the system

defined by Eq. 7.3 for each value of R. The van der Waals coefficient C6

can be divided into two parts, one from electronic structures and one from

rotational structures. For the electronic one, we take the value from Ref. [61],

Cel
6 = 9018 a.u., and for the rotational one, we calculate it with Crot

6 =

d4/(96π2ε20Bv) = 1.3184× 106 a.u. based on our experimental measurement

of permanent dipole d = 3.2(1) D [14] and rotational constant Bv = h×

2.0896628(4) GHz[123]. The total C6 is then 1.3274×106 a.u.

We visualize the E-field’s modification to the molecule-molecule interac-

tion potentials. Fig. 7.3 compares the potentials with zero induced dipole

and 0.5 D induced dipole. Panel (A) shows the case of L = 0. We see with

the DDI, and the potential clearly becomes more attractive with consider-

able decline of ∼ µK start to take place at larger R ∼ 2000a0. Panel (B)
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shows the case of L = 2. When there is no dipole, we see that the five

ML components are degenerate with a barrier of 17.2 µK locating at R =

600 a0. When there is a dipole, the different coupling schemes introduced

by the DDI breaks the degeneracy. We see a suppression of the barrier for

|ML| = 1 and also an enhancement of the barrier for |ML| = 2. The modi-

fication of the potential shape reflects the strong mixing of different partial

waves. To better understand it, we look into the eigenstates of those chan-

nels. For instance, at R = 630 a0, the so-called ML = −2 channel is actu-

ally 0.752× |2,−2〉+0.633× |4,−2〉+0.180× |6,−2〉, the so-called ML = −1

channel is 0.859× |2,−1〉+0.497× |4,−1〉+0.119× |6,−1〉, and the so-called

ML = 0 channel is 0.703× |0, 0〉-0.337× |2, 0〉-0.596× |4, 0〉-0.191× |6, 0〉. The

enhancement of the barrier of the ML = −2 state is mainly due to the strong

coupling to the centrifugal barrier of the |4,−2〉 state and the repulsive DDI

for the |2,−2〉 state. On the other hand, the suppression of the barrier for

ML = −1 is due to the strong attractive DDI between all its components.

The ML = 0 lays in between and has strong mixing to the |0, 0〉 state and

the |4, 0〉 state. Even the |2, 0〉 state itself is not the largest component. The

large repulsive DDI between the |2, 0〉 state and the |0, 0〉 state cancels much

of the other attractive DDI contributions and left this channel less modified.

7.4 E-field dependence and temperature de-

pendence of dipolar collision

We measure the loss rate constant β with respect to the induced dipole.

The experimental procedure is similar as what we discussed in the previous

chapter. We turn on the E-field in 15 to 40 µs after the molecules are prepared

in the ground state. As shown in Fig. 7.2, with less than 1 kV/cm of E-field,
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Figure 7.3: DDI’s modification to molecule-molecular interaction potentials.
(A)The modification of the s-wave potential. The dashed curve is for µ = 0
D and the solid curve is for µ = 0.5 D. The potential becomes more attractive
with the DDI. (B)The modification of the d-wave potentials. The blue dashed
curve is for µ = 0 D. Without the induced dipole, the different ML channels
are degenerate. The d-wave barrier with a height of 17.2 µK is located at
600 a0. For µ = 0.5 D, the DDI breaks the degeneracy of different |ML| and
results in substantially modified heights and locations of the barriers.
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Figure 7.4: β’s dependence on induced dipole moment under different tem-
peratures. The induce dipole moment ranges from 0 to 0.7 D with E-field less
than 1 kV/cm. The data points in black squares, red circles, and blue trian-
gles are measured with sample temperatures of about 400 nK, 700 nK and
1400 nK, respectively. The solid curves of the same colors are close-coupling
calculations with the corresponding sample temperatures. The horizontal
belts indicate the unitarity limit of the s-wave scattering with temperature
ranges of 400 ± 50 nK, 700 ± 50 nK and 1400 ± 100 nK. β increases step-
wisely with a plateau occurs at the unitarity limit of the s-wave scattering.
The overall magnitude of β is smaller and the plateau is vaguer for higher
sample temperature.
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we can already polarize the ground-state molecule up to 0.7 D. The molecules

are held in the ODT for 20 ms. During the holding, the N evolution and the

T evolution are measured. Because of the short holding time, the increase in

T is less than 30%. For instance, the black set of data in Fig. 7.4, the initial

molecule T is about 350 nK, while the average T during the course of holding

is about 400 nK. We do observe for larger β cases, the average T tend to be

slightly larger, which agrees with the anti-evaporation model. For the black

set of data, the average T ranges from 360 nK to 440 nK. From each pair of

evolutions, we fit β according to the two-body loss model.

We see an overall increase of β with the increase of the induced dipole. An

interesting feature is that the enhancement is step-wise. There is a plateau

between 0.4 D to 0.55 D where β cease to increase. The grey belt presents

the s-wave unitarity limit for 400 nK ± 50 nK. The position of the plateau

agrees well with the unitarity limit. Therefore, we attribute the loss before

the second rise to the s-wave and the loss start from the plateau to the d-

wave. For dipolar collisions in the Wigner regime, there is a universal relation

between β and µ, β ∝ µ4(L+1/2)[63, 106]. For identical bosons, βs−wave ∝ µ2

and βd−wave ∝ µ10. Fitting the 400 nK data set, we find βs−wave ∝ µ1.3(0.6)

and βd−wave ∝ µ5.4(2.1), giving another clue that our system is outside the

Wigner regime.

Knowing that our system is outside the Wigner regime, we also investi-

gate the temperature effect. Molecular sample of different temperatures up

to 1400 nK are prepared in ODTs with different trap depths and similar data

acquisition and analysis are performed. The results are shown in red circle

and blue triangle in Fig. 7.4. With the increasing temperature, the overall

magnitude of β decreases which agrees with the observation in the previous

chapter. Meanwhile, the plateau feature becomes vaguer. The s-wave uni-
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tarity limits defined by the two other temperature are also shown in colored

belts in Fig. 7.4, with the red belt for 700 nK ± 50 nK and the blue belt for

1400 nK ± 100 nK.

7.5 Characteristic energy scales

To quantitatively describe and understand the observations, we introduce

the generalized characteristic length for power-law potentials -Cα/R
α,

rα =

(
mCα

h̄2

)1/(α−2)

, (7.5)

and its corresponding characteristic energy[124]

Eα =
h̄2

mr2
α

. (7.6)

When the s-wave potentials are modified with the DDI, the potential doesn’t

strictly follow 1/R6 or 1/R3. An effective α can be extracted by fitting the

potential to -Cα/R
α. The fitting result is not unique and it depends on

the range of potential that you put in your fitting. While the outer bound

show negligible effect in the fitting, we do observe that the inner bound have

some effect. In practice, we consistently take the range from R = 400 a0 to

2000 a0 and fit the s-wave potentials calculated with µ up to 0.7 D. The inner

bound 400 a0 is smaller than r6 so that the contribution of the van der Waals

interaction can be effectively taken into account. Fig. 7.5(A) shows how this

characteristic energy changes as the molecules become more polarized. The

whole figure as shown is divided into three regimes with two vertical dashed

lines at µ = 0.21 D and µ = 0.44 D. Start from the left, in the first regime,

the van der Waals interaction dominates. The weak DDI can hardly make
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significant modifications to the nature of the potential, and α is nearly 6. In

the third regime, the DDI dominates, α is nearly 3 and the van der Waals

interaction is no longer important. The energy values are approximately

constant in both regimes. In between is a transition regime, where the two

interactions are comparable and the value quickly drops to nearly 0 µK from

3 µK. Meanwhile in Fig. 7.5(B), we see β changes almost in a same pace

with the characteristic energy. In the first regime, β show no significant

increase until about 0.21 D, then it quickly increases and saturates at about

0.44 D. The solid curve gives the s-wave contribution from the close-coupling

calculation.

For higher partial wave potentials with barriers, the most proper charac-

teristic energy is the height of the barrier. When the barrier height is much

larger than the thermal energy, the molecules are prevented from entering

the short range and there is little chance for inelastic processes via those

channels. When the barrier height is comparable to the thermal energy, the

inelastic processes become available through quantum tunneling to the short

range. Fig. 7.6(A) shows the potential heights of channels of different |ML|

with respect to µ. In Fig. 7.6(B), β’s are shown with the s-wave unitarity

limit subtracted. At about µ = 0.54 D where β start to rise again. The

barrier of the |ML| = 1 channels is lowered down to 5T . Thus, the loss is

mainly due to collisions via |L = 1,ML = 1〉 and |1,−1〉 channels. The solid

curve in Fig. 7.6(B) shows the d-wave contribution from the close-coupling

calculation. More than 99% of the predicted contribution is from channels

of |ML| = 1.
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Figure 7.5: (A)The generalized characteristic energy Eα for s-wave potential,
Es−wave with respect to µ. (B)β attributed to the s-wave scattering with
respect to µ. The data points are from the black squares in Fig. 7.4 with µ
¡ 0.5 D. The vertical line at µ = 0.21 D marks the position where the DDI
starts to be comparable with the van der Waals interaction. The vertical line
at µ = 0.44 D represents the point when Eα is lowered to about T . The grey
horizontal belt represents the inelastic s-wave unitarity limit for T = 400 ±
50 nK. The black solid curve gives the prediction of the s-wave contribution
of β from the close-coupling calculation.
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7.6 Conclusion

We report in this chapter the investigation of collisions between ultracold

ground-state NaRb molecules in electric fields with induced electric dipole

moments as large as 0.7 D. We observe a stepwise enhancement of losses

due to the coupling between different partial waves induced by the increas-

ingly stronger anisotropic dipolar interactions. Varying the temperature of

our sample, we find good agreement with theoretical loss rates assuming

complex formation as the main loss process. The results shed light on the

understanding of complex molecular collisions in the presence of strong dipo-

lar interactions and also demonstrate the versatility of modifying molecular

interactions with electric fields.

2 End of Chapter.



Chapter 8

Collisions in molecular

mixtures

8.1 Overview

While the E-field mixes the molecular states of different parities to induce

DDI, DDI naturally arises in a mixture ensemble consisting of two rotational

states of different parities in the absence of an E-field. Such DDI is also

called the resonant dipole interaction as a result of two molecules sharing

the rotational excitation back and forth, similar to the origin of the 1/r3

potentials of homonuclear dimers. The mixture ensemble can be initialized

and controlled with MWs. Comparing with using E-field, such a system has

several advantages. For example, the DDI can be switched on or off in a very

short time scale. Combining the use optical potentials, it is possible to in-

duce DDI locally by addressing single molecule or a single layer of molecules

in optical lattices. Moreover, the DDI is state-dependent, one can tune the

strength by preparing molecules in different states simply utilizing MWs of

different frequencies. In this chapter, we present our investigation on colli-

101
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sions in molecular mixtures. We find that the state-dependent DDI directly

reflects in the measured loss rate constants.

8.2 Molecular Hamiltonian

Since a number of molecular states are involved in this chapter, it is necessary

to take a closer look at the molecular Hamiltonian first. The more degrees of

freedom of a molecule than an atom make the molecular Hamiltonian more

complicated than the atomic ones. Consider a diatomic molecule exposed in

a homogeneous B-field, the Hamiltonian can be written as[125, 90, 126, 127,

128]

H = Hrot +Hhf +HZ

Hrot = Bv
~J2

Hhf =
∑
i

~Vi · ~Qi +
∑
i

ci ~J · ~Ii + c3
~I1 · ~T · ~I2 + c4

~I1 · ~I2

HZ = −grµN ~J · ~B −
∑
i

gi(1− σi)µN ~Ii · ~B.

(8.1)

The Hamiltonian are divided into three parts, the rotational part Hrot, the

hyperfine part Hhf and the Zeeman part HZ . In the rotational part, Bv is

the rotational constant, ~J is the rotational angular momentum operator. The

rotational part simply treats the diatomic molecule as a rigid rotor. In the hy-

perfine part, the first term is the electric quadrupole interaction, this energy

is between an E-field gradient at the nucleus i and the nuclear quadrupole

dipole of nucleus i. The coupling constants are (eqQ)1 and (eqQ)2. This

term dominates for excited rotational states but vanishes for J = 0. The sec-

ond term is the direct coupling between the rotation and the nuclear spins

with spin-rotation coupling constants c1 and c2. The rotational motion of

a molecule generates a B-field at the nucleus i. The third and fourth term
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describes the tensor and the scalar coupling between the two nuclei. In the

Zeeman part, the rotational Zeeman shift and the nuclear Zeeman shift are

included. Here g’s are the Landé g factors, µN is the nuclear magneton. σi

is the isotropic part of the nuclear shielding tensor ~σi. In our NaRb case,

the dummy index i iterates through Na(1) and Rb(2). Table 8.1 shows the

relevant coupling constants for the ground vibrational state NaRb molecule.

Table 8.1: Coupling constants of molecular Hamiltonian for ground vibra-
tional state NaRb molecule

Constant Value Ref.
Bv 2.0896628(4) GHz [123]

(eqQ)1 -0.139(40) MHz [123]
(eqQ)2 -3.048(13) MHz [123]
c1 60.7 Hz [129]
c2 983.8 Hz [129]
c3 259.3 Hz [129]
c4 6.56(23) kHz [123]

g1(1− σ1) 1.484(1) [123]
g2(1− σ2) 1.832(1) [123]

gr 0.001(6) [123]

With the coupling constants in Table 8.1, we can solve the molecular

Hamiltonian and obtain all the molecular states. Fig. 8.1 and Fig. 8.2

show all the molecular states in the v = 0 level, with J = 0 and J = 1

respectively up to 350 G. In Fig. 8.1, the two red dots at 335.2 G mark

the two states that are used in the following mixture experiments. The

lower one is |J = 0,mJ = 0,mI,Na = 3/2,mI,Rb = 3/2〉 and the upper one is

|0, 0, 3/2, 1/2〉. In Fig. 8.2, the two red dots at 335.2 G mark the two states

that are used in the following mixture experiments. The other four black

dots in Fig. 8.2 mark the other states that are available via MW transition

start from the |0, 0, 3/2, 3/2〉 state.
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Figure 8.1: J = 0 molecular levels with respect to B-field. The red dots mark
the states we use in the mixture collision experiments at B = 335.2 G.
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Figure 8.2: J = 1 molecular levels with respect to B-field. The red dots
mark the states we use in the mixture collision experiments at B = 335.2 G.
The other four black dots mark the other states that are available via MW
transition from the absolute ground state |0, 0, 3/2, 3/2〉.
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8.3 State-dependent DDI

The collisions between a molecule without rotational excitation and a molecule

with one quantum of rotational excitation is highly dipolar.

We take the molecular state without the excitation here as the absolute

ground state |0, 0, 3/2, 3/2〉. For simplicity, it will also be referred to as

|0, 0〉 hereafter in this chapter. And among the six accessible J = 1 states

start from the |0, 0〉 state, two states are picked for the collision experiment.

The lower one, also the lowest state with J = 1, is 0.91 × |1, 0, 3/2, 3/2〉 −

0.42 × |1, 1, 3/2, 1/2〉. Because it has the most component of mJ = 0, it is

referred to as |1, 0〉 for simplicity. The upper one is |1, 1, 3/2, 3/2〉. which

is a fully-stretched state with all angular momentum projection taking the

largest value. It can not get mixed with other state, and it is referred to as

|1, 1〉.

To describe the mixture collision and reveal the state-dependent DDI, we

need to first symmetrize the internal wave functions because the particles

are identical. Assuming the quantum numbers α1 6= α2, the internal wave

function φα(~ρ1, ~ρ2) = φα1(~ρ1)φα2(~ρ2) should be symmetrized as

φαη(~ρ1, ~ρ2) =
1√
2

[
φα1(~ρ1)φα2(~ρ2) + ηφα2(~ρ1)φα1(~ρ2)

]
. (8.2)

Combining the partial wave (l,ml), the basis function Φαlmlη(~ρ1, ~ρ2, r̂) =

φαη(~ρ1, ~ρ2)Y ml
l (r̂) is formed. The introduced parameter η takes value from

±1. The basis is a symmetrized basis with η = 1 and an anti-symmetrized

basis with η = −1. Considering the permutation symmetry of the basis.

Because the molecules are identical bosons, the basis is unchanged under the

permutation operation, P̂Φαlmlη = +Φαlmlη. On the other hand, from the

expression of the basis, one can find P̂Φαlmlη = η(−1)lΦαlmlη. Here, η comes
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from the symmetrization scheme of the internal wave function and (-1)l comes

from the spherical harmonics of the partial wave. Therefore, η(−1)l = +1.

This indicates that only even partial waves are available for symmetrized

basis and only odd partial waves are available for anti-symmetrized basis.

Substituting the symmetrized or anti-symmetrized basis into the multipole-

multipole expansion of Eq. 2.27, one can find the strong DDI between the

molecules and its dependence on the choice of the states. Comparing the

interaction between molecules in an E-field, one can find that for collisions

between |0, 0〉 and |1, 1〉, the effective dipole is d/
√

6. For collisions between

|0, 0〉 and |1, 0〉, the effective dipole is about 0.55 d. Here, d is the perma-

nent dipole of the molecule and the DDI in the symmetrized basis and the

anti-symmetrized basis will have the opposite sign. Note how strong the

effective dipole is. Take d = 3.2 D, 0.55 d = 1.76 D and d/
√

6 = 1.31 D,

easily surpassing the maximum induced dipole of 1 D so far reached in our

experimental system with E-field.

8.4 Procedures

Now we introduce the procedures of the mixture collision experiments. We

initialize the 50/50 molecular mixture with a π/2-pulse applying on the pure

|0, 0〉 sample. The mixture sample is then held in trap for a variable hold-

ing time. The number of remaining molecules in both states are measured.

However, so far, we can not do it in a single shot. The populations in the two

states are measured in two successive shots. A final π-pulse can exchange

the population between the two states, and only the population finally in the

|0, 0〉 state actually is measured. Besides the molecule number, the temper-

ature is also measured.

In practice, we use large MW power. The MW transition Rabi frequency
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is Ω = 2π×83 kHz. Accordingly, the pulse durations are 6 µs and 12 µs for

a π/2- and a π-pulse respectively. The short pulse duration time is crucial

in this experiment. With longer pulses, the collisional loss during the course

of the pulses can not be negligible, and that makes π/2- and π-pulses not

act like what they should do and complicates all the data analysis hereafter.

One thing need to pay attention to is that the short pulse duration and large

Rabi frequency broadens the line width of the transition, we need to check

that the pulse will not drive the population to undesired states. The line

width defined by the power is
√

2Ω = 2π × 117 kHz. In our case, we check

that the nearest available excited states at 335.2 G is 247 kHz away for the

|1, 0〉 state and 320 kHz away for the |1, 1〉 state. Therefore, the population

in undesired states is negligible.

Initially, for N evolution, five different holding times are taken in a du-

ration of 4 ms. To simplify the measurement, we switch to only measuring

holding time = 0 ms and 4 ms afterwards. Meanwhile, to ensure the accuracy

of the measurement, we double the number of shots for each holding time.

We find the two method gives the same β within the mutual uncertainties. In

experiments involving MW pulses, we find the number fluctuation somehow

becomes larger. The second method with more points for each holding time

reduces the variation in number and actually results in a smaller uncertainty

of β. Fig. 8.3 shows an example measurement. In the temperature determi-

nation, the measurement starts from 0 ms all the way to 4 ms with a time

interval of 0.5 ms. We are not really measuring the temperature evolution

here. For such a short measurement with the maximum holding time of 4 ms,

we can safely assume the temperature is a constant value. However, there

is a residual breathing motion, so we need to measure multiple points to get

the mean size instead of a single point.
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Figure 8.3: An example of measuring the mixture collision. The 50/50 mix-
ture of the ground state and the rotational excited state is initialized with
a 6-µs π/2 MW pulse. The starting point of the measurement is 3 ms after
the initialization for the coherence to die out. Population in the rotational
excited state (A) and the ground state (B) is measured at holding time = 0
ms and 4 ms. The solid curves are the fitting results according to Eq. 8.3.
(C)The temperature is determined by measuring the cloud size after TOF
for holding times start from 0 ms to 4 ms with an interval of 0.5 ms. The size
is oscillating because of the breathing motion of molecules and the sinusoidal
function is used to fit out the mean size.
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β strongly depends on the coherence of the ensemble. For an ensemble

with full coherence, β would be twice as that of an ensemble without any

coherence. And, β of an ensemble with partial coherence would lie in between

these two values. The coherence of our molecular mixture here decays as the

holding proceeds. For simplicity, we only measure β when no coherence

exists. To this end, the starting point of the holding time here is not the

immediate instance after the π/2-pulse initialization, but 3 ms after it. We

confirm this by measuring the decay of the Rabi oscillations as shown in

Fig.8.4. In either case, we see that the coherence dies out at holding time =

3 ms. For a 50/50 molecular mixture held in trap, the actual coherence time

should be much shorter than that appeared in the Rabi oscillation.

In this experiment, the polarizations of the two ODT beams are perpen-

dicular to each other with the angle with respect to the quantization B-field

in the vertical direction being 0◦ and 90◦. Under such circumstances, we

check the trap frequencies with our slosh motion measurement in all three

directions for molecules in different rotational states. We find they are basi-

cally the same within the mutual uncertainties. Evaluate the product of the

three trap frequencies f 3 = fxfyfz, f
3
|0,0〉/f

3
|1,0〉 = 0.98(7) and f 3

|0,0〉/f
3
|1,0〉 =

1.01(8). So as a good approximation, we assume the trap frequencies don’t

depend on the internal state and the molecules in different states share the

same density profile.

With the above considerations, we arrives at the following fitting model

for the N evolution,

dNg(t)

dt
= −Aβgg

Ng(t)
2

T 3/2
− Aβeg

Ng(t)Ne(t)

T 3/2
,

dNe(t)

dt
= −Aβee

Ng(t)
2

T 3/2
− Aβeg

Ng(t)Ne(t)

T 3/2
.

(8.3)

Here, A = (ω2m/4πkB)3/2 is a constant with kB the Boltzmann constant, m
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Figure 8.4: Rabi oscillation decay between the rotational excited state
|1, 1〉(A), |1, 0〉(B) and the ground state |0, 0〉. The decay time constant
is 590 µs for (A) and 360 µs for (B). The decay time constant of the Rabi
oscillation sets an upper limit for the decay time constant of the 50/50 molec-
ular mixture. The result confirms that there is no coherence in the ensemble
for measurements start from 3 ms after the MW initialization.
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the mass of the molecule, and ω the geometric mean of the trap frequencies.

The subscript g and e stand for the ground state and the excited state respec-

tively. The temperature T is given by the size measurement as in Fig. 8.3(C).

For βee, we take it the same value as βgg in the fitting. That is, βee = βgg =

β0 × (T/T0)b where β0 = 3.4 × 10−10 cm3 s−1, T0 = 0.97 µK and b = -0.38.

We confirm that βee’s are similar to βgg with pure samples of excited-state

molecules. Fig. 8.5 shows the comparison. With those quantities given, we

fit the N evolutions of the two states simultaneously to extract βeg. The

solid curves shown in Fig. 8.3(A) and (B) are the fitting curves to the data.
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Figure 8.5: Comparison between βgg of a pure |0, 0〉 sample (grey) and βee of a
pure |1, 1〉 sample (black) and a pure |1, 0〉 sample (red). Similar magnitudes
and T -dependence are found. It indicates that as a good approximation, we
can take βee the same value as βgg of the ground state in the data analysis
of mixture collisions.
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8.5 DDI-dependent loss and temperature de-

pendence

We perform the measurement with different sample temperatures in ODTs of

different depths. The extracted βeg’s are summarized in Fig. 8.6. Here, points

in black are βeg’s between |0, 0〉 and |1, 0〉, and points in red are βeg’s between

|0, 0〉 and |1, 1〉. Qualitatively, we observe that the relative comparison of βeg

agrees with the underlying DDI strength. Within the temperature range

covered, the βeg relates to |1, 0〉 is about 2.3 times larger than the βeg relates

to |1, 1〉. Both case show very weak dependence within the temperature

range, but there is a qualitative difference that the sign of the dependency is

opposite.

The exact calculation for the J = 0 and J = 1 mixture collision involves

too many molecular states and is almost an intractable problem. Simplifica-

tions need to be made to reduced the number of states included. Since the

hyperfine quantum number simply acts as spectators in the collisions, there-

fore we only select those dressed states that contains considerable component

(>0.15) of the bare states with mI,Na=3/2, mI,Rb=1/2 and/or mI,Na=3/2,

mI,Rb=3/2. To check the validity of this simplification, we calculate the adi-

abatic collision channels with and without the simplification. We see the

approximated calculations only deviate slightly from the exact calculation.

Due to the symmetry constraints, the J = 0 + J = 1 collision can not

relax to J = 0 + J = 0. Therefore, the |1, 0〉+|0, 0〉 channel is the low-

est channel and no inelastic process is allowed. All loss is attributed to the

complex formation. On the other hand, there are several available chan-

nels below |1, 1〉+|0, 0〉, so both complex formation and hyperfine changing

collision contribute the loss.
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for |0, 0〉+|1, 1〉 with only the complex formation but without the hyperfine
changing collision.
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Figure 8.7: Rate constants for the mixture collision grouped by partial wave
projection ml and inversion symmetry εI . (A) is the complex formation rate
constant for |0, 0〉+|1, 0〉. (B) and (C) are the complex formation and the
hyperfine changing collision rate constant for |0, 0〉+|1, 1〉, respectively.
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During the collision, the inversion symmetry εI = ±1 and the total quan-

tum number M are conserved. The loss rate constant are calculated for ml

from -5 to 5 with the εI = 1 and εI = −1 symmetries. The maximum partial

wave included is l = 10. Fig. 8.7 shows the loss rate constants with respect to

the collisional energy, grouped according to ml and εI . Panel (A) shows the

complex-formation rate constant for the |1, 0〉+|0, 0〉 case. Panel (B) and (C)

show the complex-formation rate constant and the hyperfine changing colli-

sion rate constant for the |1, 1〉+|0, 0〉 case, respectively. We observe here due

to the strong DDI, at the sub-µK regime, a number of partial waves already

contribute considerably to the loss. With the stronger DDI, the |1, 0〉+|0, 0〉

case also give higher rate constants on average. Due to the different signs of

the DDI in the two cases, the channels contribute the most in the two cases

have different inversion symmetry. Compare Fig. 8.7(B) and (C), we find in

the temperature range of interest, the loss from hyperfine changing collisions

are less severe, about one order below the complex formation.

Summing up all the partial waves and averaging it over the Boltzmann

distribution, we obtain the theoretical predictions shown in dashed lines in

Fig. 8.6. We see a good agreement between the theoretical and the experi-

mental result both in magnitude and temperature dependency without any

free parameter. Now, we confirm the rate constants agree with the magni-

tude of the DDI both theoretically and experimentally. However, the real

collision problem has its complexity different from toy models, preventing

us from giving the naive inference. The complexity comes from the relative

position of the collision channels. The |1, 0〉+|0, 0〉 channel is the lowest one,

so couplings to other channels all push this channel downward. On the other

hand, the |1, 1〉+|0, 0〉 channel lives amid a bunch of channels, so there are

also couplings that raise the channel. In the calculation, we do see the bar-
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riers induced from those couplings at an intermolecular distance about 1000

a0. In Fig. 8.6, the lowest orange line gives only the complex formation rate

constant for the |1, 1〉+|0, 0〉 case. Although the data seem suggest the ex-

istence of the hyperfine changing collision, the difference is still too small to

draw such a conclusion. It would be interesting to observe the products with

deeper traps or other techniques, and measure the state-to-state collision rate

in the future.

8.6 Mixture collision without DDI

As a complement to collisions with DDI, we finally investigate the mixture

collision without DDI. This is achieved by preparing a hyperfine mixture

within the J = 0 states. The two states as indicated in Fig. 8.1 are the

|mNa = 3/2,mRb = 3/2〉 and the |3/2, 1/2〉 state. Since we need an ensemble

without the coherence, the population flow between the two hyperfine state

always transit at the lowest state of J = 1, instead of via a two-photon

process. Therefore, most parts of the experiment remains the same but some

extra MW π-pulses are added if neccessary. For example, to initialize half of

the population in the |3/2, 1/2〉 state, we first drive half of the population to

the lowest state of J = 1, wait for 2 ms to let the coherence die out, and then

apply another π-pulse to make all the population in the excited state down

to the |3/2, 1/2〉 state. The preliminary results of this mixture in shown in

Fig. 8.8. The dashed line shows the theoretical prediction from the universal

model[64]. Overall, we see that the β here are all lower than those with

DDI, which agrees with the intuitive picture that DDI enhances the collision.

However, to our surprise, the β here sometimes appears to be quite different

in magnitude. Among the five points here, two are high above and three lie

below. The ratio between the high values and the low values can be as large
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as 3. Possible reasons of this phenomena might come from two aspects. First

is the technical aspect. Technically, it is more difficult to extract βeg here

because βee and βgg are comparable with βeg. Meanwhile, the introduction of

more MW pulses amplifies the fluctuations in population. The extraction of

βeg might be less reliable considering those factors. Another reason might be

from the science aspect. There might really be some resonances observable

between such a hyperfine mixture. Although, we are supposed to perform

the experiment under the same B-field of 335.2 G every time, there may be

a tiny B-field drifts in a daily time scale. The slight change in B-field may

make the system sometimes on resonance and sometimes not, resulting in

starkly different βeg. The hyperfine mixture collision is still a topic for future

finer investigations.

2 End of Chapter.
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Figure 8.8: βeg for hyperfine mixture of |mNa = 3/2,mRb = 3/2〉 and
|3/2, 1/2〉. The dashed curve represents the prediction from the universal
model.



Chapter 9

Atom-molecule collisions

9.1 Overview

It is believed that for ultracold NaRb molecules, the density of resonances

induced by the existence of transition complex states is too high to resolve.

Therefore, what we observe is always a smoothened, average effect from

a large number of resonances under current experimental conditions. The

case of the atom-molecule collision, however, the resonances should be much

sparser. In the context of atom-molecule collision, the transition complex is

a trimer. Compared with the molecule-molecule collision, the reduction in

degree of freedom as well as the weaker van der Waals interaction result in

a fewer transition complex states. See Table 9.1 for the strength of the van

der Waals interaction.

One important benefit that the atom bring along is the controllability

on the collisional threshold level. The ground-state molecule don’t possess

a magnetic dipole whereas the atoms do have. The Zeeman shift, which

is a function of B-field, serves as a control knob to tune the threshold level.

Hence, there is a possibility to scan and to resolve individual resonances with

120



CHAPTER 9. ATOM-MOLECULE COLLISIONS 121

the atom-molecule collision. Once we can scan out a spectrum of resonances,

the statistics of the resonance position, resonance width etc. can be extracted

and provide evidence about whether the underlying scattering is chaotic. The

chaotic behavior has been discovered and studied in systems such as complex

atoms and ions[130], solid-state systems[131, 132], nuclear systems[133, 134]

and recently in magnetic atoms[135, 136, 137, 138].

Considering the atom-molecule collision with NaRb molecule, there are

two possible species combinations. One is Na+NaRb and the other is Rb+NaRb.

For all those particles in their own ground state, the two combinations

have the distinct chemical reactivity according to Table 6.1. The chemi-

cal reaction channel Na + NaRb → Na2 + Rb is open while the channel

Rb + NaRb→ Na + Rb2 is closed. Therefore, we are also capable of investi-

gating collisions with controlled chemical reactivities on the atom-molecule

platform.

Table 9.1: Van der Waals interaction in atom-molecule collision and loss rate
constant from the universal model.

Species C6(a.u.) Ref. TvdW(µK) EvdW(MHz) βu(10−10 cm3/s)
Na+NaRb 3948 [59] 275.4 5.7 1.36
Rb+NaRb 6896 [59] 51.1 1.1 0.78

9.2 Tuning collisional threshold

Generally, the Zeeman shift should be calculated by numerically diagonaliz-

ing the full Hamiltonian of a system that exposed in a B-field. However, for

the ground-state manifold of the D transition of Na and Rb, there exists an

analytical formula for it. That is the Breit-Rabi formula[139, 140],

E = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2
(1 +

4mx

2I + 1
+ x2)1/2 (9.1)
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where I is the nuclear spin, gJ is the fine structure Landé g-factor, gI is

the nuclear Landé g-factor, ∆Ehfs = Ahfs(I + 1/2) is the hyperfine splitting,

m = mI ± 1/2 and x = (gJ − gI)µBB/∆Ehfs. Fig. 9.1 shows the Zeeman

splitting for the ground states of Na and Rb, with respect to B-field. We

perform the experiment under B-field = 335.2 G, therefore one quantity we

care about is the derivative of the energy with respect to the B-field at 335.2

G. In Fig 9.1, this derivative for the three states of total atomic angular

momentum F = 1 for both atom are displayed.

Another aspect of the tunability comes from the fact that different atomic

state can be chosen. This tunes the threshold in a larger energy scale and

changes the number of the open channel. For the Rb+NaRb case, consid-

ering only the s-wave scattering, the open channel number is 1, 3, 6 for the

Rb atom in the |F,mF 〉=|1, 1〉, |1, 0〉, |1,−1〉 state respectively. This open

channel number can be simply counted based on the magnetic quantum num-

ber conservation. For instance, when the Rb atom is in the |1, 0〉 state, the

total magnetic quantum number is M = 0 + (3/2 + 3/2) = 3, where the two

numbers in the bracket represent the nuclear magnetic quantum numbers

of the two constituent atoms of the molecule. Then there are three com-

binations that has a energy no higher than the entrance channel, they are

0 + (3/2 + 3/2), 1 + (1/2 + 3/2), 1 + (3/2 + 1/2).

9.3 Density of trimer states

Ref. [141] estimates the density of trimer states for a series of atom-molecule

combination. In their method, short-range interaction potential is approxi-

mated by a Lennard-Jones potential

V (L)
sr (R) =

C12

R12
− C6

R6
+
L(L+ 1)

2mrR2
. (9.2)
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Figure 9.1: (A) 23Na 32S1/2 (ground) level hyperfine structure in an external
B-field. The Zeeman shift at B-field = 335.2 G is -0.048, -0.657 and 1.074
MHz per Gauss for |F,mF 〉 = |1,−1〉, |1, 0〉 and |1, 1〉 respectively. (B) 87Rb
52S1/2 (ground) level hyperfine structure in an external B-field. The Zeeman
shift at B-field = 335.2 G is 0.543, -0.191 and 0.833 MHz per Gauss for
|F,mF 〉 = |1,−1〉, |1, 0〉 and |1, 1〉 respectively.

Knowing the C6 coefficient, the C12 coefficient can be approximated by C12 =

C6/4De, where De the dissociation energy of the ground trimer state AB2

into AB + B. After formulating the potentials, the bound state energies are

calculated. The available states are counted according to the conservation

laws. During a collision, the total angular momentum of the partial wave

and the molecular rotation is assumed to be conserved, meanwhile, the total

magnetic quantum number M is conserved.

For Rb + NaRb collision, based on the calculation result in Ref. [141],

the density of trimer states is 0.14 states per EvdW. Namely, 2.73 states per

mK and 0.13 states per MHz. The above density of states is only considers

the rotational and the vibrational degree of freedom. If the nuclear spin can

flip during the collision time, the available density of states should multiply

by a factor of 4. Therefore, the density of NaRb2 states is between 0.13 and

0.52 states per MHz. For Rb in the |1, 1〉 state, the energy shift is -0.833

MHz/G. Therefore, converting the density of trimer states with respect to

B-field is 0.16 to 0.63 states per G.
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9.4 Measuring atom-molecule loss

The time sequence for measuring the atom-molecule collision is similar to

other collision experiments. The low conversion of the magnetoassociation

leaves a large number of residual atoms. By selectively removing one of

the species with the MW and the laser, we can successfully obtain a atom-

molecule mixture. The number of the atom is usually one order above the

number of the molecule. The large ratio makes the molecule-molecule col-

lision insignificant and benefits the extraction of the atom-molecule colli-

sion rate constant. We measure the temperature with the single-shot TOF

method. We find the atomic cloud and the molecular cloud is not in ther-

mal equilibrium. The typical atomic temperature is 400 nK and the typical

molecular temperature is 700 nK.

Fig. 9.2 and Fig. 9.3 show the number evolutions for the atoms and the

molecules. We see a rapid decay in molecule number and the atom number

essentially remains the same. For the data analysis, we always take the data

within the first 20 ms. We find that within the first 20 ms, the temperature

doesn’t increase as much as the case of molecule-molecule collision. This may

be partially due to the fact the atom-molecule collision is more like a one-body

process for the molecules, and partially due to the possible thermalization in

the cold atomic reservoir.

We fit the experimental data with the following model,

dn

dt
= −βmmn2 − βamnan. (9.3)

Here βmm is the loss rate constant between the molecules and βam is the

loss rate constant between the atom and the molecule. na is the density

of the atom and n is the density of the molecule without the subscript m
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Figure 9.2: Ground-state NaRb molecule loss with Na atoms in |1, 1〉 state.
(A) shows the number evolution of the molecules and (B) shows the number
evolution of Na atoms.
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Figure 9.3: Ground-state NaRb molecule loss with Rb atoms in |1, 1〉 state.
(A) shows the number evolution of the molecules and (B) shows the number
evolution of Rb atoms.
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for simplicity. Written it in terms of the total number we measure in the

experiment,
dN

dt
= −β̃mmN2 − β̃amNaN, (9.4)

where

β̃mm = βmm

∫∫∫
α2
mdxdydz = βmm × (ω2

mmm/4πkBTm)3/2 (9.5)

and

β̃am =

∫∫∫
αmαadxdydz = βam × ω3

mω
3
a(
mmma

2πkB
)3/2

×e
−

∆2mmmaω
2
m,yω

2
a,y

2kB(mmTaω
2
m,y+maTmω

2
a,y) × 1√

mmTaω2
m,x +maTmω2

a,x

× 1√
mmTaω2

m,y +maTmω2
a,y

× 1√
mmTaω2

m,z +maTmω2
a,z

.

(9.6)

Here, m, ω and T represent mass, trap frequency and temperature respec-

tively with subscript a for the atom and m for the molecule. α is the nor-

malized density distribution with the total number factored out,

αi(x, y, z; fx, fy, fz, T ) =
ni(x, y, z)

Ni

. (9.7)

Note how complex the expression for β̃am is. This is because the atomic cloud

and the molecular cloud are partially overlapped due to the different trap

frequencies and the different gravity sag. For a harmonic trap, the gravity

sag is g/ω2
y, where g is the gravitational acceleration and ωy is the trap

frequency along the vertical direction. The ∆ parameter in Eq. 9.6 represent

the difference between the gravity sags. If we assume the temperatures and

the atom number can be regarded as constants during the course of the

measurement, Eq. 9.4 can give analytical result
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N(t) =
N0Naβ̃am

eNaβ̃amtNaβ̃am + (eNaβ̃amt − 1)N0β̃mm
, (9.8)

where N0 is another free parameter besides βam, meaning the initial value

for N .

An important difference between the atom-molecule collision and the

molecule-molecule collision is, the atom-molecule collision is in the Wigner

regime. This is because the van der Waals interaction is much weaker between

a molecule and an atom. The corresponding van der Waals temperature, as

shown in Table 9.1, tend to be much larger than the atomic or the molecu-

lar temperature. The collision rate in the framework of the universal model

can therefore be calculated easily according to Eq. 2.19 without resorting to

numerical methods.

We take five sets of data, two for Rb+NaRb and three for Na+NaRb.

The results are summarized in Fig. 9.4. The horizontal axis here is m
−3/4
r C

1/4
6

in the atomic unit. Under this scale, the loss rate constant of the universal

model shows up in a straight line. The dashed black line shows this prediction

from the universal model. The two grey dashed lines in the vertical direction

at m
−3/4
r C

1/4
6 = 0.496 and m

−3/4
r C

1/4
6 = 0.871 mark the positions for the two

cases. The temperature uncertainties dominate the error bars. We see the

good agreement between the measured value and the theoretical prediction.

The relative ratio of the β magnitude between the two cases also agree with

the universal model. However, the Rb+NaRb case is nonreactive, and the

density of trimer states is supposed to be low, it ought not to fall on the

same line. On possible reason is that we get this value only by accident at

the B-field of 335.2 G. Therefore, if we tune the B-field, we ought to see some

variations in the loss.
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9.5 B-field dependence

To investigate the B-field dependence of the Rb-molecule collision, we hold

the mixture at each desired B-field for 4 ms and measure the remaining

molecule number. The Rb atom number is 3.5×104. Since the STIRAP need

to be performed at 335.2 G, we first reach 335.2 G and ramp to the desired

B-field in 0.5 ms after the STIRAP. The time sequence is symmetric for the

backward STIRAP. Fig. 9.5 shows the result from 325 G to 339 G. In a

total range of 14 G, according to the estimation, 2 to 9 resonances should be

seen. However, the experimental result only shows a overall decline due to

the condition drift and no structure is seen within the number fluctuation.

This may indicates that the available trimer states may be much larger than

the predicted number, or the widths of the resonances with the trimer states

are so large that still make the resonances overlapping. This may also due

to some other factors we are unaware of. The reason why the Rb+NaRb

collision agrees with the universal model is still unknown, and it is one thing

that need to be figured out in the future.

2 End of Chapter.
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Figure 9.5: The B-field dependence of the ground-state molecule loss with
Rb atoms in |1, 1〉 state. The remaining molecule number is measured after
a fixed holding time of 4 ms after the target B-field is reached with a ramp
in 0.5 ms from 335.2 G. The Rb atom number is 3.5×104. Despite an overall
decline due to the condition drift and no structure is observed.



Chapter 10

Molecular coherence

10.1 Overview

Coherence is one of the central concepts in quantum mechanics. A robust

coherence, or a long coherence time, is the prerequisite of many physical ap-

plications, such as the precision measurement and the quantum computation.

Since the experimental realizations of the UPM production, understanding

and extending the coherence time of the UPM sample has been one of the

major research topic[21, 142]. Regarding the importance of it, an exploration

on the coherence of the ground-state NaRb molecule is still necessary, though

this thesis is mainly about the collisions. There is no doubt the investigation

on the molecular coherence will be the foundation for many of the future

works.

In fact, the coherence and the collision are also closely linked. This can

be understood in the following three aspects. First, the coherence can affect

the collisional properties. For example, in an ensemble of identical bosonic

molecules, the collision rate is larger if more coherence is preserved. Second,

the collisional properties can affect the coherence, the collisional dephasing is
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one of the terms that can cause the decoherence. Third, both the coherence

and the collisional properties can be greatly depend on the inter-particle

interaction such as the DDI, and they provide two different aspects to reveal

the underlying interactions.

In this chapter, we present our investigation on the coherence evolution

of superposition states of NaRb molecule in a bulk sample.

10.2 Anisotropic polarizability

The ground-state molecule’s polarizability depends on the angle between the

quantization field and the linear polarization of the trapping beam. Mean-

while, the molecule’s rotational quantum number and its projection onto the

quantization axis effect this angular dependence[143]. Pictorially, this can

be understood by the angular distribution of the wave function of rotational

state |J,mJ〉.

Fig. 10.1 shows several examples of wave functions of different rotational

states. The figures are plotted in 3D spherical coordinates. The radial dis-

tance represents the probability amplitude and the color represents the phase.

For the simple model of rigid rotor, the eigen wave functions are the spher-

ical harmonics. The different spherical harmonics possess different angular

distributions. For example, the |0, 0〉 state’s wave function distribution is

isotropic, so is its polarizability. On the other hand, the |1, 0〉 state or the

|1, 1〉 state possesses an obvious anisotropic characteristic and that agrees

with their polarizabilities.

To solve the exact ac-Stark shift for each state, we need to incorporate

the ac-Stark term, which describes the molecule-light interaction, into the

molecular Hamiltonian. The matrix elements of the ac-Stark term for J = 1
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Figure 10.1: Spherical harmonic wave functions of different rotational states.
Plotted in the 3D spherical coordinates, the radial distance represents the
probability amplitude and the color represents the phase of the wave function.

states are as follows,

H = −α3×3I

α11 =
α‖ + 4α⊥

5
sin2 θ +

3α‖ + 2α⊥
5

cos2 θ

α22 = α33 =
2α‖ + 3α⊥

5
sin2 θ +

α‖ + 4α⊥
5

cos2 θ

α12 = −α13 =
√

2
α‖ − 3α⊥

5
sin θ cos θ

α23 = −
α‖ − α⊥

5
sin2 θ.

(10.1)

Here, I is the trapping beam intensity and α is a 3 by 3 matrix with the index

1 to 3 represent the rotational state |1,−1〉 to |1, 1〉. The α‖ and α⊥ are the

reduced polarizabilities describing the averaged contributions from excited

rovibrational states on the parallel and perpendicular direction with respect

to the inter-molecular axis[144, 20]. For ground-state NaRb molecules, α‖ =
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5.89554×10−2 MHz cm2/kW and α⊥ = 1.90617×10−2 MHz cm2/kW[92].

10.3 Magic angle

Generally, due to the angular-dependent polarizability, the polarizabilities of

two rotational states are not the same if the linear polarization direction of

the trapping beams is not fine tuned. The ac-Stark shifts of two rotational

states then gives a spatial-dependent energy difference between the two states

and introduces decoherence into the two-level system[145]. For most times,

this single-particle decoherence is the major source that limits the coherence

time for UPMs[146]. Fortunately, for a certain choice of state pair, there may

exist a specific angle under which there is no differential ac-Stark shift and

the coherence decay rate can be greatly suppressed. We call this angle the

magic angle[143, 20]. At the magic angle, the polarizability defined locally as

α̃ = −∂E/∂I are the same for the two states. Note that −∂E/∂I does not

necessarily equal to α = −E/I. In other words, when the shapes of the trap

bottom are the same for the two states, the trap depths are not generally

the same. This is because the energy does not only linearly depend on I but

also some higher order correction terms of I. The defined α̃ is therefore also

a function of I.

To find out the magic angle condition, we first need to figure out the

intensity of the trapping beams. In Fig. 10.2(A), we show that we tune the

ODT beam linear polarization direction and observe the frequency shift of

the transition from |0, 0〉 to |1, 0〉 (all states discussed in this chapter have the

most component ofmNa = mRb = 3/2). By fitting the molecular Hamiltonian

to the energy shift of Fig. 10.2(A), we get the total intensity of ODT beams

being 10.5 kW/cm2. Later, we check this fitted intensity with the transition

from |0, 0〉 to |1, 1〉 as shown Fig. 10.2(B).
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0,0 → 1,0

ODT intensity = 10.5 kW/cm2

B-field = 335.2 G

0,0 → 1,1

ODT intensity = 10.5 kW/cm2

B-field = 335.2 G

Figure 10.2: The transition frequency of from |0, 0〉 to |1, 0〉 (A) and from
|0, 0〉 to |1, 1〉 (B) with respect to the angle θ between the quantization axis
and the linear polarization of the trapping beams at B-field = 335.2 G. The
red curve in (A) is a fitting result from the molecular Hamiltonian with
the trapping beam intensity set as a free parameter. The fitted trapping
beam intensity is 10.5 kW/cm2. (B) shows the comparison of the transition
frequency from the theoretical calculation with 10.5 kW/cm2 trapping beam
intensity and the experimental result.

Once the intensity is obtained, we can calculate the magic angle. Shown in

Fig. 10.3 is the polarizability difference of the three states of J = 1 compared

to the |0, 0〉 state, with the intensity being 10.5 kW/cm2. The constant

polarizability of the |0, 0〉 state is named as α00, where

α00 =
α‖ + 2α⊥

3
. (10.2)

The y-axis of Fig. 10.3 is rescaled to (α̃− α00)/α00 = ∆α/α00, so the magic

angle condition is where the curve crosses y = 0. We see that for the |1, 1〉

state and the |1, 0〉 state, the magic angle coincidentally appears together at

about 68◦.

Experimentally, we have one λ/2 waveplate to change the direction of

the linear polarization for each ODT beam. We tune the angle and measure

the remaining coherence at a fixed evolution time with the spin echo method
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Figure 10.3: Calculated relative polarizability difference between the the
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as −∂E/∂I. The vertical axis is (α̃−α00)/α00 where α00 is the polarizability
of the |0, 0〉 state.
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(will be discussed later). As it is shown in Fig. 10.4, pronounced peaks of

coherence at the vicinity of the calculated magic angles show up for the two

cases. The results agree well with the calculation. The overall coherence of

the |1, 0〉 state appears to be less. This is because at that time, the MW

switch leaks some tiny MW power. Since the MW transition of the molecule

are quite strong so the tiny leakage kills partial coherence of the ensemble.

For the |1, 1〉 case, this problem is fixed.
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Figure 10.4: The magic angle measurement of the |1, 0〉 state (A) and the
|1, 1〉 state (B). The coherence are measured with spin echo method with re-
spect to different linear polarization of the ODT beams. The contrast shows
a peak at θ = 68◦ for both case, which is consistent with the theoretical calcu-
lation. The overall contrast of the |1, 0〉 state appear to be less, because the
MW switch leaks some MW power and kills the coherence of the ensemble.
For the |1, 1〉 case, this problem is fixed.

10.4 Spin echo method

A two-level system can be mapped to a spin-1/2 system. With the rotating-

wave approximation, the system can be described by the Bloch sphere representation[147].

As shown in Fig. 10.5, each point (u, v, w) within the Bloch sphere rep-

resents a density matrix of a two-level system with the following mapping
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relation[148],

u = ρ̃eg + ρ̃ge

v = −i(ρ̃eg − ρ̃ge)

w = ρee − ρgg

(10.3)

Equivalently, any point in the Bloch sphere can be replaced by a vector

pointing to that point from the origin.

~R = ux̂+ vŷ + wẑ. (10.4)

Then, the magnitude of the vector indicates the coherence of the system.

If we name the excited state as |↑〉 and the ground state as |↓〉, then in

our experiment, we investigate the coherence decay of the superposition state

1/
√

2 |↑〉 + 1/
√

2 |↓〉 which is initialized by a π/2-pulse bringing the arrow

from pointing to the south pole to the equator of the Bloch sphere. The

coherence of the system will then gradually decay due to several factors such

as inhomogeneous external fields, interactions between particles, etc.

The simplest way to visualize the process of decoherence is by using the

Ramsey method[149]. The Ramsey method consists of two π/2-pulses sepa-

rated by a variable evolution time T . One simply measures the population

recovered in one of the states after performing the pulse sequence. If one

use a pulse with moderate detuning, the recovered population will display

a damped oscillation with respect to T . Fitting the damping rate of the

oscillation, one obtain the coherence decay rate.

The drawback of using the simple Ramsey method is that one can not

distinguish different sources of the decoherence. The demand to filter out or

to minimize the single-particle effect and to reveal the effect from two-particle

interaction leads us to the spin echo method[150].
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Figure 10.5: A schematics of the spin echo method in the Bloch sphere rep-
resentation. In a Bloch sphere, the south pole represent the |↓〉 state, the
north pole represent the |↑〉 state, and other points represent the superposi-
tion states of |↓〉 and |↑〉. The system is initialized by a π/2-pulse, the red
arrows rotate 90 degrees with respect to ŷ axis from the |↓〉 state. During
the first T/2 evolution time, the single-particle dephasing introduces different
angular displacements of the red arrows. A π-pulse flips the red arrows. Dur-
ing the second T/2 evolution time, the accumulated angular displacements
are the same but has an opposite sign than the previous ones. The angular
displacements cancel out each other during the two T/2 evolution times. A
third π/2-pulse further rotates the arrows and the population projects back
to |↓〉 will be measured. A phase shift φ can be introduced in the third MW
pulse to change the rotation angle to n̂ other than ŷ axis.
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Based on the Ramsey method, the spin echo method further inserts a

π-pulse at the midpoint of the pulse sequence as in Fig. 10.5. The additional

π-pulse flips the states on the equator plane of the Bloch sphere, and makes

the phase accumulations from the inhomogeneous external fields between the

two T/2 evolution times have the opposite sign and cancel each other.

A MW pulse is a rotation with respect to certain axis in the Bloch sphere

representation. In Fig. 10.5, the first two rotations have the same axis ŷ. By

adding a phase shift φ to the third pulse, the rotation axis becomes n̂ other

than ŷ. Therefore, to visualize the coherence with the spin echo method, one

can tune φ while keeping the evolution time T fixed. A sinusoidal variation of

the recovered number in one of the states with respect to φ can then be seen.

The contrast of the curve, (Nmax + Nmin)/(Nmax − Nmin), directly reflects

the system’s remaining coherence after T evolution.

If we assume that the molecules don’t move, but are pinned to their

local positions, the spin echo method can in principle completely filter out

the external fields’ contribution. In reality, this is not the case. However,

we can still make considerable improvement within times shorter than the

characteristic time scale defined by the trap frequencies.

10.5 Moving average cluster expansion (MACE)

calculation

The DDI between molecules are long-range. This makes the large number

of molecules get entangled no matter in a bulk sample or a lattice sample.

Therefore, it is really hard, or even impossible to numerically solve the dy-

namics of a UPM system with usual algorithms.

Moving average cluster expansion (MACE) is an easy-to-operate algo-
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Figure 10.6: A schematics of the MACE calculation. Solving an ensemble of
N molecules are broken down to solving N independent clusters of size n. A
cluster is constructed with a central molecule and its n − 1 neighbors with
the most interaction strengths. The dynamics of the central molecule of each
cluster are picked and added up for the ensemble dynamics.
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rithm proposed in Ref. [1] by Kaden Hazzard et al. which can give an ap-

proximate solution to the problem. Within the framework of this algorithm,

the whole system is broken into independent clusters which are tackled sep-

arately. As shown in Fig. 10.6, in an ensemble of N molecules, there are N

clusters, each contains only n molecules. Among the molecules of one cluster,

one is the central molecule and the other n−1 are the neighbors of the central

molecule with the most interaction strengths. When solve the system, the

dynamics within each cluster is exactly solved. However, only the observable

of the central molecule is picked. Adding up all the observable of the central

molecules, one obtains the observable for the ensemble.

Neglecting the single-particle decoherence and the losses, the Hamiltonian

that governs the spin dynamics is as follows[151, 33, 152],

H =
∑
i 6=j

Vij
2

[J⊥
2

(S+
i S
−
j + h.c.)

]
. (10.5)

Here, Vij = (1 − 3 cos2 Θij)/|~ri − ~rj|3, where Θij is the angle between the

quantization axis and ~ri − ~rj. S±i and Szi are the spin-1/2 operators. The

term J⊥
2

(S+
i S
−
j + h.c.) is called the exchange term because it swaps the two

spin i and j with the coupling constant J⊥. Neglecting the hyperfine mixing

of J = 1 states, J⊥ = d2/6πε0 for |0, 0〉 and |1, 0〉, and−d2/12πε0 for |0, 0〉 and

|1, 1〉, where d is the permanent dipole. For NaRb, considering the hyperfine

mixing, J⊥ = d2/6.6πε0 for |0, 0〉 and |1, 0〉, and −d2/12πε0 for |0, 0〉 and

|1, 1〉.

Before we perform the MACE calculation for our NaRb system. We first

check the convergence of the algorithm. In Fig. 10.7, we show the coherence

evolution results within 50 ms with a lattice sample of 2.8% uniform filling

with other conditions similar to those in Ref. [1]. In panel (A), we tune n
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with N = 1000 and in panel (B), we tune N with n = 5. We find that, under

such realistic experimental conditions, n = 5 and N = 1000 can already give

fairly good convergence. The calculations agree very well semi-quantitatively.

Calculations with n and N larger than those values only differ by some

details.
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Figure 10.7: Convergence of the MACE calculation. (A) The cluster size
n is tuned with molecule number N = 1000. (B) N is tuned with n = 5.
Other conditions are, |↓〉 = |0, 0〉, |↑〉 = |1, 0〉, lattice constant = 0.532 nm,
uniform lattice filling = 2.8%, molecular mass = 127 a.u., permanent dipole
= 0.57 D, quantization axis direction = (1,1,0). Apart from some detailed
differences, the MACE calculation converges well with n ∼ 5 and N ∼ 1000
and gives very reliable calculation result semi-quantitatively.

Then, we check the validity of our own developed program by reproducing

the results reported in Ref. [1]. For simplicity, the conditions in the calcu-

lations here are slightly different. We take uniform filling and take the pure

|1, 0〉 state without hyperfine mixing. We tune the filling fraction to 2.8%

and reach a consistent coherence decay curve as shown in Fig. 10.8(A). By

discrete Fourier transforming the coherence decay data, we see peaks in the

frequency domain at 56 Hz, 78 Hz, 114 Hz. The peaks agree with the three

DDIs between the strong or the weak neighbors with the most interaction

strengths and also agree with the relative ratio of the strengths of ν/2, ν/
√

2

and ν[23].
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Figure 10.8: MACE calculation of the coherence evolution and its Fourier
transform. (A) The evolution in Ref. [1] is reproduced up to 500 ms with a
time interval of 0.1 ms. Only the dynamics of the first 100 ms is shown. (B)
The discrete Fourier transform of the calculated coherence evolution. Peaks
appear at 56 Hz, 78 Hz and 114 Hz with a relative ratio about 1 :

√
2 : 2,

indicating the underlying DDI between the weak and the strong neighbors.

Having confirmed the correctness of the program, we then numerically

investigate the NaRb bulk sample with the program. We first generate a

molecular clouds with ∼1000 molecules according to the given temperature

and the given trap frequencies. A typical molecular cloud distribution is

shown in Fig. 10.9(A). Then we perform MACE to calculate the coherence

decay. Since in a bulk sample, the spacings between molecules no longer take

fixed values, the spin dynamics of all frequencies are superposed. As a result,

the decay appears like a first-order exponential decay. In Fig. 10.9(B), the

black points are the simulation result and the red curve gives the exponential

fit to the data. Though very similar, we can still see the difference between

the coherence decay and an exact exponential decay. To extract a time

constant for the curve, we choose the point where the contrast reaches 37%.

We calculate under various total molecule numbers and temperatures, and

find the time constant only depends on the sample density. In Fig. 10.9(C),

the black points correspond to |↑〉 = |1, 0〉. The coherence decay rate linearly
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depends on the peak density, indicating that the inter-molecular DDI is the

source of decoherence. The two red points correspond to the |1, 1〉 state,

whose DDI is only 0.55 times than that of the |1, 0〉 state. Therefore, we

rescale the peak densities to 0.55 times the value and find the red points fall

perfectly on the same line of the black points.
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Figure 10.9: Simulating the coherence decay for a bulk sample of NaRb
molecules. (A) A realization of 4000 molecules distribution under the typi-
cal experimental condition of 700 nK, (200,190,30) Hz trap frequencies and
the quantization axis on the vertical direction. (B) An example coherence
decay of the bulk sample with the first-order exponential fitting in red curve.
(C) The density dependence of the coherence decay rate. The decay rate
is extracted from the time when the coherence decays down to 37%. The
decay rate shows linear dependency on the peak density with a slope of
0.024(1)×10−10 cm3/ms. The red points are for |↑〉 = |1, 1〉 with the density
rescaled to 0.55 times. The scaled red points fall on the same line with the
black points.
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10.6 Density dependence and state dependence

of decoherence

After the numerical calculation, we turn to experimentally measuring the

coherence decay in our system. The coherence is extracted with the spin

echo method. An example set of data is shown in Fig. 10.10. The vertical

axis is the number of molecules recovered in the |↓〉 state |0, 0〉 after the

pulse sequence. The horizontal axis φ is the phase shift of the third MW

pulse. We realize this phase shift by turning the signal generator to the

phase modulation mode and controlling it with an external voltage. The

signal generator is always on during the pulse sequence and the actual pulses

going to the experiment are tailored by the MW switches. The external

voltage takes a step between the second and the third pulse when the MW

switches are off. In this experiment, the π-pulse is chosen to be 10 µs. When

the MW is on resonance, as shown in Fig. 10.10, Nmax occurs at φ = 0 or 360◦

and Nmin occurs at φ = 180◦. To extract the contrast, we fit the data with

sinusoidal function with the period fixed to 360◦ and the contrast equals to

the ratio between the amplitude and the offset. Fig. 10.10 shows the results

of two different evolution times T , we see that for the blue points with the

larger T , the coherence is decayed with a smaller contrast.

Measuring the contrast at different T , we can map out the coherence de-

cay. Thanks to the fact that the magic angles for the |1, 1〉 state and the

|1, 0〉 state are coincidentally close, we can switch |↑〉 between the two states

without changing the angle of the waveplates and measure the coherence

decay for both case. Although, the magic angle configuration and the spin

echo method greatly suppress the single-particle decoherence, we still limit

the measurement with T below 1.5 ms in order to minimize the single-particle
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Figure 10.10: Measure the coherence with the spin echo method. The two
first pulses of the spin echo method are in phase and the phase of the third
pulse is tuned with a shift of φ. The molecule population in the |↓〉 state are
measured after the three-pulse sequence. The data are fit with the sinusoidal
function with the period fixed to 360◦. The contrast of the curve (Nmax −
Nmin)/(Nmax + Nmin) reflects the coherence of the system. With the longer
evolution time, the blue data show less coherence than the red data.
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decoherence due to the molecular motion in trap. Fig. 10.11 shows the co-

herence decay for both cases with a peak density of about 2.9×1011 cm−3.

We fit first-order exponential decay with a fixed unity contrast at T = 0 and

get the coherence decay rate.
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Figure 10.11: The coherence decay of the NaRb bulk sample. The contrast is
measured under different total evolution time T by tuning the interval length
between the pulses. The red points represent the case with |↑〉 = |1, 1〉 and
the black points represent the case with |↑〉 = |1, 0〉. The contrast decay are
fitted with the first-order exponential decay with a fixed unity contrast at
zero evolution time. The decay rates appear to be similar for the two cases.

We then investigate the density dependence of the coherence decay rate.

We tune the density by adding additional holding times for the ground-state

molecules before starting the spin echo pulses. We know that there is two-
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body loss for the molecules in trap and the two-body loss also introduces

the anti-evaporation effect. Hence, the longer holding time means that the

total molecule number is fewer and the temperature is higher. Both aspects

contribute to a lower density. With this method, we can tune the density

for about 10 times from 29×1010 cm−3 down to 3×1010 cm−3. The results

are summarized in Fig 10.12. The decoherence for the |1, 0〉 case is shown in

black, the decoherence for the |1, 1〉 case is shown in red. The MACE calcula-

tion for the |1, 1〉, the result already shown in Fig. 10.9, is also included here

in blue. The result shows an approximately linear dependence to the den-

sity, with the coherence decay rate being significantly slower for lower density

cases. The linear dependence strongly indicates that the underlying process

responsible for the decoherence is a two-body process. However, to our sur-

prise, the red points and the black points fall on the same line. This is a

strange observation. It disagrees with the DDI picture in which the red points

should fall on a different line with 0.55 times the slope. Fit the linear model

to all eight red and black points, we get a slope of 0.037(2)×10−10 cm3/ms,

the same order but 50% larger than the MACE prediction of 0.024(1)×10−10

cm3/ms. Besides, we see that intercept of the fitted line is not zero, indicating

the existence of the residual single-particle decoherence.

So far, we don’t have a clear idea why the density dependence of the

coherence of the two cases are nearly the same. The problem may have

something to do with the severe inelastic collisions, including complex for-

mation and hyperfine-changing collisions, in both cases. In principle, if two

molecules leave the ensemble once they take an inelastic collision, such a

process won’t harm the coherence. But in reality, this assumption may not

be fulfilled. The problem may also has something to do also with the ODT

beam wavelength or the tiny leakage of MW due to the finite isolation of the
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Figure 10.12: The density dependence of the coherence decay rate. The red
points represent the case with |↑〉 = |1, 1〉 and the black points represent the
case with |↑〉 = |1, 0〉. The peak density ranges from 3 × 1010 cm−3 to 29 ×
1010 cm−3. The coherence decay rate of the two states are similar, depends
approximately linearly on the sample density. A linear fit to all eight data
points gives a slope of 0.037(2)×10−10 cm3/ms. The MACE calculation for
the |1, 0〉 case is shown in blue triangles which gives a slope of 0.024(1)×10−10

cm3/ms.
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MW switches. These ac fields may somehow interact with two molecules and

effect the coherence. The cause behind this strange observation remains to

be investigated in the future.

2 End of Chapter.



Chapter 11

Towards molecules in optical

lattices

11.1 Overview

The next goal of our lab is producing a sample of ground-state NaRb molecule

in a 3D optical lattice with low entropy. Most important applications of

UPMs depend on the utilization of the optical lattice. Another advantage of

working with optical lattices is that the lattice potential can greatly suppress

the inelastic collisions between molecules if there is only one molecule per site.

To achieve this goal, we make several changes to our experimental setups.

For instance, we change the ODT beam shape. We try to make the trap

pancake-like whose potential is more uniform and holds more dilute samples.

we also rearrange the optical paths for the ODT and the optical lattice, and

we switch to doing the MW evaporative cooling in a plug trap instead of the

original hybrid trap.

In this chapter, we present our recent progress on making the optical

lattice.

152
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11.2 Plug trap

Because we modify the shape of the ODT beams in the new setups for pro-

ducing molecules in the 3D optical lattice, the maximum trap depth provided

by ODT beams are much shallower than before. It can no longer be used in

the MW evaporative cooling stage for introducing a shifted local potential

minimum that mitigate the Majorana loss. To maintain the efficiency of the

evaporative cooling, we plug the Majorana hole with a 532 nm laser. The

decision on the plug parameters are based on the calculation of the Majorana

loss rate[153].

The magnetic trapping is state-sensitive. Due to the motion of the atom,

the single particle Hamiltonian may evolve diabatically, resulting in a pos-

sibility that the spin flips and the atom gets repelled from the trap. The

adiabatic condition fails when the Larmor precession rate is comparable with

the changing rate of the Zeeman energy,

ωL ∼
∣∣∣∣dB/dtB

∣∣∣∣ (11.1)

where the Larmor precession rate

ωL =
µB|gFmF ||B|

h̄
. (11.2)

Relate the B-field changing rate to the motion of the atom,∣∣∣∣dB/dtB

∣∣∣∣ =
v

r
. (11.3)

The magnetic potential is linear, therefore

B = B′r (11.4)
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where B′ is the gradient of the B-field, and for simplicity the B′ is assumed

to be the same in all three directions.

We can then define the concept of Majorana hole size which is a function

of the atom velocity by equalizing the two terms in Eq. 11.1[154],

ρhole =

∣∣∣∣ vh̄

µBgFmFB′

∣∣∣∣1/2. (11.5)

Once we defined the majorana hole size, we can numerically estimate the

Majorana loss rate as a function of the temperature. The majorana loss can

be approximately calculated from the following integral,

ΓMajorana =

∫
4π2v3ω(ρ(v), v)ρ2(v)dv (11.6)

where

ω(~r,~v)dr3dv3 = C exp

[
−β
(m~v2

2
+ V (~r)

)]
dr3dv3 (11.7)

is the Boltzmann distribution with C being the normalization factor.

The idea here is as follows. We first sample a velocity of the atom from

ω(~r,~v). Then we find the hole size according to the velocity and we nu-

merically calculate the possibility of finding the atom within the area of the

Majorana hole where the atom is supposed to get lost. Finally, the integra-

tion is over all possible velocities.

In Fig. 11.1, we show typical plug trap potentials for the two atomic

species. The plug beam has a wavelength of 532 nm, a power of 1 W and

a beam waist of 35 µm. The magnetic gradient is 62 G/cm, a typical value

after the magnetic trap decompression. With the wavelength closer to the

Na atomic transition, the plug potential is 69 µK high for Na and 16 µK

high for Rb. Under such conditions, we calculate the atom trap lifetime with

respect to the temperature with or without the plug potential according to
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Figure 11.1: The plug trap potentials for Na and Rb atoms generated by a
532 nm laser with a beam waist of 35 µm and a power of 1 W. The B-field
gradient is 62 G/cm. The potentials shown are along the vertical direction.
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Eq. 11.6. The results are shown in Fig. 11.2. We see with the plug potential,

the minimum trap lifetime is several minutes for Rb and even longer for

Na. In comparison, without the plug, the lifetimes for both Na and Rb are

reduced dramatically with lower temperatures.
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Figure 11.2: The lifetime determined by Majorana loss for Na and Rb, with
or without the plug potential. The plug potential is as shown in Fig. 11.1.
Without the plug potential, the lifetime drops monotonically as the tempera-
ture drops and the lifetime is too short for efficient evaporative cooling under
5 µK. With the plug potential, the lifetime rises again on the low tempera-
ture side and gives a minimum lifetime longer than 100 s. The low loss rates
promise efficient evaporative cooling.

In practice, we shape the beam with a waist of 35 µm and we use 1.55 W

power for the plug so far. We check the evaporative cooling efficiency in such

a plug trap. First, we measure the trajectory of the evaporation with the

Rb atoms only. We stop the evaporation at different end points and measure
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the number N and the temperature T of the atomic cloud. From these two

quantities, we obtain the PSD by[155, 156]

PSD =
(2πh̄2/mkBT )3/2N∫
exp[−U(~r)/kBT ]d3r

(11.8)

where U(r) is the trap potential and m is the mass of the atom. In Fig. 11.3,

the evaporative cooling trajectory in the plug trap is shown in red compared

with the trajectory in the plain magnetic trap without the plug in black. We

see the evaporative cooling maintains good efficiency throughout the cooling

process. The fitted slope is d log(PSD)/d log(N) = −2.9.

We then add in the Na atoms, and measure the evaporation trajectory

for the mixture. The result is shown in Fig. 11.4 with the Na one shown in

red and the Rb one shown in black. We see the trajectory for the Na atoms

almost like a vertical line. This is because Na atoms are sympathetically

cooled by the Rb atoms and the high plug potential for Na prevent any

loss of the Na atoms. Meanwhile, the Rb atoms also gain PSD but with a

slightly lower rate d log(PSD)/d log(N) = −2.1 than a pure Rb atomic cloud.

We also observe, when the numbers of the two species are comparable, the

sympathetic cooling becomes inefficient. The Rb PSD is even lost on the left

side of the figure as the evaporation goes on. The best condition is obtained

at the top of the bell-shaped curve. At that point, the Na cloud and the

Rb cloud are one order and two orders away from the quantum degeneracy

respectively. The resulting temperature for the mixture is about 2 µK. The

condition is good enough for the further loading into the ODT.
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Figure 11.3: The trajectories of MW evaporative cooling with or without the
plug. Without the plug (black), the efficiency of cooling gradually decreases
as the majorana loss becomes severe with lower temperatures. There is no
PSD gain anymore from cooling stages below N = 107. With the plug (red),
the cooling efficiency maintains the same throughout the stages. The overall
efficiency is ∆ log(PSD)/∆ log(N) = -2.9. The comparison of the two tra-
jectories shows the effectiveness of the plug. The plug beam used here has a
power of 1.55 W and a beam waist of 35 µm.
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Figure 11.4: The trajectories of MW evaporative cooling of a Na and Rb
mixture gas in the plug trap. The Na atoms (red) are sympathetically cooled
by Rb atoms (black). The high plug potential for Na atoms prevent any
loss of Na atoms during the cooling. The largest PSD achieved is one and
two orders away from the quantum degeneracy for Na and Rb respectively.
The sympathetic cooling becomes inefficient when the Rb atom number is
comparable with the Na. The plug beam used here has a power of 1.55 W
and a beam waist of 35 µm.



CHAPTER 11. TOWARDS MOLECULES IN OPTICAL LATTICES 160

11.3 Optical lattice optics

Then we introduce the optics for the optical lattice and the ODT. In Fig. 11.6(A),

we show the optical layout for the optical lattice before the optical fibers. The

beams of the optical lattice are produced by a Nufern amplifier (NUA-1064-

PC-0050-D0) which is seeded with a solid state laser from Wavicle Laser.

Pairs of a λ/2 waveplate and a polarized beam splitter (PBS) divide the out-

put beam into three beams with approximately the same power. The beams

further pass through AOMs. The diffracted beams by AOMs are coupled

into the fibers and the zeroth order beams are picked up by D-shape silver

mirrors and directed into beam dumps. To avoid detrimental effects from

the interference between lattice beams on different directions, we use one

110 MHz and two 80 MHz AOMs, and the two 80 MHz AOMs are working

in different conditions with one of them producing the first order and the

other one producing the negative first order diffraction.

The two lattice beams on the horizontal direction are delivered with NKT

photonic crystal fibers (LMA-PM-15). The numerical aperture of the NKT

fiber we measured is 0.054(2). Due to the hexagonal structure of the photonic

crystal inside, the output beam shape also appears to be hexagonal to some

extent in highly saturated pictures captured by the CCD. However, with the

knife-edge method, we find that the intensity profile actually follows a perfect

Gaussian beam quite well.

The layout of the optics for the horizontal optical lattice after the fiber de-

livering is shown in Fig. 11.5(C). The beam shaping scheme for the horizontal

lattice is shown in detail in Fig. 11.6. On the output side, the fiber ports used

are from Thorlabs (PAF-X-15-C). We carefully tune the distance between the

fiber tip and the aspherical lens in the fiber port so that the horizontal size of

the beam at the position of the sample meets our designed dimension, which
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Figure 11.5: Optical layouts for optical lattice and ODT. (A) The layout of
the optics for the optical lattice on the optical table before the fibers. (B)
The layout of the optics for the ODT on the optical table before the fibers.
(C) The layout of the optics for the horizontal optical lattice and the ODT
after the fibers. (D) The layout of the optics for the vertical optical lattice
after the fibers.
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is 620 µm in diameter. Then, after the fiber port and before the cell, all the

lenses are ultraviolet fused silica cylindrical lenses that only responsible for

the shaping on the vertical direction. The beam size immediately after the

fiber port is 1.7 mm in diameter. The vertical size is first expanded twice

with a -100 mm/200 mm lens combination, and then focused by a 250 mm

lens before the cell down to a diameter of 116 µm. After the cell, a 500 mm

lens is placed to re-collimate the beam in both the horizontal and the vertical

dimension. Finally, a mirror retro-reflects the beam and the lattice potential

is built up via the interference. The last mirror before the cell is backside

polished, and a small portion of power transmits and is picked up by pho-

todiodes for the power feedback. The two lattice beams on the horizontal

plane intersect with a right angle. Fig. 11.7(D) shows the optical layout for

the vertical lattice. The fiber we use is OZ optics PMJ-A3HPCA3HPC-1064-

6/125-3AS-5-1-AR2. The fiber port is Thorlabs PAF-X-7-C. A lens with a

focal length of 300 mm is used before the cell, and a lens with focal length of

150 mm is used before the retro-reflecting mirror. The vertical lattice beam

is tilted by about 6◦ to avoid undesired interferences between reflected beams

from the multiple interfaces along the optical path. The resulting beam is

round at the sample position with a waist of about 150 µm.

11.4 ODT optics

We show the optical layout for the ODT before the optical fibers in Fig. 11.5(B).

The beams of the ODT are produced by another Nufern amplifier (NUA-

1064-PC-0015-C1). The setup is similar to that of the optical lattice. The two

110 MHz AOMs give the opposite order of diffraction. The ODT beams are

delivered by fibers from OZ optics (PMJ-A3HPCA3HPC-1064-6/125-3AS-5-

1-AR2). The layout of the optics for the ODT is contained in Fig. 11.5(C).
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Figure 11.6: Schematic setup of Gaussian beam propagation for optical lat-
tice. (A) shows the horizontal beam shaping and (B) shows the vertical beam
shaping.

The beam shaping scheme for the ODT is shown in detail in Fig. 11.7. At

the output side, the fiber ports are also from OZ optics (HPUC-2A3-1064-

P-11AS-11). Same as the optical lattice case, the horizontal beam size is all

taken care by the fiber port, and is 554 µm in diameter at the sample posi-

tion. The rest lenses reshape the vertical size. The final size in the vertical

direction is 98 µm in diameter. The ODT share the same optical path with

the optical lattice. On each of the same paths, the polarization of the ODT

beam are perpendicular to that of the lattice beam, so that PBS’s are used

to combine the optical lattice and the ODT beams. At the far end, the PBS

after the optical lattice fiber port can avoid the ODT beams pouring into the

lattice fiber.
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11.5 Laser intensity noise

The intensity noise in the lattice beams can induce heating and limit the

lifetime of a BEC in the lattice. The instability in intensity can originate

from several kinds of sources. For example, the cavity vibration, the intrinsic

phase and frequency fluctuations caused by spontaneous emission in laser

gain medium, and the intensity noise from a pump source, etc.

The intensity noise is typically proportional to the intensity. Therefore,

the relative intensity noise (RIN) characterizes the instability in the power

level of a laser[157]. The RIN is defined as

RIN =
〈∆P (t)2〉

P 2
0

, (11.9)

where ∆P (t) stands for the fluctuation of the optical power, P0 is the aver-

aged optical power.
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The setup we measure the RIN is simple. The laser beam is measured

directly by photodiode for the power feedback, which converts the optical

power to a voltage signal. The dc voltage signal is measured with a multime-

ter. The ac noise on the other hand is analysed by connecting the photodiode

output to a spectrum analyzer.

Now, the optical power is converted into electrical signals,

PE ∝ i2 ∝ P 2
opt, (11.10)

where PE and Popt are the electrical and optical power respectively, and i

is the current inside the photodiode. The RIN is rewritten in the terms of

electrical powers as below,

RIN =
∆PE
PE0

(11.11)

where ∆PE is the overall noise, measured in power spectral density per Hz

and PE0 is the average electrical power.

Because of some technical issues, the electrical RIN is not by itself the

optical RIN. During the optical-electrical conversion, two other sources of

noise are introduced. They are, the shot noise and the thermal noise in an

electrical circuit. The overall noise ∆PE thus consists of three terms:

∆PE = NL +Nq +Nth. (11.12)

Here, NL, Nq and Nth are laser noise, shot noise and thermal noise respec-

tively.

To extract the laser noise, one needs to figure out the contributions from

the other two sources. The thermal noise is relatively simple to find out. It

is a background noise that is always there. So we block the laser beam, and

the signal remains in the spectrum analyzer is the thermal noise. The shot
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noise, which stems from the randomness of the detection, is proportional to

the square root of the dc signal. It can be calculated with

Nq = 2eIdcRL. (11.13)

Here, e is the elementary charge, Idc is the photo current and the RL the load

resistance inside the photodiode. With considerable amount of laser power

of ∼mW, we estimate the relative magnitude of the shot noise is tiny and

can be safely ignored.

In Fig. 11.8, we show the result on the RIN measurement. The amplifier

is set at 23 A which is a normal current with which the amplifier can deliver

enough power to the experiment. In this figure, the data in red are from

the Nufern amplifier working in a open-loop configuration, the data in blue

are from Nufern amplifier working in a closed-loop configuration, the data

in grey are the thermal background. With the servo, the noise below 10

kHz is suppressed by more than 10 dB. Above 100 kHz, the intensity noise is

essentially the same because of the finite bandwidth of the servo. On average,

the RIN is about -100 dBc/Hz. The noise level is good enough for current

purposes.

11.6 Band structure

The band structure calculation of a lattice potential is the starting point of

a number of many-body system investigations. The optical lattice potential

is generated by retro-reflecting a normal ODT beam with a mirror. The two

counter-propagating beams interfere and establish a standing wave in space
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if the coherence length[158]

L =

√
2 ln 2

π

λ2

n∆λ
(11.14)

permits. Here, λ is the wavelength and ∆λ is the line width of the beam, n

is the diffraction index. Near the center of the beam, the optical potential

can be approximated by

V (r, z) = −V0

(
1− 2

r2

ω2
0

)
sin2(kz) (11.15)

where k and ω0 are the wave vector and the waist of the beam.

According to the Bloch’s theorem[159], the eigenstate of a particle in a

periodically repeating potential is a Bloch wave function expressed as

φn,~q(~r) = ei~q·~run,~q(~r). (11.16)

Here, q is the quasi-momentum, n is the index for bands and u(·) is a periodic

function with the same periodicity of the potential,

un,~q(~r + ~R) = un,~q(~r) (11.17)

for all ~R in the Bravais lattice.

In a cubic lattice, we can separate the variables of the three dimension.

We can solve the band structure for either dimension,

HBun,q(x) = En,qun,q(x)

HB = − 1

2m
(p̂+ q)2 + V (x)

V (x) = −1

2
V0[cos(kx) + 1].

(11.18)
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Rearrange the terms in the time-independent Schrodinger equation, we ob-

tain the Mathieu’s differential equation,

d2un,q
dx2

+ [a− 2s cos(2x)]un,q = 0. (11.19)

Here, s = −Vlatt/4Er. a = En,q/Er − V0/2Er. Er = h̄2k2/2m is called the

recoil energy, which is a natural energy scale for optical lattices. To get the

Bloch wave solution from the Mathieu’s differential equation, the parameter

a must equal to the characteristic value A for even Mathieu functions. The

characteristic value A is a function of the quasi momentum q and the param-

eter s, and can be numerically evaluated. Therefore, to calculate the band

structure, we can pick up any q and then find the corresponding A. Let a

equal to A, and then solve the eigen-energy En,q according to the expression

of a.

Fig. 11.9 shows the calculated band structures of different lattice depths.

With a higher lattice depth, the band gap is larger, the band is flatter and

the zero-point energy is also higher.

11.7 Kapitza-Dirac scattering

Once a lattice potential is realized, one have to calibrate the depth of the

lattice. One method to calibrate the depth of an optical lattice is the Kapitza-

Dirac scattering[160]. In this method, the lattice potential is suddenly turned

on and let the system evolve for some time before switching off all trapping

potentials and measuring the interference pattern in space after TOF. With

the varied evolution time, the final pattern periodically changes. From the

evolution of the pattern, we can calibrate the depth of the lattice potential.

To be specific, there are essentially three operations in the Kapitza-Dirac
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scattering, two projections and one unitary evolution. At time zero, the

initial degenerate Bose gas in bulk is projected onto the eigenstates of the

lattice,

|Ψ(t = 0)〉 =
∞∑
n=0

|n, q〉 〈n, q|φq〉 . (11.20)

Then during the time interval τ that the lattice potential is on, the system

undergoes a unitary evolution. The phase precession of each eigenstate goes

in a different pace,

|Ψ(t)〉 =
∞∑
n=0

a∗n,q(0) exp[−iEn(q)t/h̄] |n, q〉 , (11.21)

where a∗n,q(0) = 〈n, q|φq〉. The third operation is the inverse process of the

first projection,

bq(m) =
∞∑
n=0

a∗n,q(0)an,q(m) exp[−iEn(q)τ/h̄], (11.22)

where bq(m) is the coefficient for the state |φq+2mh̄k〉 in the lattice frame.

Under the so-called Raman-Nath approximation, which is justified if τ is

much shorter than the oscillation period of a lattice site[161, 162],

|bq(m)|2 = J2
m

(V0τ

2h̄

)
(11.23)

where the Jm are Bessel functions of the first kind. In our measurement for Rb

atoms with a V0 about 8 µK, this approximation fails when the measurement

extended to several periods of interference pattern oscillation. The exact

solution is given by a set of coupled differential equations from the time-
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dependent Schrodinger equation[163, 164],

i
dbm
dt

=
4m2Er
h̄

bm +
V0

4h̄
(bm−1 + 2bm + bm+1). (11.24)

Fig. 11.10(A) shows some raw data of the Kapitza-Dirac scattering for

the Rb atoms. We see initially the BEC is at the 0th order. Turning on

the lattice beam scatters the BEC to higher orders of discrete momentum

states. In the CCD frame, diffractions from the -3rd order to the +2nd order

are captured. To determine the lattice depth, we segment the figure and

extract the population fraction of each order. Since some higher orders are

out of frame, the ”fraction” we referred to is the fraction only among the

orders from the -2nd to the +2nd. The extracted fractions are plotted in

Fig 11.10(B), together with fitting results according to Eq. 11.24. With only

one free parameter, lattice depth V0, we see a nice agreement between the

theory and the experiment. The fitted V0 in Fig 11.10(B) is 7.6 µK.

11.8 BEC phase correlation among 1D lattice

layers

When a BEC is adiabatically loaded in a shallow optical lattice where particle

transport is not prohibited, we can say that the local wave functions in

the lattice sites have the same phase (or differ by a constant). Under such

circumstances, the BEC released suddenly from the 1D lattice shows an

interference pattern like the left figures in Fig. 11.11(A). Knowing the TOF

time, one can directly infer the recoil momentum of the lattice from the

spacing of the peaks. One the other hand, in the tight-binding limit when

the lattice is deep, the condensate is split up into an array of local wave
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The fitted lattice depth is 7.6 µK
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functions and each posseses a random phase. Therefore, peaks in interference

disappear after TOF[165]. Although an array of independent condensates can

still interfere after TOF[166], the pattern is not significant due to the large

number of layers occupied.

We demonstrate the loss of phase correlation with increasing lattice depth

with our vertical lattice beam. Fig. 11.11(A) shows some raw data of the

interference of the Rb BEC. The Rb BEC is first produced in the ODT,

then while keeping the ODT on, the optical lattice potential is turned on

to a certain value with the beam power exponentially increasing with a time

constant of 150 ms. We hold the sample in such a potential for some time and

then we switch off all potentials to let the sample fly out. The lattice depth is

calculated based on the calibration from the Kapitza-Dirac scattering. With

low lattice depths, we can see the interference pattern which manifests the

phase correlation among the lattice sites. As the lattice gets deeper, the

correlation gradually disappears. For a quantitative description, we define

Visibility =
ODmax −ODmin

ODmax + ODmin

. (11.25)

We fit the first order diffraction to a general 2D Gaussian model in a window

of 80×40 pixels, and assign the peak of the Gaussian to ODmax. The ODmin

is obtained by finding the minimum optical depth along the line connecting

the centers of the zeroth and the first order diffractions. Fig. 11.11(B) shows

the extracted visibility with respect to the lattice depth. The visibility above

30Er becomes not reliable as the first order diffraction can hardly be seen.

The visibility drops to 50% at a lattice depth equals to 17Er.
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11.9 Outlook

We have already constructed the vertical lattice and the two other horizontal

beams are under construction. Once we have all three lattice beams, we

will start the endeavor of producing ground-state NaRb molecules in a 3D

optical lattice, the scheme of which is illustrated in Fig 11.12. For NaRb, a

heteronuclear molecule that made of two bosonic atoms, a natural starting

point of producing a lattice molecular gas is a double Mott insulator phase.

By tuning the density of BECs, one can obtain Mott insulator phase in

the first lobe for both species with one atom per species per site. Under

such circumstances, there is only one molecule per site if it is formed, and

any inelastic collisions are avoided. One can calculate the density of atoms

needed is 6.6×1012 cm−3. Normally, the peak density of BECs we achieve

now is one to two orders above. Techniques like spilling or tunneling through

barrier that could make BEC more dilute are needed. The loading of BECs

from ODT to optical lattice is also important. The interspecies interactions

can affect the final temperature of the mixture after the adiabatic loading

procedure and limit the peak filling[167]. Peak filling f is important because

it is closely related to the entropy per particle

s ≈ −kB
f

[f ln(f) + (1− f) ln(1− f)], (11.26)

which is a key quantity and some new regimes of many-body systems can

only be achieved with sufficiently low entropies[168]. Therefore, during the

loading stage, the interspecies scattering length may be elaborately tuned.

Once the double Mott insulator is obtained, with a deep lattice potential,

the magnetoassociation efficiency of the two atoms is guaranteed to be essen-

tially unity[169, 170]. Start from a lattice sample of Feshbach molecules, the
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same STIRAP scheme can be followed to produce the ground-state molecules.

Although 6.6×1012 cm−3 is a low density for the atomic BECs, it is a rel-

atively high value for the molecules, whose density is at most 6×1011 cm−3

in our original ODT. In such a bulk sample, the molecules’ PSD are two

orders away from the quantum degeneracy. Carefully designed procedures of

molecule production in an optical lattice can preserve the PSD to the maxi-

mum extent. Therefore, if we then adiabatically turn off the lattice potential,

the molecule bulk sample should be very close to the quantum degeneracy.

This is already a huge benefit that the lattice can bring, let alone those

applications in lattice that we have already discussed a lot throughout this

thesis. One may argue that the severe collisional loss in a dense molecular

sample may quickly kill the PSD. However, one need also bear in mind that

the underlying loss mechanisms are different for reactive and nonreactive

molecules. When the nonreactive sample is so cold that single resonances

due to the transition complex states are resolvable, then, the loss behavior

would deviate from the universal model and stable sample could be obtained

with fine tuned external fields.

BA C

Figure 11.12: Scheme of producing a lattice gas of ultracold NaRb polar
molecules (A) Double first-lobe Mott insulator of degenerate gas of Na and Rb
atoms. (B) One Feshbach molecule per lattice site after magnetoassociation
(C) One ground-state molecule per lattice site after STIRAP.

2 End of Chapter.
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Conclusions

In this thesis, we investigate the ultracold collisions with NaRb ground-state

molecules in a series of different scenarios. The foundation of the experiments

is the success creation and the precise internal state control of the NaRb

molecule. Technical things such as accurate calibration on the molecular

number and temperature and the suppression of the molecular motions etc.

ensure an accurate and reliable determination of the loss rate constants.

With the control on the vibrational degree of freedom, we compare the

collisions with different chemical reactivities. The result agrees with the

resonant scattering picture with the complex formation semi-quantitatively.

With the utilization of a dc E-field, we further polarize the ultracold ground-

state NaRb molecules and investigate the dipolar collisions between them.

The result also show agreement with the model and highlights the coupling

between DDI and quantized nature of ultracold collisions.

With the population transfer via MWs, we investigate the dipolar col-

lisions in the absence of a dc E-field, in a 50/50 mixture of two different

rotational states. We observe different loss rate constants in different combi-

nation of states which qualitatively agrees with the relative strength of the

178
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DDIs. As a comparison, we also investigate the collision with two hyper-

fine states in the ro-vibrational ground state which yields much lower loss

rate constants. The result agrees with the close-coupling calculation and re-

veals the importance of DDI, which modifies the interaction potentials and

introduces the hyperfine-changing collisions, in a mixture sample.

With the species-selective removal of residual atoms, we investigate the

collision of the NaRb ground-state molecule with the atoms. We explore

the collisions of Na+NaRb and Rb+NaRb, which have distinct chemical

reactivities. We observe agreement with the universal model in the Wigner

regime for both cases. We tune the Rb+NaRb collisional threshold by tuning

the Zeeman shift of the Rb atoms and observe no resonance in a scan of 14

G wide. The Rb+NaRb case is supposed to have sparser trimer transition

complex states. It should not agree with the universal model and resonances

should be observable. The Rb+NaRb result is out of our expectation and

future investigations are demanded.

The collisional experiment series deepen our understanding and pave our

way towards manipulating interactions between UPMs. It is critical for fur-

ther experiments of all relevant fields using UPM as a platform. Meanwhile,

they also throw out new questions. For example, “how important is the short-

range physics in molecular collisions? how can we characterize the short-

range physical effects with more reliable experimental methods?”, “what

really happens to those complexes? can we confirm the existence of com-

plexes with some technique?”, “what happens to the nonreactive Rb+NaRb

collision? Why no resonance observed?” etc.

To answer those questions, an upgrade on the experimental apparatus

is certainly needed. One possible direction is to integrate optical tweezer

technique and product detection technique such as REMPI into the system.
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With the optical tweezer technique, we can produce a single transition com-

plex and get rid of additional processes like the molecule-complex collision.

The complex formed in this way could be detect directly or indirectly by

waiting for the molecule revival from the complex dissociation. To capture

the complex in trap, a different laser with longer wavelength could be con-

sidered. An improvement in B-field stability could also be benefitial for the

collisional experiments. With a finer B-field resolution, for instance, the

Rb+NaRb resonances in loss rate constants that are originally smoothened

out may stand out.

Besides collisions, we also investigate the decoherence between the ro-

vibrational ground state and the first rotational excited states in a bulk

sample. Theoretically, we calculate the decoherence rate with the MACE

algorithm. Experimentally, we tune the polarization of the ODT beams

to the magic angle and use the spin-echo method to eliminate the single-

particle decoherence. We then observe a density dependent decoherence rate

for two choices of superposition state. The dependence to the density is of

the same order as the theoretical calculation. However, the two cases, which

have different strengths of DDI, appear to have the same dependence and

that disagrees with the spin-exchange picture used in the MACE calculation.

Future investigations are demanded for this topic. The key difference between

the experimental reality and the simple MACE model is the existence of

strong interstate and intrastate lossy molecular collisions in the experiment.

It would be interesting to answer questions like “what kind of role does the

loss play in the decoherence process in a bulk sample?”.

Finally, we show our recent progress on the 3D optical lattice. We show

our design for the optical lattice together with the new ODT. We also switch

to the plug trap from the hybrid trap for the MW evaporative cooling. With
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the vertical lattice, we calibrate the lattice depth with the Kapitza-Dirac

scattering and we demonstrate the phase correlation decay between the sites

of the 1D lattice by varying the lattice depth and observing the interference

pattern after TOF.

2 End of Chapter.
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