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i

Abstract

After more than 30 years development, ultracold atoms have become a versa-

tile platform with a wide range of applications, from studying very fundamental

physics such as basic properties of BEC, to making practical devices such as

atomic clock. Among these applications, the spinor quantum gas, a quantum

gas with spin degree of freedom, has attracted a lot of attentions, both experi-

mentally and theoretically. Whereas all previous studies focus on spinor gases of

single atomic species, in this thesis we present the first experimental studies of

coherent spin-mixing dynamics in a spinor mixture of 87Rb and 23Na.

We produce an ultracold mixture of 87Rb and 23Na atoms with laser cooling

and evaporative cooling in magnetic and optical traps. A special spin state is

prepared such that each species is in a superposition of the Zeeman sublevels in

their F = 1 hyperfine ground-state manifolds. Interspecies spin-changing colli-

sions cause the oscillation between the spin populations. We observe that the

magnetization of each species oscillates while the total magnetization is con-

served. We also study the effect of external magnetic field and find a resonance

behavior of the dynamics. Furthermore, this resonance is found to be control-

lable by changing the polarization of the optical trapping light, due to the small

vector light shift. The observed phenomena are in good agreement with theory

developed based on the mean field Gross-Pitaevskii equation for condensate and

Boltzmann equation for thermal gas.

We also study the thermal Rb spinor gas with spin either F = 1 and F =

2. Although there are differences between BEC and thermal gas in essence, the

observed long-lasting coherent dynamics shows that they can be treated by unified

formalism. The prediction of a factor of two in the interaction term is verified by

measuring the dynamics at different atomic density.



i 
 

摘要 

 

經過三十多年的發展，超冷原子已經成為一個研究前沿物理的多用平臺，

其應用包括基礎物理研究如玻色－愛因斯坦凝聚的基本性質，到研製實用的設

備如原子鐘。在這些研究之中，具有內稟自由度的量子氣體（被稱之為旋量氣

體）受到實驗和理論上的廣泛關注。已有的實驗研究均集中在單種原子的旋量

氣體，而本論文闡述了在此領域中對 87Rb 和 23Na 旋量氣體混合物中的自選相

干混合動力學的首次實驗研究。 

我們在磁阱和光阱中利用激光冷卻和蒸發冷卻的方法製備出 87Rb 和 23Na

的超冷混合物，並製備一特殊的自旋初態，使每種原子都處於其超 F = 1 精細基

態中各塞曼子能級的疊加態。我們觀察到異核間的自旋交換碰撞引起自旋態上

原子數分佈隨時間的週期性變化，而每種原子的相對磁化強度亦隨時間作週期

變化，但系統的總相對磁化強度守恆。我們研究了外加磁場的影響並發現了共

振現象，並且由於向量光能移的原因，此共振的位置能用囚禁光的偏振態來調

控。我們觀察到的現象與用 Gross-Pitaevski 方程和 Boltzmann 方程建立起來的

理論模型結果一致。 

我們也研究了自旋為 1 和 2 的 87Rb 熱原子旋量氣體。儘管凝聚體和熱原

子的旋量氣體有很大區別，但我們觀察到持續了長時間的相干動力學表明它們

可以遵守同樣形式的運動方程，並且亦以實驗證實其不同之處為自旋相互作用

數值上相差兩倍。 
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Chapter 1

Introduction

Twenty years ago in 1995, the first Bose-Einstein condensation (BEC) were ob-

served experimentally in 87Rb and 23Na atomic gases [1–3], which makes Ein-

stein’s prediction [4] in 1925 come true and marks the beginning of a new and

continuously growing research field of ultracold quantum gases. The success owes

largely to the development of cooling and trapping techniques of neutral atoms.

When the spin degree of freedom is liberated in optical trap, the resulting spinor

gases exhibit even richer properties. In this chapter, we give a brief introduction

to the developments and achievements in this young and fascinating field.

1.1 From laser cooling and trapping to Bose-

Einstein condensation

The theoretical prediction of BEC was made by Einstein in 1925 who general-

ize the statistics of photons, put forward by Bose [5], to noninteractive massive

bosons, and found that below a critical temperature, a macroscopic fraction of

the particles will occupy the lowest energy state [4]. It was realized by Fritz

London that superfluid 4He would be a kind of BEC in 1938 [6]. However, the

strong interaction between He atoms conceal many key properties of BEC, since

1
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the condensate fraction can only reach 10% [7]. Thus it is desired to find an

“ideal” system which remain gaseous at temperature as low as the transition

temperature so that the interaction is weak. It was proposed by Hecht in 1959

that spin-polarized Hydrogen is such an weakly interacting Bose gas [8], and con-

firmed by Stwalley [9] in 1976 through detailed study of the interaction between

H atoms. Their work motivated the search of BEC in dilute atomic gases.

Another candidate is the alkaline atomic gases, which become attractive due

to the success of laser cooling and trapping. The idea of trapping neutral atoms

by light dates back to Askar’yan, Letokhov [10] and Ashkin [11], but the great

breakthroughs in experiment were made by Chu, who realized the first opti-

cal dipole trap in 1986 [12] and magneto-optical trap in 1987 [13]. With later

progresses both in experiment and theory [14], alkaline atoms can be trapped

and laser cooled from room temperature to microKelvin regime and laser cool-

ing is still the starting stage of all experiments studying ultracold gases today.

Combined with magnetic traps proposed by Pritchard [15], the first BECs were

achieved by evaporative cooling in 1995 by the MIT group and JILA group, in

atomic species of 23Na and 87Rb respectively.

The birth of BEC attracted great interests and extensive studies in the atomic,

molecular and optical (AMO) physics and condensed matter physics societies. On

the one hand, a BEC can be viewed as a coherent matter wave, whose coherent

properties are widely investigated in new research fields such as atom optics, and

exploited in many high precision measurements. On the other hand, the BEC

as well as ultracold thermal gas provides an isolated, clean and tunable system

to study fundamental physics. Traditional “difficult” problems such as supercon-

ductivity can also be investigated, especially combined with optical lattice which

may enable quantum simulation.

A great advantage of BEC in atomic gases is that it is well described by a

wavefunction governed by the Gross-Pitaevski equation (GPE) in the mean-field
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level, which is studied theoretically by Gross [16, 17] and Pitaevski [18] in 1960s

in order to describe vortices in superfluid. GPE has been found highly successful

in explaining a series of properties of atomic BEC, such as the density profile in

trap [19], elementary excitations [20–23], solitons [24, 25], vortices [26–30] and

multicomponent BECs [31, 32]. Today, many topics and new results are still being

investigated under the guidance of GPE [33]. Meanwhile, under some conditions,

the atomic BEC can go beyond the mean field theory in which cases quantum

fluctuations or the interaction between condensate and thermal component must

be taken into account, hence it also provides a tool to test the many-body theory.

1.2 Spinor Gases

Among many research directions utilizing ultracold atoms, spinor gas draw much

attention as it appears as a new quantum fluid that exhibits both superfluid and

magnetic properties. The subject originated from 1998, when the BEC of 23Na

[34] was successfully produced in optical traps. In contrast with magnetic trap

in which only special spin states can be trapped, the optical dipole trap (ODT)

potential can be spin-independent hence the spin degree of freedom is liberated.

The interaction becomes spin-dependent. Ho [35], Ohmi and Machida [36] first

considered the problem and studied the interaction in the spin-exchange form.

The ground state and elementary excitations are calculated and it is predicted

that the F = 1 87Rb BEC has a ferromagnetic ground state while that for 23Na

is polar, which are confirmed in later experiments.

Triggered by the pioneering theoretical and experimental work in 1998 [37–39],

a lot of intriguing properties of the spinor gases related to the spinor wavefunc-

tion and spin-dependent interaction are proposed and studied. A first important

problem is the identification and classification of the various ground state phases

in F = 1, 2 and 3 spinor BEC. The phase transition between some of them are
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observed. Like the case in magnetic materials, spin domain can form inside the

spinor BEC after holding in the trap [34] or through a rapid quench of the mag-

netic field [40]. In contrast to scalar BEC where only mass current exists when

the condensate phase has spatial variation, in spinor BEC both mass current and

spin current, which is called spin textures, can be produced due to spatial varia-

tion of spin. They include a variety of topological excitations such as monopoles

[41, 42], skyrmions [43, 44], vortices [45, 46], and knots [47].

In virtue of the detecting technique for spinor gases, which include the ab-

sorption imaging after Stern-Gerlach separation during time-of-flight, and the

non-destructive magnetization imaging [48], nonequilibrium dynamics can be ex-

amined in spinor gases by preparing the system far from equilibrium and probing

the spin evolution. An important and early studied one is the spin mixing dynam-

ics, in which the spin exchange interaction lead to the spin-mixing processs, and

the population of each spin state shows macroscopic oscillations. It also accounts

for the formation of spin domains and spin textures. The spin-mixing dynamics

between two atomic species and in a non-condensed cloud are the subjects of this

thesis. A brief review of the development is given in Sec. 5.1. Besides spin-mixing

dynamics, currently interesting topics include spin squeezing [49, 50], parametric

amplification [51, 52], quench dynamics [40], relaxation and thermalization [53],

and dynamics caused by dipolar interaction [54].

In the theoretical aspect, the spinor gases provide a two-body interaction

which is more complicated than the simplest scaler contact interaction. The dif-

ference from the traditional quantum fluid with internal degree of freedom such

as superfluid 3He, p-wave and d-wave superconductor and neutron star is that the

system parameters are highly controllable. Hence the consequence of the inter-

action is ready to be examined experimentally, and the clear microscopic picture

make a direct comparison between several theoretical models and experiments

possible. Currently the mean-field GPE is often used to describe the spin mixing
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dynamics, while other theories such as Bogoliubov theory [55], Beliaev theory

[56] and exact many-body theory [57] for spin degree of freedom are investigated,

but the experimental observation of the different effects are still underway.

1.3 Thesis Outline

This thesis describes the experimental investigation of the heteronuclear spin-

mixing dynamics between spin-1 87Rb and 23Na spinor gases [58], and dynamics

in thermal gases of spin-1 and spin-2 87Rb [59], as well as the necessary theoretical

background and experimental setups. We have given an overview of the research

field of cold atom and spinor gases in this chapter.

In chapter 2, the basic knowledge of light-atom interaction and its application

in cooling and trapping neutral atoms, and the effects of magnetic field are de-

scribed, which are crucial in designing the atom traps. The principles of cooling

and trapping are reviewed and a brief introduction of BEC and GPE is given.

In chapter 3 we try to give a theoretical background which treat the spinor

gases from the first principle and derive the experimental observable quantities.

The main result for the ground state and dynamics of spin-1 BEC are presented.

We also discuss the mean-field approximation and single-mode approximation,

as well as some behavior beyond these approximations. The theory for spinor

mixutre is presented.

In chapter 4 we come to the experimental part, and all components in the

apparatus carrying out the experiment are described in detail. We also explain

how to probe and characterize the atomic cloud in the setup. Previous results in-

cluding producing the two species ultracold mixture and BEC, studying Feshbach

resoances and creating Feshbach molecules are summarized.

In chapter 5 we describe the experiment on the spin-mixing dynamics between
87Rb and 23Na in detail. We specify the state preparation, the experimental
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sequences and the observations of the dynamics as well as the control of resonance

by tuning the polarization of light. Necessary calculation and illustration to

understand the experiment are given.

In chapter 6 the experiment on spin-mixing dynamics in thermal 87Rb is

present, both in F = 1 and F = 2 cases. We detail the description for non-

condensed gas and compare the dynamics between BEC and thermal gas.

Finally we give a summary in chapter 7.



Chapter 2

Theoretical Background:

Trapping and Cooling Atoms

2.1 Atom-light Interaction and Mechanical Ef-

fect

Atom-light interaction is a fundamental topic in atomic physics and quantum

optics. It is the starting point for investigating and manipulating many of the

properties of atomic gases. In experiments trapping and cooling atoms and the

studies of quantum gases, the topic arises in many scenes. For example, in

magneto-optical trap, atoms undergo cycling transition in the presence of red-

detuned near resonant light; optical dipole trap utilizes AC stark effect of light

on atoms to generate dipole force; even microwave driving the transitions be-

tween hyperfine levels can be viewed as a kind of light-atom interaction. Thus

understanding how light interacts with atoms has long been an important and

interesting problem.

The topic can date back to Lorentz 100 years ago, who considered the atom

to be an harmonic oscillator and the light act as an AC electric field driving

the oscillator. The model successfully describes a variety of phenomena such as

7
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index of refraction, the conductivity of metal even the normal Zeeman effect. It is

still useful in deriving practical formula in laser cooling and trapping. However,

we will start from the two-level system in semiclassical description, where two

quantum states and classical field is considered.

The general form of the Hamiltonian of a two-level system in matrix form is

H = ~

 −∆ Ω/2

Ω/2 0

 , (2.1)

where the energy of the ground state and excited state without coupling is 0 and

−∆, the Rabi frequency Ω represent the coupling strength. The form applies to

many systems, for example, a two-level atom interacting with the monochromatic

light under rotating-wave approximation in the rotating frame, a spin interacting

with AC magnetic field and even two interacting spins constituting effective two

level system. In the first case, ∆ = ω − ω0 is the detuning of light frequency

relative to atomic transition frequency, and Ω = 〈g| er |e〉 · E/~ for oscillating

electric field E cosωt. The detuning and coupling can have different meanings in

different systems, but the behaviour is similar. Since the the eigenenergies can

be easily calculated

E± = −~∆
2 ±

~Ω̃
2 , (2.2)

corresponding to eigenstates

|+〉 = sin θ |g〉+ cos θ |e〉 ,

|−〉 = cos θ |g〉 − sin θ |e〉 ,
(2.3)

where

tan 2θ = −Ω
∆

(
0 ≤ θ ≤ π

2

)
. (2.4)
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Therefore a general state at time t evolves according to

|ψ (t)〉 = 〈+ | ψ (0)〉 |+〉 e−iE+t/~ + 〈− | ψ (0)〉 |−〉 e−iE−t/~. (2.5)

A common situation is that the atom is initially prepared in the ground state and

the resonant coupling is turned on at t = 0, i.e., |ψ (0)〉 = |g〉 = (|+〉+ |−〉) /
√

2,

and the state at time t is given by

|ψ (t)〉 = 1√
2
(
|+〉 e−iΩt/2 + |−〉 eiΩt/2

)
. (2.6)

At the special time Ωt = π,

|ψ (t = 2π/Ω)〉 = e−iπ/2√
2
(
|+〉+ |−〉 eiπ

)
= e−iπ/2 |e〉 , (2.7)

and at time Ωt = 2π,

|ψ (t = π/Ω)〉 = e−iπ√
2
(
|+〉+ |−〉 ei2π

)
= e−iπ |g〉 . (2.8)

The two pulses transfer the total population to the excited state and back to

ground state again. We can calculate the population in the excited state at time

t is given by

ρe = |〈e | ψ (t)〉|2 = sin2
(

Ωt
2

)
. (2.9)

From this expression we can see that the population of both state oscillates si-

nusoidally, which is referred to as Rabi oscillation. At t = π/2Ω, π/Ω, 2π/Ω, the

population of excited state is ρe = 1, 0.5, 0, and they are called π/2-pulse, π-pulse

and 2π-pulse, respectively.

In the presence of detuning δ, one can find that the population in excited

state becomes

ρe = Ω2

Ω̃2
sin2

(
Ω̃t
2

)
, (2.10)
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where

Ω̃ =
√

Ω2 + ∆2. (2.11)

These results are particulary useful in spin state preparation by microwave

and RF pulses. By irradiating the pulse for a certain time and intensity, the pop-

ulation of the atoms can be transferred to the desired states. Another method

for transferring the population is adiabatic rapid passage (ARP). From Eq. 2.3

and 2.4 we can see that the eigenstates in the presence of coupling is neither

|g〉 nor |e〉 but |+〉 and |−〉, however, |−〉 is asymptotically equal to |g〉 when

∆ � −Ω, and asymptotically equal to |e〉 when ∆ � Ω, and the eigenenergies

has an avoided crossing in the transition between these two extreme cases. Ac-

cording to the adiabatic principle of quantum mechanics, the system remains in

the instantaneous eigenstate if the Hamiltonian changes in time slowly enough.

Hence the state will change from initial |g〉 to |e〉 if we turn on the coupling at

time t = 0 with ∆ � −Ω and adiabatically vary it to ∆ � Ω then turn off.

In fact, for imperfect adiabatic passage, the fraction that remains in the ground

state due to finite changing rate of ∆ is given by [60]

P = exp
(
− πΩ2

2 |d∆/dt|

)
. (2.12)

The above two methods for preparing initial spin states are widely used in our

experiments searching for the Feshbach resonances and spinor dynamics.

Mechanical Effects

In the discussion above we only consider the internal states of an atom. However

atoms always have motional degree of freedom in real space, and the interaction of

light and atom manifests as potentials or forces exerted on the atoms. There are

two kinds of forces: dipole force originated from the gradient of field amplitude

and radiation-pressure force due to absorption of photons. Though they can be
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treated in a uniform framwork [61], it is instructive to discuss them separately

from different approaches.

Dipole force - From the eigenenergies 2.2 the energy of the atoms is shifted

by the light, which is the well-studied AC stark effect. For far and red detuned

light (∆ � −Ω < 0), most of the atoms are in the ground state and the energy

shift is given by

U = −~∆
2 −

~Ω̃
2 = −~∆

2 + ~∆
2

√
1 + |Ω|

2

∆2 ≈
~|Ω|2

4∆ . (2.13)

If the light field amplitude has spatial dependence so that the Rabi frequency is

Ω (r), the force is proportional to the gradient of the potential

F (r) = −∇U (r) . (2.14)

The dipole force is utilized in far-off-resonant trap or ODT. The trapping potential

is proportional to the intensity of the light hence an usual Gaussian beam provide

a 3D trap which potential minimum is at the beam waist position. For a real

atom with multi energy levels, the Rabi frequencies are related to the natural

linewidth of the transitions, and a practical calculation of the trapping potential

are given in Sec. 2.2.

Radiation-pressure force - Though can be explained in terms of momentum

carried by electromagnetic waves, the radiation-pressure force is more lucid in

view of photons suffering absorption and emission by atoms. Both events change

the energy and momentum of the atom due to conservation laws, and the force can

be calculated from the time average of these events which usually has large num-

ber in a short time. In the above discussion we do not consider the spontaneous

decay of the atom in the excited state, which can be ignored only in microwave

and RF problems. This is well-explained by assuming additional terms accounting
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for spontaneous decay in the optical Bloch equations in terms of density matrices

ρ̇gg = iΩ
2 (ρge − ρeg) + Γρee

ρ̇ee = −iΩ2 (ρge − ρeg)− Γρee

ρ̇ge = −
(

Γ
2 + i∆

)
ρge −

iΩ
2 (ρee − ρgg)

, (2.15)

where ρij is the matrix elements of the density operator ρ = |ψ〉 〈ψ|, Γ is the

natural decay rate of the excited state which is the reciprocal of the lifetime τ .

The steady state solution of the excited state population is found to be

ρee (t→∞) = (Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2 . (2.16)

In view of photons, the number of photons scattered by an atom in unit time is

given by
R = Γρee (t→∞)

= Γ (Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2

= Γ
2

I/Is

1 + 4(∆/Γ)2 + I/Is
,

(2.17)

where the saturated intensity is defined such that I/Is = 2(Ω/Γ)2.

In this view an atom stimulatedly absorbs and spontaneously emits R∆t pho-

tons in a short time ∆t, during which the absorbed photons are all come from one

direction while the emitted photons go out in all directions. The net momentum

obtained by the atom is therefore prR∆t, where pr = ~k is the recoil momentum

obtained by the atom in a single event. The average force is therefore

Frad = prR∆t
∆t = ~k

Γ
2

I/Is

1 + 4(∆/Γ)2 + I/Is
. (2.18)

The radiation force plays the major role in laser cooling and trapping. The idea

for cooling (hence slowing the motion of an atom) is straightforward: consider
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an atom placed inside two counterpropagating red detuned laser beams with the

same frequencies, if the atom has a velocity to the right, then the laser beam

pointing to the left gives a larger force due to smaller ∆ in Eq. 2.18 caused

by Doppler effect, while the laser beam pointing to the right gives a smaller

force. Hence an atom moving to the right experience a net force pointing to the

left, and vice versa. Furthermore, the larger velocity corresponds to larger force,

hence the atoms are slow down until the forces are balanced. This is the basic

principle of the so-called optical molasses and can be viewed as the trapping

of atoms in momentum space. By combining with magnetic gradient fields, a

spatial dependent restoring force can be generated. The working principle of

magneto-optical trap is described in Sec. 2.2.3.

2.2 Atom Traps

2.2.1 Zeeman Effect and Magnetic Trap

Magnetic trapping of neutral atoms makes use of Zeeman effect. In the absence

of external magnetic field, the angular momentum state of an atom is described

by the Hamiltonian with the hyperfine interaction

Hhf = AI · J (2.19)

where A is the hyperfine splitting constant, I is the nuclear angular momentum

and J is the electronic total angular momentum. The eigenstates are those of the

total angular momentum F = I + J, denoted by |F,mF 〉, and the corresponding

eigenenergies are

Ehf (F,mF ) = 1
2 [F (F + 1)− I (I + 1)− J (J + 1)] (2.20)



CHAPTER 2. THEORETICAL BACKGROUND: TRAPPING AND COOLING ATOMS14

The static magnetic field introduces an interaction energy of µ · B, in terms of

angular momentum, the Hamiltonian is given by [62]

H = AI · J + (gIµBI + gJµBJ) ·B. (2.21)

Now |F,mF 〉 are no longer the eigenstates and in the limit of µBB � A, the

eigenstates are |mI ,mJ〉. However, the general eigenstates have one-to-one con-

nections with each |F,mF 〉 when B → 0, and |mI ,mJ〉 when B → ∞. Hence

they are still denoted conveniently by |F,mF 〉 in usual range of magnetic field.

For alkaline metal atoms in the ground state, J = 1/2, and the eigenenergies

have an analytical expression referred to as Breit-Rabi formula

E
(
F = I ± 1

2 ,mF

)
= − ∆Ehfs

2 (2I + 1) −mFgIµBB ±
∆Ehfs

2

√
1 + 4mF

2I + 1x+ x2,

(2.22)

where

x = (gJµB − gJµB)B
∆Ehfs

. (2.23)

The Zeeman shift for each hyperfine states in ground state 87Rb are shown in Fig.

2.1. For atoms with J > 1/2, e.g., in the excited state with J = 3/2, there is

no unified analytical expression, but the solution can be found by diagonalizing

the Hamiltonian 2.21 in the direct product space of I and J, which is in the

(2I + 1)(2J + 1) by (2I + 1)(2J + 1) matrix form. This problem has significance

in studying the shift of optical transitions in high magnetic field. A calculation

using Mathematica with the add-on “Quantum” [63] is shown in Fig. 2.2.

According to Maxwell’s equations, only magnetic field minimum can be gen-

erated in current-free region in space while maximum cannot exist. Hence only

states with positive magnetic can have potential minimum and be trapped. From

Eq. 2.22, these low-field seeking states are |1,−1〉, |2, 1〉 and |2, 2〉 for Rb and Na

(I = 3/2).
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Figure 2.1: 87Rb 52S1/2 hyperfine structure and Zeeman shift in external mag-
netic field, according the the Breit-Rabi formula 2.22. The labels denote the
asymptotic hyperfine state for each level when B → 0.

The simplest magnetic trap is quadrupole trap (QT), which is generated by

a pair of anti-Helmholtz coil, with the currents running in the same direction.

According to ∇ · B = 0 and the axial symmetry, the magnetic field near the

center of the coil pair must have the form

B = B′ (x, y,−2z) , (2.24)

where B′ is the magnetic field gradient along x and y direction, hence the mag-

nitude of the magnetic field is given by

B = B′
√
x2 + y2 + 4z2

= B′r

√
5 + 3 cos 2θ

2 , (in spherical coordinate)
(2.25)
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Figure 2.2: 87Rb 52P3/2 hyperfine structure and Zeeman shift in external mag-
netic field. The labels denote the asymptotic hyperfine state for each level when
B → 0. The result are obtained by numerically diagonalized the Hamiltonian
2.21, for I = 3/2 and J = 3/2.

Hence the potential is linear along any direction, and the gradient along axial

direction is two times that along the radial direction.

QT provides strong confinement and good optical access as well as high evap-

orative cooling efficiency. However the drawback is the the presence of zero mag-

netic field point in the center, which causes Majorana loss of a ultracold atomic

cloud and limit the lowest achieved temperature. This is because the magnetic

field direction has an sudden change across the zero point, and the atoms can

not follow the magnetic field and retain the local spin state. Once the spin state

is changed the atom is no longer trapped. The Majorana loss rate for an atomic

cloud at temperature T can be estimated

Γ = χ
~
m

(
0.5µBB′
kBT

)2

, (2.26)
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where χ is a proportional constant. The loss and heating become significant

before the cloud is cooling to quantum degeneracy. In order to overcome this

difficulty, several kinds of traps have been designed to eliminate the zero field

point such as Ioffe-Pritchard trap and time orbiting potential trap, or displace

the trap center away from the zero field point such as the the hybrid trap consist

of QT and displaced ODT Sec. 4.4.

2.2.2 Optical Dipole Trap

Optical dipole trap provides another kind of trap for neutral atoms utilizing the

dipole force. The important advantage of ODT is that all spin states can be

trapped in contrast to magnetic traps, hence release the spin degree of freedom

and enable the study of a new field, namely spinor gases.

In a two-level system, the AC stark shift is given by Eq. 2.13. The Rabi

frequency Ω is related to the light intensity I = cε0E2/2 and field amplitude by

Ω = 〈g| er |e〉 · E
~

, (2.27)

and the transition dipole moment is related to the spontaneous decay rate by

Γ = ω3
0

3πε0~c3 |〈g| er |e〉|
2. (2.28)

Combining above equations, the trapping potential is given by

U(r) = 3πc2

2ω3
0

Γ
∆I(r). (2.29)

This is usually accurate enough to describe a far-off-resonant trap (e.g., 1070nm

ODT for 87Rb with 780nm and 795nm transitions). In a real atom with multi

energy levels, perturbation calculation up to second order considering all energy
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levels gives a more general expression

Ui (r) = −
∑
j

1
cε0

(
1

ωji − ω
+ 1
ωji + ω

)
|〈i| ε̂ · er |j〉|2

~
I (r) . (2.30)

The accuracy is increased by considering the fine structure and hyperfine struc-

ture successively and substituting corresponding transition dipole moments. Here

ε̂ is the polarization vector for the light field. If the polarization has circular com-

ponent, there small different in the shifts for differen mF Zeeman sublevels. This

vector light shift is found to have dramatic effect on the heteronuclear spinor

dynamics in a spinor mixture.

According to Eq. 2.29, the ODT can be achieved by generating a light inten-

sity field that have maximum in space. This is realized by a usual Gaussian beam

with beamwaist w0 and power P propagating along z direction, which intensity

can be expressed as

I (x, y, z) = 2P
πw(z)2 exp

[
−2 (x2 + y2)

w(z)2

]

w (z) = w0

√
1 +

(
z

zr

)2
.

(2.31)

where zr = πw2
0/λ is the Rayleigh length. Hence the trap depth is given by

U0 = −3πc2

2ω3
0

Γ
∆

2P
πw2

0
. (2.32)

Near the trap center, the ODT can be approximated by harmonic trap

U (r) = −U0
w2

0

w(z)2 exp
[
−2 (x2 + y2)

w(z)2

]

≈ −U0 + 2U0

w2
0
x2 + 2U0

w2
0
y2 + U0

z2
r

z2

= −U0 + 1
2mω

2
xx

2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2.

(2.33)
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with trap frequencies

ωx =
√

4U0

mw2
0
, ωy =

√
4U0

mw2
0
, ωz =

√
2U0

mz2
r

. (2.34)

The single beam ODT has a weak confinement in z direction and strong confine-

ment in x and y dirction, so the atom cloud in this trap is cigar shape. To form

a near isotropic 3D trap, we can superimpose two Gaussian beams with certain

intersection angle.

2.2.3 Magneto Optical Trap

As described in Sec. 2.1, radiation-pressure force can be used to cooling atoms by

by three pair of counterpropagating red detuned beams. Making use of Zeeman

effect, a pair of anti-Helmholtz coil combined with the six laser beam can be

used to trap atoms in real space. This ingenious idea can be illustrated in one

dimensional case, as depicted in Fig. 2.2.3. The magnetic gradient field indicates

that for z > 0, B(z) > 0 (point to right); for z < 0, B(z) < 0 (point to

left); B(0) = 0. The red detuned counterpropagating beams have both clockwise

circular polarization with respect to their propagating directions, but it should

be cautioned that the polarization are denoted as σ+ and σ− with respect to

the z axis. The Zeeman shift of the energy levels given by Eq. 2.22 can be

approximated by linear shift at low magnetic field:

∆E = gFmFµBB. (2.35)

Consider an atom placed at z > 0, the local magnetic field is point to right, hence

the σ+ drive mF = 0 → +1 transition, and σ− drive mF = 0 → −1 transition.

However, due to the Zeeman shift, the σ−-light is more near resonant to mF =

0 → −1 transition and gives larger force according to Eq. 2.18. Hence the total

force points to the left. Opposite force obtained when the atom is placed at z < 0
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Figure 2.3: Principle of MOT illustrated in one dimension. The magnitude and
direction of the magnetic field is shown in the upper curve. The energy levels
for F = 0 and F ′ = 1 split in the magnetic field gradient as shown in the lower
part. An atom placed in the indicated position experience a larger force from
the σ−-light and smaller force from σ+-light, due to corresponding shifts in the
atomic transitions, as explained in the text.

where the local field point to left. A detailed calculation give the restoring force

in one dimension

FMOT = −αv − βz, (2.36)

where
α = 2k∂Frad

∂ω

β = 2gFµBB′
∂Frad

∂ω
.

(2.37)

The 3D MOT is composed of a 3D gradient field and six counterpropagating

beams in three orthogonal directions, which configuration is shown in Fig. 2.4.
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Figure 2.4: Configuration of a 3D MOT. Six counterpropagating beams in three
orthogonal directions are crossed in the center of the antiHelmholtz coil producing
the magnetic gradient field. All propagation directions and polarizations are
indicated. The polarizations are defined with respected to the positive direction
in each directions.

The above argument assume an F = 0→ F ′ = 1 transition, but the basic principle

applies to other F → F ′ = F +1 transitions. In real atoms, atoms have a little

probability to be pumped to F ′ = F state and decay to F − 1 hyperfine state in

the ground state, hence a repumping light driving F − 1 → F ′ − 1 is needed to

complete the MOT cycle.
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2.3 Trapping and Cooling of Atoms

2.3.1 CMOT and Molasses

MOT is the workhorse in current experiment trapping neutral atoms, because it

provides strong confinement and direct cooling for atoms from room temperature

to about hundreds of microKelvin. However, the cooling mechanism based on

Doppler effect has a limiting temperature called Doppler limit

TD = ~Γ
2kB

. (2.38)

The Doppler limit is due to the random and discrete spontaneous decay events

balancing the Doppler cooling process. For Rb and Na, the Doppler limit is

144µK and 235µK respectively, which is still far from quantum degeneracy. To

reach high phase-space density, two procedures are widely adopted before loading

to magnetic trap or ODT for further evaporative cooling, namely the CMOT and

molasses. Here we briefly describe their working principles.

In MOT, the achieved density is major limited by the collisions between atoms.

The increase of the magnetic field gradient is proposed after the MOT stage,

in order to compress the MOT and increase the density of the atomic cloud.

Meanwhile it is found that increasing the laser detuning can reduce the reradiatin

force, hence larger detuning is favored in the CMOT stage.

The CMOT is followed by the molasses stage for cooling to below Doppler

temperature, which strictly speaking is polarization gradient cooling, since the

word molasses is initilly used to decribe Doppler cooling. The magnetic gradient

field is turned off, and along each direction, the counterpropagating σ+-σ− beams

form a standing wave pattern, in which the electric field is linear everywhere, but

the direction rotation with periodicity of λ. For steady state of atoms in local

linear field, the populated distribution inmF Zeeman sublevels are symmetric and
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mostly in mF = 0. If the atom moves along one beam, it experiences a rotation

of the quantization axis, and the population distribution cannot adiabatically

follows. It is shown in [64] that atoms moving to σ+ beam lead to population

shift to mF = +1 state, thus causing a imbalance of the radiation-pressure forces

exerted by the two beam with opposite polarizations. The imbalanced by this

mechanism is much more sensitive to that in Doppler cooling, and hence produces

a stronger damping. The theoretical achieved temperature is the recoil limit

Trec = ~2k2

2mkB
. (2.39)

which can below 1µK. The laser detuning and intensity are also investigated in

[64] and it is found that increasing detuning and decreasing intensity are flavored.

2.3.2 Evaporative Cooling

The usually achieved temperature in laser cooling is about several to several tens

of microKelvins, limiting by the photon scattering in the presence of resonant

laser lights. Thus the quantum degenerate gases are obtained by evaporative

cooling in magnetic traps and ODTs [65].

The principle of evaporative cooling is rather comprehensible. A thermal

cloud in equilibrium has a Maxwellian momentum distribution. If we are able to

remove the hot atoms in the high energy tail in the distribution, the remaining

atoms will reach a lower temperature after equilibrium through elastic collisions.

This is just like the cooling of a cup of water through evaporation, but usually

the atomic gas undergoes forced evaporation continuously.

The realization of evaporative cooling in magnetic trap and ODT is to lower

the trap depth from top to bottom, since the atoms with high energy are more

likely to appear at the outer part of the trap. The implementation in magnetic

trap is through microwave or RF evaporation, where the frequency is continuously
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scanned corresponding to the spin state resonant transitions from outer part to

the inner part of the trap. The atoms undergo transitions will change to high

field seeking state and is ejected from the magnetic trap. This method is often

referred to as a microwave or rf “knife” which cut the atoms with energy higher

than the corresponding transition frequency.

The evaporative cooling in ODT is more straightforward. Since the trap

usually has Gaussian shape and a finite trap depth, which is proportional to

the light intensity, lowering the trap depth is realized by continuously decreasing

the power of the ODT. The two kinds of evaporative cooling in schematically

illustrated in Fig. 2.5.

U1

U2

U3

RF

(a)

U1

U2

U3

(b)

Figure 2.5: Diagrammatic illustrations of the evaporative cooling in (a)
quadrupole trap and (b) optical dipole trap. Both trap depths are lowered from
U1 to U3. In QT, this is achieved by the RF or microwave frequency sweep, while
in ODT, the power which proportional to the trap depth is ramped down.

The efficiency of evaporative cooling depends critically on the collisional prop-

erties of the atoms. The elastic collisions should be fast enough to keep thermal-

ization during the cooling process, while inelastic collisions lead to atom loss and

is against evaporative cooling. Hence the it is necessary to have a reasonable ratio

of elastic to inelastic collisions. The rate for the former is proportional to the

elastic collision cross section which is determined by the s-wave scattering length

by σel = 8πa2, while the situation is much more complex for inelastic collisions
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which includes background collisions, two-body and three-body collisions. Usu-

ally the efficiency is quite high for 87Rb which has a moderate scattering length

a = 103a0, while the severe two-body loss makes the evaporative cooling for 85Rb

and 133Cs (both with a > 2000a0) difficult. Also, evaporative cooling is not appli-

cable for Fermionic species such 40K in which the s-wave scattering is forbidden.

Thus sympathetic cooling is needed in studying these atomic species.

2.3.3 Sympathetic Cooling

As mentioned above, sympathetic cooling is a useful scheme for some atomic

species [66–80]. The method is to use an atomic species which has good evapora-

tive cooling efficiency to be a coolant, meanwhile keep the target species overlap

with the coolant in the trap. Interspecies elastic collisions lead to thermalization

between the two species, and the temperature of the target species is lowered

during the evaporative cooling process. Similar to the thermalization process in

single species, the efficiency of sympathetic cooling depends largely on the in-

terspecies s-wave scattering length. In addition, the spatial overlap of the two

clouds is also an important factor. The collision rate is given by Γin = σinv̄n̄,

where σin is the interspecies elastic cross section determined by the s-wave scat-

tering length ain, v̄ =
√

(8kB/π) (T1/m1 + T2/m2) is the mean thermal relative

velocity, n̄ = (1/N1 + 1/N2)
∫
n1 (r)n2 (r) d3r is the overlap density of the two

cloud. Then the temperature difference between the two species evolves accord-

ing to
d

dt
(∆T ) = −γ∆T, (2.40)

where the thermalization rate γ = Γξ/2.7, with ξ = 4m1m2(m1 +m2)−2, as

it is found that about 2.7/ξ collisions is needed for crossspecies thermalization.

The sympathetic cooling scheme is found to work well in atomic mixtures with

appropriate scattering length and overlap such as 87Rb -85Rb, 87Rb -40K, 87Rb
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-7Li, while not so efficient for 87Rb -6Li due to small scattering length.

In our case, both 87Rb and 23Na have good evaporative cooling efficiency.

However, since 23Na number is two orders of magnitude smaller than 87Rb in

MOT, it is reasonable to adopt the sympathetic cooling scheme using 87Rb as

coolant in the evaporative cooling in magnetic trap. In contrast, since the trap

depth of 23Na is much shallower than 87Rb in ODT, the former serves as coolant in

evaporative cooling in this stage. Due to moderate interspecies scattering length

(ain = 73a0), the sympathetic cooling is found to be very efficient and plays an

important role in our preparation of the ultracold mixture [81].

2.4 BEC and GP Equation

From the view of statistical mechanics, the origin of BEC is that a cloud of bosons

obey Bose-Einstein statistics instead of Maxwell-Boltzmann statistics. Specifi-

cally the distribution function has the form of Bose distribution

f(εν) = 1
e−

µ−εν
kT − 1

, (2.41)

where f(εν) is the mean occupation number of the single-particle state ν; εν is the

energy associated with state ν; µ is the chemical potential, T is the temperature.

From this expression, for lower temperature, the states with lower energy become

more populated. BEC occurs when the lowest energy state is macroscopically

occupied. The number of condensate fraction below the transition temperature

is found to be
N0

N
= 1−

(
T

Tc

)3
. (2.42)

It is this condensate fraction that caused great interests and intensive studies in

the past several decades, since it forms a new material with most of its constituent

particles in a single quantum state.
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We do not take into account the interaction of particles when demonstrating

the origin of BEC, but studying the weakly interacting Bose gas has practical

significance as interactions always exist in currently available ultracold gases. In

order to model the problem in the simplest zero temperature case, we start from

the most general form of the Hamiltonian for a many-body system with two-body

interaction for every two particles [82]

H =
∑
rs

a†r 〈r|T |s〉 as + 1
2
∑
rstu

a†ra
†
s 〈rs|V |tu〉 auat, (2.43)

where 〈r|T |s〉 is the matrix element of one-body operator T (kinetic energy, ex-

ternal potential, ...), 〈rs|V |tu〉 is the matrix element of two-body interaction

operator V coupling the states in which particle 1 is at r, t and particle 2 at s, u.

When only spatial degree of freedom is involved, working in the continuous co-

ordinate representation, as = ax = ψ(x), ∑
rs

=
∫∫
dxdx′, noticing 〈r|T |s〉 =

〈x|T |x′〉 = δ (x− x′)T (x) and 〈rs|V |tu〉 = 〈xx′|V |yy′〉 = δ (x− y) δ (x′ − y′) 〈xx′|V |xx′〉 =

δ (x− y) δ (x′ − y′)V (x,x′), we have

H =
∫
dxψ†(x)T (x)ψ(x) + 1

2

∫∫
dxdx′ψ†(x)ψ†(x′)V (x,x′)ψ(x′)ψ(x). (2.44)

In Heisenberg picture, the dynamical equation for the field operator is given by

the Heisenberg equation,

i~
∂

∂t
ψ (x, t) = [ψ (x, t) , H] , (2.45)

or

∂

∂t
ψ (x, t) = 1

i~

[
− ~2

2m∇
2 + U (x) +

∫
dx′ψ† (x′, t)V (x,x′)ψ (x′, t)

]
ψ (x, t) .

(2.46)
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Now we assume the two-body interaction has the form of contact interaction

V (x,x′) = gδ (x− x′) , (2.47)

where g = 4π~2a/m with a being the s-wave scattering length, and make the

mean-field approximation, that is, replace the field operator by its mean value

ψ (x, t) → 〈ψ (x, t)〉 ≡ φ (x, t), the above equation is turned into the time-

dependent Gross-Pitaevski equation

∂

∂t
φ (x, t) =

[
− ~2

2m∇
2 + U (x) + g|φ (x, t)|2

]
φ (x, t) . (2.48)

By substituting φ (x, t) = φ (x) exp (−iµt/~), we get the time-independent GPE.

[
− ~2

2m∇
2 + U (x) + g|φ (x, t)|2

]
φ (x, t) = µφ (x, t) . (2.49)

These two equations are powerful in the sense that they are the fundamen-

tal equations for describing a wide range of properties of a BEC in the mean

field level, which is accurate enough under most circumstances in an atom trap.

For example, one can find the ground state by solving Eq. 2.49 for particular

trap potential; by introducing a density fluctuation term from the ground state

n (x, t) = n0 (x) + ñ (x, t) and solving Eq. 2.48, one can find the elementary

excitations; by introducing additional rotation terms, vortices in the condensate

can be investigated.

The GPE can be generalized to multicomponent system, which contains BEC

of two or more atomic species, or BEC of different internal state in a single spcies.

For a two-species BEC, the system is describe by coupled GPE

i~
∂φ1

∂t
=
(
−~2∇2

2m1
+ U1 +N1g11|φ1|2 +N2g12|φ2|2

)
φ1

i~
∂φ2

∂t
=
(
−~2∇2

2m2
+ U2 +N2g22|φ1|2 +N1g12|φ1|2

)
φ2,

(2.50)
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where gij = 2π~2aij
mij

,m11 = m1/2,m22 = m2/2,m12 = m1m2
m1+m2

, a11 and a22 are

the single species scattering lengths and a12 = a21 is the interspecies scattering

length. The solutions to the coupled GPE are discussed in many theoretical

works. An interesting finding is that when g2
12/g11g22 > 1, the strong interspecies

repulsive interaction lead to immiscibility of the two BECs [32, 83–85], which

menifest as a “ball and shell” density profile. The prediction is nicely verified in

many experiments studying the mixture of BECs, which provide a tool for further

comparison between experiment and mean field theory.



Chapter 3

Theoretical Background: Spinor

Gases

In this chapter the necessary theoretical background of spinor gases will be given.

We start by introducing the spin degree of freedom in single particle picture,

demonstrating how the spin behave under DC and AC magnetic field in section

3.1. Then we consider the many-body spin-1 system in the presence of two-body

interaction in section 3.2. Starting from the second quantization formalism, we

adopt the mean-field approximation and single-mode approximation and calcu-

late the ground state and coherent dynamics. The behaviors beyond these two

approximations are also discussed briefly. In section 3.3 we generalize the theo-

retical description of single species spinor gas to two species case. A simple two

level picture is discussed followed by a mean-field calculation, and a thorough

treatment considering the thermal nature of one of the species is given in terms

of Boltzmann equation.

3.1 Single Particle Description

3.47

30
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3.1.1 Linear and Quadratic Zeeman shift

In Sec. 2.2 we have shown that an atom with nuclear angular momentum I and

electronic total angular momentum J in a static magnetic field B is described by

the Hamiltonian 2.21, and the Zeeman shift is given by the Breit-Rabi formula

2.22. Let I = 3/2 and expand the energy in power series of B to second order,

for F = 1 we have

E (mF ) = −5∆Ehfs

8 −
(
gJ − 5gI

4

)
mFµBB −

(gJ − gI)2

4∆Ehfs

(
1− m2

F

4

)
µ2
BB

2

= E0 − pmF + qm2
F ,

(3.1)

where
E0 = −5∆Ehfs

8 − (gJ − gI)2µ2
BB

2

4∆Ehfs

p =
(
gJ − 5gI

4

)
µBB

q = (gJ − gI)2

16∆Ehfs
µ2
BB

2.

(3.2)

Now the Hamiltonian for a spin-1 atom can be effectively written as (dropping

the spin-independent part) the sum of linear and quadratic Zeeman shift

HZ = −~pFz + ~qF 2
z . (3.3)

Here Fz is the z-component of the angular momentum matrix divided by ~ for

spin F = 1,

Fx = 1√
2


0 1 0

1 0 1

0 1 0

 , Fy = i√
2


0 −1 0

1 0 −1

0 1 0

 , Fz =


1 0 0

0 0 0

0 0 −1

 (3.4)
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Similarly results hold for F = 2, except the linear and quadratic shift become

p = −
(
gJ − 3gI

4

)
µBB

q = −(gJ − gI)2

16∆Ehfs
µ2
BB

2,

(3.5)

and the angular momentum matrices become

Fx =



0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


, Fy =



0 −i 0 0 0

i 0 −i
√

3
2 0 0

0 i
√

3
2 0 −i

√
3
2 0

0 0 i
√

3
2 0 −i

0 0 0 i 0



Fz =



2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2



(3.6)

3.1.2 AC magnetic field

In the presence of static magnetic field, the evolution of the spin state is simply

Larmor precession, and the populations of each component does not change. If

an oscillating magnetic field along the transverse direction is applied, different

components are coupled and show Rabi oscillations. This can be used to prepare

certain initial states in experiments. In such situations, the system is described

by the Hamilonian

H = −~pFz + ~qF 2
z + 2~Ω cos (ωt)Fy
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assuming that the AC magnetic field is along y-axis, with frequency ω and Rabi

frequency Ω.

Working in the rotating frame, i.e., under a unitary transformation T =

e−iωtFz , a quantum state |ψ (t)〉 is transformed to

∣∣∣ψ̃ (t)
〉

= T |ψ (t)〉

to ensure the validity of Schrodinger equation, the Hamiltonian must have the

form after rotating-wave approximation [60]

H̃ = THT−1 + i~Ṫ T−1 = −~ (p− ω)Fz + ~qF 2
z + ~ΩFy

The time evolution of the initial state can be calculated using the time-evolution

operator.

Ũ (t) = e−iH̃t/~

For example, if the initial state is in |−1〉, in matrix form we can write

∣∣∣ψ̃ (0)
〉

=


0

0

1


mF = 1

mF = 0

mF = −1

and the Hamiltonian in rotating frame is

H̃ = ~√
2


q

2
√

2 −iΩ 0

iΩ 0 −iΩ

0 iΩ q

2
√

2

 . (3.7)

If we choose a duration of the AC magnetic field so that Ωt = π/3, the time-



CHAPTER 3. THEORETICAL BACKGROUND: SPINOR GASES 34

Figure 3.1: Rabi oscillation of a spin-1 atom with resonant rf couping. The three
spin components exhibit sinusoidal oscillation, with maximum population 1 for
|−1〉 and |1〉, and 0.5 for |0〉, indicated by different color lines. Tπ is defined as
the minimum time to completely transfer the population from |−1〉 to |1〉. In our
experiment of spinor dynamics in a mixture, the initial state is the one with Tπ/3
pulse length, indicated by the red dotted line.

evolution operator can be calculated numerically,

Ũ (t) ≈


0.75− 0.0009i −0.61 + 0.0003i 0.25− 0.0002i

0.61− 0.0003i 0.5 + 0.0002i −0.61 + 0.0003i

0.25− 0.0002i 0.61− 0.0003i 0.75− 0.0009i

 (3.8)

The state after the pulse is

∣∣∣ψ̃ (t)
〉
≈


0.2500− 0.0002i

−0.6124 + 0.0003i

0.7500− 0.0009i

 ≈

√

0.0625ei(−0.05◦)

√
0.3750ei(179.97◦)

√
0.5625ei(−0.07◦)

 . (3.9)

Generally, the time evolutions of each spin components are periodic oscillations,

similar to a two-level system with coupling. The population evolution of the pulse
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is plotted in Fig. 3.1.

3.2 Interacting Spinor Gases

3.2.1 The form of two-body interaction

In this section we derive the form of interaction between two particles with spin-1,

spin-2 from the same or different atomic species. We denote the individual spin

of two colliding particle as F1 and F2, and the total spin of the F = F1 + F2.

In the system of ultracold dilute atomic gases, it it usually sufficient to consider

only the two-body interaction [86], and collisions between two particles of the

same atomic species are characterized simply by the s-wave scattering lengths in

different total spin channel [35, 36, 87]:

V = δ (x− x′)
∑2f

F=0 gFPF , (3.10)

where gF = 4π~2aF/M , M is the atomic mass, PF = ∑F
mF=−F |F,mF 〉 〈F,mF | is

the projection operator which project the state into the total spin F state, aF
is the s-wave scattering of the total spin F channel. The allowed values are the

even F for identical bosons due to symmetry requirement.

Now we want to rewrite the interaction in terms of the operator for individual

particles. From the algebra of angular momentum we have the relations:

1 = P0 + P2

F1 · F2 = (F1 + F2)2 = 1
2
(
F2 − F2

1 − F2
2

)
= 1

2
(
F2 − F2

1 − F2
2

)
(P0 + P2)

= 1
2
(
F2 − 4

)
(P0 + P2)

= −2P0 + P2.
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So P0 = 1−F1·F2
3 , P2 = 2+F1·F2

3 and we have (dropping the δ-function)

V = g0P0 + g2P2 = g0 + 2g2

3 + g2 − g0

3 F1 · F2 = c0 + c2F1 · F2, (3.11)

where c0 = 4π~2(a0+2a2)
3M , c2 = 4π~2(a2−a0)

3M . Similarly we can derive the interactions

for other systems. For two spin-2 particles of the same species, the angular

momentum relations become

1 = P0 + P2 + P4

F1 · F2 = 1
2
(
F2 − 12

)
(P0 + P2 + P4) = −6P0 − 3P2 + 4P4.

Hence P2 = 4−F1·F2−10P0
7 , P4 = 3+F1·F2+3P0

7 and

V = g0P0 + g2P2 + g4P4

= 4g2 + 3g4

7 + g4 − g2

7 F1 · F2 + 7g0 − 10g2 + 3g4

7 P0

= c0 + c1F1 · F2 + c2P0, (3.12)

where c0 = 4π~2(4a2+3a4)
7M , c1 = 4π~2(a4−a2)

7M , c2 = 4π~2(7a0−10a2+3a4)
7M . Note that the

singlet pairing term is present in the expression.

For two spin-1 particle of different atomic species with mass M1 and M2, since

they are distinguishable, the allowed total spin can take all odd and even values.

The mass M in the interspecies interaction strength gF should be replaced by

reduced mass µ = M1M2
M1+M2

in this case,

1 = P0 + P1 + P2

F1 · F2 = −2P0 − P1 + P2,
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So P1 = 1−F1·F2−3P0
2 , P2 = 1+F1·F2+P0

2 and

V = g0P0 + g1P1 + g2P2

= g1 + g2

2 + g2 − g1

2 F1 · F2 + 2g0 − 3g1 + g2

2 P0

= α + βF1 · F2 + γP0, (3.13)

where α = 4π~2(a1+a2)
2µ , β = 4π~2(a2−a1)

2µ , γ = 4π~2(2a0−3a1+a2)
2µ .

It should be noticed that there are also other types of interaction that are not

necessarily of the form in (3.10). For example, the dipolar interaction has the form

V = cdd
F1·F2−3(3F1·r/r)(3F1·r/r)

r3 which is a long-range interaction [88]. Although

the typical effect is small and negligible under usual experimental conditions, it

is shown that the dipolar interaction can have contributions to the formation of

spin texture or modify spin dynamics [54, 89]. In this thesis we do not take into

account these interactions.

3.2.2 Second Quantization Formalism

An atomic cloud with spin degree of freedom is in essence a many-body system,

hence the theoretical tool for calculating the properties of this system is second

quantization. The starting point is to write down the two-body interaction ex-

plicitly.

The most general form of the Hamiltonian for a many-body system with two-

body interaction for every two particles has already given by Eq. 2.43. For a

particle with spin, the Hilbert space becomes a direct product space of coordi-

nate and spin, the index s = (x, σ) and the field operator as = ax,σ = ψσ(x).

The summation is replaced by ∑
rs

=
∫∫
dxdx′ ∑

σσ′
and the matrix element of an
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one-body operator is

〈r|T |s〉 = 〈x, σ|T |x′, σ′〉 = δ (x− x′) 〈σ|T (x)|σ′〉 = δ (x− x′)Tσσ′(x)

= δ (x− x′) (δσσ′A(x) + δσσ′Bσ(x) + Cσσ′(x)) .

Here we distinguish three different types of operators: A is spin-independent (e.g.,

kinetic energy, trapping potential), B is spin-dependent but only has diagonal

elements (e.g., linear and quadratic Zeeman shift), C is spin-dependent and has

coupling between different spin components (e.g., microwave field).

Similarly the matrix element of a two-body operator is

〈rs|V |tu〉 = 〈xσx′σ′|V |yυy′υ′〉 = δ (x− y) δ (x′ − y′) 〈xσx′σ′|V |xυx′υ′〉

= δ (x− y) δ (x′ − y′) 〈σσ′|V (x,x′)|υυ′〉 .

So the general form of a second quantized Hamiltonian with spin-dependent in-

teraction is

H =
∫
dx
(∑

σ

ψ†σ(x) (A(x) +Bσ(x))ψσ(x) +
∑
σσ′

ψ†σ(x)Cσσ′(x)ψσ′(x)
)

+ 1
2

∫∫
dxdx′

∑
σσ′υυ′

ψ†σ(x)ψ†σ′(x′) 〈σσ′|V (x,x′)|υυ′〉ψυ′(x′)ψυ(x).
(3.14)

For a spin-1 system, we have

〈σσ′|V (x,x′)|υυ′〉 = δ (x− x′) 〈σσ′| (c0 + c2F1 · F2) |υυ′〉

= δ (x− x′) (δσυδσ′υ′c0 + c2 〈σ|F1|υ〉 · 〈σ′|F2|υ′〉)

= δ (x− x′) (δσυδσ′υ′c0 + c2Fσυ · Fσ′υ′) . (3.15)
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Finally,

H =
∫
dx
∑
σ

ψ†σ(x)
(
− ~2

2m∇
2 + U(x) + Eσ(x)

)
ψσ(x)

+
∫
dx
∑
σσ′

ψ†σ(x)Cσσ′(x)ψσ(x)

+ c0

2

∫
dx
∑
σσ′

ψ†σ(x)ψ†σ′(x)ψσ′(x)ψσ(x)

+ c2

2

∫
dx

∑
σσ′υυ′

ψ†σ(x)ψ†σ′(x)Fσυ · Fσ′υ′ψυ′(x)ψυ(x). (3.16)

3.2.3 Single-Mode and Mean-Field Approximation

The Hamiltonian (3.16) can be a starting point to calculate the properties of

the system. A few approximations can be applied, including the single-mode ap-

proximation (SMA) and mean-field approximation. These are two independent

approximations and should be distinguished. In principle, we can adopt either or

both approximation according to the systems and observables involved.

The SMA is to separate the spin and spatial part of the system. Specifically the

field operator is written as ψ̂σ (x) = ξ̂σφ̂ (x), with ξ̂σ the annihilation operator

for the particle with spin σ component, φ̂ (x) the annihilation operator for the

particle at x. The SMA is usually valid when the system’s size is smaller than

the spin healing length, which is defined by ξsp = [8πn (a2 − a0)]−1/2 for spin-1

case.

The mean-field approximation is to neglect the fluctuation and replace the op-

erator by its mean value. Specifically the field operator is written as ψ̂σ (x) =〈
ψ̂σ (x)

〉
≡ ψσ (x).

When both approximation are adopted, the the field operator is replaced by

ψ̂σ (x) = ψσ (x) = ξσφ (x), where φ (x) can be shown to be the ground state wave

function of the BEC, hence the order parameter of the system is φ (x) (ξ−1, ξ0, ξ1) =

φ (x)
⇀

ξ , in which
⇀

ξ is called a “spinor”. The mean-field SMA dynamics is the

main subject of this thesis. Under these approximations the Hamiltonian (3.16)
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becomes the mean field energy functional

E =
∫
dx
(
~2

2m |∇φ (x)|2 + U (x) |φ (x)|2
)

+
∫
dx
(
p 〈Fz〉 |φ (x)|2 + q

〈
F 2
z

〉
|φ (x)|2

)
+
∫
dx
(
c0

2 |φ (x)|4 + c2

2 |φ (x)|4〈F〉2
)

=
∫
dx

~2

2m |∇φ (x)|2 +NU (x) +N
c0n

2
+N

(
p 〈Fz〉+ q

〈
F 2
z

〉
+ c2n

2 〈F〉
2
)
, (3.17)

where the average 〈O〉 = ∑
σσ′
ξ∗σOσσ′ξσ′ , N =

∫
dx|φ (x)|2 is the particle number,

n =
∫
dx|φ (x)|4/N is the average number density.

It should be noted that the two approximation are not always adopted. When

we adopt the SMA and make the mean-field approximation only for the spatial

part, then the spin part is treated in terms of field operators and the exact

many-body ground state and dynamics can be calculated for spins. This was

done in [57] in 1998. Another example is the study of parametric amplification

of vacuum fluctuation in spinor condensate [52], in which both approximations

are not adopted, but the field operator is decomposed into a mean field plus

fluctuations, the latter being a superposition of mode functions and field operators

for spin.

3.2.4 Static and Dynamic Properties

Ground state

From the mean field energy functional (3.17) we can calculate the ground state,

collective excitations and dynamics of the spinor BEC under SMA and mean field

approximation. The ground state is found by minimizing the energy functional.

Since c2 � c0, it is clear from (3.17) that the dependence of energy on spatial wave
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function is not affected by the spin-dependent part hence the spatial wavefunction

is the same with scalar BEC (e.g., Thomas-Fermi density profile). The next step

is to minimize the spin-dependent part

Hs = −p 〈Fz〉+ q
〈
F 2
z

〉
+ c2n

2 〈F〉
2. (3.18)

However, from the Hamiltonian (3.16) we can write down each term in the

interaction explicitly and find that there only exist the spin changing process

|mF = 1〉+ |mF = 2〉 ↔ 2 |mF = 0〉, hence the interaction conserves the longitu-

dinal magnetization 〈Fz〉. Therefore, the minimization of the energy functional

should under the constraint of constant magnetization, i.e., the ground state is

the spinor minimizing Hs − p0〈Fz〉, where p0 is the Lagrangian multiplier to be

determined [34]. Another constraint is the normalization of the spinor wavefunc-

tion, or equivalently the total atom number to be N . In summary, the ground

state problem is to find the spinor to minimize the quantity

H ′ = Hs − p0 〈Fz〉 − µ
(
|ξ−1|2 + |ξ0|2 + |ξ1|2

)
= −p̃ 〈Fz〉+ q

〈
F 2
z

〉
+ c2n

2 〈F〉
2 − µ

(
|ξ−1|2 + |ξ0|2 + |ξ1|2

)
, (3.19)

where p̃ = p+ p0. Writing down explicitly,

H ′ = −p̃
(
ξ1ξ
∗
1 − ξ−1ξ

∗
−1

)
+ q

(
ξ1ξ
∗
1 + ξ−1ξ

∗
−1

)
+ c2n

2
(
ξ2

1ξ
∗2
1

+ ξ2
−1ξ

∗2
−1 + 2ξ1ξ−1ξ

∗2
0 + 2ξ2

0ξ
∗
1ξ
∗
−1 − 2ξ1ξ−1ξ

∗
1ξ
∗
−1

+2ξ0ξ
∗
0ξ−1ξ

∗
−1 + 2ξ0ξ

∗
0ξ1ξ

∗
1

)
− µ

(
ξ1ξ
∗
1 + ξ0ξ

∗
0 + ξ−1ξ

∗
−1

)
. (3.20)

Since each component of the spinor has a real and imaginary part, the problem

is an extremal problem of a function with six variables and two constraints. The
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eight equations to determine the extremum are

∂H ′

∂ξ∗σ
= 0, (σ = −1, 0, 1)

(ξ∗σ)∗ = ξσ, (σ = −1, 0, 1)

fz = ξ1ξ
∗
1 − ξ−1ξ

∗
−1

1 = ξ1ξ
∗
1 + ξ0ξ

∗
0 + ξ−1ξ

∗
−1, (3.21)

where fz is a designated longitudinal magnetization. Choosing the phase of 0

component to be zero, the first line of the above equations are explicitly

c2nξ0
(
ξ1 + ξ∗−1

)
+ ξ1 (−p̃+ q + c2nfz − µ) = 0

ξ0
[
c2n

(
2ξ1ξ−1 + ξ−1ξ

∗
−1 + ξ1ξ

∗
1

)
− µ

]
= 0

c2nξ0 (ξ∗1 + ξ−1) + ξ−1 (p̃+ q − c2nfz − µ) = 0. (3.22)

The solution of the above equations can be classified into five groups according

to the form of the energy [55]:

(1) (Longitudinal ferromagnetic state)

(
eiθ1 , 0, 0

)T

fz = 1, E = −p̃+ q + c2n

2

(2) (Longitudinal ferromagnetic state)

(
0, 0, eiθ−1

)T

fz = −1, E = p̃+ q + c2n

2
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(3) (State with partial longitudinal magnetization)

(
eiθ1

√
1
2

(
1 + p̃

c2n

)
, 0, eiθ−1

√
1
2

(
1− p̃

c2n

))T

fz = p̃

c2n
,E = q − p̃2

2c2n

(4) (Longitudinal polar state) (
0, eiθ0 , 0

)T
fz = 0, E = 0

(5) (Broken-axisymmetry state)


ei(θ0+θ) q+p̃

2q

√
−p̃2+q2+2c2nq

2c2nq

eiθ0

√
(q2−p̃2)(−p̃2−q2+2c2nq)

4c2nq3

ei(θ0−θ) q−p̃
2q

√
−p̃2+q2+2c2nq

2c2nq



fz = p̃ (−p̃2 + q2 + 2c2nq)
2c2nq2 , E = (−p̃2 + q2 + 2c2nq)2

8c2nq2

The phase diagram, in which the ground state is determined at each point in

the (p/|c2|n, q/|c2|n) parameter space, for c2 > 0,c2 = 0 and c2 < 0 are plotted in

Fig. 3.2.

In the above ground state classification and phase diagram, the parameter is

q and p̃. However p̃ is not a designated number but a Langrangian multiplier

needed to determined during the minimization. Thus, For designated magneti-

zation fz, one need to calculate p̃ according to the magnetization of each phase

and determine the corresponding point in the phase diagram. Thus the phase

diagram is not depend on fz explicitly. In another point of view, if the constraint

of magnetization conservation is not required, p̃ is purely the linear Zeeman shift,

and the phase diagram can be viewed as the global phase diagram without con-
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Figure 3.2: Ground state phase diagram of F = 1 spinor gases. In the
(p/|c2|n, q/|c2|n) parameter space, different colors represent different phases of
the ground state which minimize the energy (3.18): Red, blue, yellow, green,
cyan for state (1), (2), (3), (4), (5) respectively. (a) Antiferromagnetic interac-
tion (c2 > 0); (b) No interaction (c2 = 0); (c) Ferromagnetic interaction (c2 < 0).

straint. It can be used to discuss systems that the magnetization need not to

be conserved (e.g., in some atomic species such as Cr [90]), or the ground state

realized by magnetization non-conserving evaporation process.

A more practical approach is to contains fz explicitly in minimizing the en-

ergy [91]. (3.18) can be rewritten as

E = −pm+ c2nm

2 + q (1− ρ) + c2nρ
(

1− ρ+
√

(1− ρ)2 −m2 cos θ
)
, (3.23)

where ρσ = ξσξ
∗
σ, ρ = ρ0, m = fz = ρ1 − ρ−1. Now the ground state is ob-

tained by minimizing E under the constraints 0 ≤ ρ ≤ 1, −1 ≤ m ≤ 1 and

ρ− 1 ≤ m ≤ 1− ρ. The results are summarized as follows:

(1) c2 = 0:

(a) q > 0:

ρ = 1− |m| , ρ1 =


|m| , m ≥ 0

0, m < 0
, ρ−1 =


0, m ≥ 0

|m| , m < 0
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(b) q = 0:

0 ≤ ρ ≤ 1− |m| , ρ±1 = (1− ρ±m) /2

(2) c2 < 0:

(a) q = 0:

ρ = 1−m2, ρ±1 = (1±m)2/4

(b) q > 0:

ρ = 1− x, ρ±1 = (x±m) /2

where x is the solution of d
[
2c2n (1− x)

(
x+
√
x2 −m2

)
+ qx

]
/dx = 0.

(3) c2 > 0:

(a) q = 0,m = 0:

ρ1 = ρ−1 = (1− ρ) /2, ρ undetermined

(b) q = 0,m 6= 0:

ρ = 0, ρ±1 = (1±m) /2

(c) q > 0,m = 0:

ρ = 1, ρ±1 = 0

(d) 0 < q ≤ 2c2n
(
1−
√

1−m2
)
,m 6= 0:

ρ = 0, ρ±1 = (1±m) /2

(e) q > 2c2n
(
1−
√

1−m2
)
,m 6= 0:

ρ = 1− x, ρ±1 = (x±m) /2
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Figure 3.3: Ground state with explicit m dependence. The |0〉 population as a
function of the longitudinal magnetization m and magnetic field B are plotted,
for typical experimental condition of antiferromagnetic Na (c2 > 0, left) and
ferromagnetic Rb (c2 < 0, right).

where x is the solution of d
[
2c2n (1− x)

(
x−
√
x2 −m2

)
+ qx

]
/dx = 0.

The dependence of the ground state populations of |0〉 on the longitudinal magne-

tization m and magnetic field B are plotted in Fig. 3.3, for typical experimental

condition of Na (antiferromagnetic) and Rb (ferromagnetic).

Dynamics

After figuring out the ground states of the system, we can study the dynamics by

preparing the initial state which is not the ground state, and trace the evolution

of the system.

There are several methods to derive the dynamical equations for the spinor.

One general method is the variational approach. Under SMA, we can use (3.18)

as the spin-dependent energy functional, and the dynamical equations are given

by

i~
∂ξm
∂t

= δE

δξ∗m
. (3.24)
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Figure 3.4: Mean field energy contour of Rb (upper pannel) and Na (lower pan-
nel). The ground state corresponds to the lowest point in the plot. The dynamics
of a system initial not in ground state can be represented by the contours, due to
energy conservation. Note that there are two kinds of trajectories: open running
ones and closed cycling ones. The resonance of the dyanmics corresponds to the
seperatrix of these two trajectories.
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Written down explicitly,

i~
∂ξ1

∂t
= [−p+ q + c2n (ρ1 + ρ0 − ρ−1)] ξ1 + ξ2

0ξ
∗
−1

i~
∂ξ0

∂t
= c2n (ρ1 + ρ−1) ξ1 + 2c2nξ1ξ−1ξ

∗
0

i~
∂ξ−1

∂t
= [p+ q + c2n (ρ−1 + ρ0 − ρ1)] ξ−1 + ξ2

0ξ
∗
1 .

(3.25)

Note that if SMA is not adopted, the mean field energy functional should include

the spatial dependence. In this case ξm is replaced by φm(x) in (3.24), and (3.25)

becomes a multicomponent GP equation.

(3.25) can be further simplified to

dρ

dt
= 2c2n

~
ρ
√

(1− ρ)2 −m2 sin θ

dθ

dt
= −2q

~
+ 2c2n

~

(1− 2ρ) + (1− ρ) (1− 2ρ)−m2√
(1− ρ)2 −m2

cos θ
 , (3.26)

where ρ = ρ0, θ = θ1 + θ−1 − 2θ0. These equations can be viewed as a set of

canonical equations ρ̇ = − (2/~) ∂E/∂θ and θ̇ = (2/~) ∂E/∂ρ, where the energy

is given by (3.18). The resulting dynamics of (3.26) is generally an oscillation of

ρ and θ, hence the population of the three component transfer back and forth,

while the magnetization m is kept constant. The analytical solutions and the

exact form of period and amplitude have been studied [92]. Here we give a brief

summary.

(1) When q � c2n, the interaction energy dominates, the period of the oscillation

T = π~/c2n, and the amplitude A ∝ q/c2n. It is called the interaction regime,

and the dynamics corresponds to the closed circler trajectories in the phase space.

(2) When q � c2n, the quadratic Zeeman energy dominates, the period of the

oscillation T = π~/q, and the amplitude A ∝ c2n/q. It is called the Zeeman

regime, and the dynamics corresponds to the open running trajectories in the

phase space.
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(3) When q is comparable with c2n, the dynamics is slowed. For the initial state

with ρ(0) = 1/2 which is widely used in experiments, and analytical expression

is given by ρ = (1− (c2n/q) sn2
k (qt/~)) /2. The oscillation reaches a resonance at

q = c2n for m = 0, where the period diverges. This correspond to a separatrix

between the closed and open trajectories in the phase space, similar to the simple

pendulum, in which the separatrix between the two kind of trajectories represent

the pendulum stopped at the highest point, and distinct the motions of oscillation

and rotation.

3.2.5 Beyond Mean-Field and SMA

We have discussed the ground state and dynamics under SMA and mean field

approximation. However, theories on spinor gases beyond these two approxima-

tions have been studies extensively, not only because in many cases they are not

applicable to account for the experimental observations, but also because this

system are promising to observe the effects predicted by more precise theories.

In this section we present some of these knowledge accumulated so far.

First, within SMA and make the mean field approximation only for the spatial

part ψ̂σ (x) = âσφ (x), one can treat the spin part of this system in an exact

many-body way. Furthermore, let N̂ = â†1â1 + â†0â0 + â†−1â−1, L̂z = â†−1â−1− â†1â1,

L̂+ =
√

2
(
â†0â1 − â†−1â0

)
and L̂− =

√
2
(
â†1â0 − â†0â−1

)
, the Hamiltonian (3.16)

in zero magnetic field becomes [57]

H = µN̂ − λ0N̂
(
N̂ − 1

)
+ λ2

(
L̂2 − 2N̂

)
, (3.27)

where λi = Ncin/2, µ is the chemical potential determined by φ (x) satisfying the

spin-independent GP equation. This form implies that the original Hamiltonian

can be diagonalized using the number operator and effective angular momentum

operators. The resulting eigenstates are simply the simultaneous eigenstates of N̂
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and L̂2, denoted by |l,ml〉, which is a superposition of Fock states |n1, n0, n−1〉.

For λ2 < 0, the ground state is given by |l = N,ml〉, which is (2ml + 1)-fold

degenerate. This state is found to have narrow distribution on the Fock states

hence the atom numbers in each components are well defined, and the number

fluctuations are sub-Poissonian.

A striking different ground state from mean field theory is when λ2 < 0. In

this case the ground state is given by |l = 0,ml = 0〉 =
[N/2]∑
k=0

Ak |k,N − 2k, k〉,

where Ak has a broad distribution over the Fock states. The expectation value

of atom number in each component are
〈
â†1â1

〉
=
〈
â†0â0

〉
=
〈
â†−1â−1

〉
= N/3,

and the number fluctuation is very large, e.g., 〈∆n̂0〉 ≈ 2N/
√

5. The unique

feature of this state is that it is a state with all atoms form singlet pairs. It

can be shown that the state can also be written as A
(
Ŝ†
)N/2
|vac〉 [93], where

Ŝ† = 2
(
â†0
)2
− â†1â

†
−1 creates a singlet pair, |vac〉 is a state with no particles, A is

a normalization constant. Another feature is that it is a fragmented state, which

means that the condensate cannot be viewed as all atoms condensed into a single

particle state, but there are several states macroscopically occupied. A criteria

for fragmentation is that the one-body density matrix
〈
â†mâm′

〉
contains several

nonzero diagonal elements while the non-diagonal elements are zero. In contrast,

for a mean field ground state, which can be written as a single particle state,〈
â†mâm′

〉
can always be diagonalized to Diag [N, 0, 0].

The many-body dynamics of the system is also different from the mean field

result. In mean field approximation, |0, N, 0〉 is a stationary state, while the

many-body calculation predicts a decrease of the |mF = 0〉 population, with a

damping characterized by time scale tc = ~/2λ2
√
N . Note that this damping is

not due to any energy dissipation but is a purely many-body effect. Other dif-

ferent features including the anharmonic oscillation and revival of the dynamics.

However, the experimental confirmation is not yet been done since a BEC with

small number under well control is needed.
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Beyond SMA

A further question is if the SMA is not adopted, how will the system behave

beyond mean-field approximation? The exact solution is of course difficult to

find, but a “first-order” solution can be obtained by the Bogoliubov theory. It

has been successfully used to demonstrate the dynamical instability and recently,

account for the parametric amplification and spontaneous symmetry breaking in

spinor BEC.

The main idea of this approach is to shift the field operator to a certain

mean-field state and rewrite the field operator as a mean field plus a fluctuation

operator, e.g.,
⇀

ψ (x) =
(
0,
√
n (x), 0

)T
+ (δψ1 (x) , δψ0 (x) , δψ−1 (x))T , then ex-

pand the Hamiltonian and keep the terms up to second order. Now the vacuum

is given by the mean field state and the excitations can be found by diagonalizing

the Hamiltonian in terms of the fluctuation operators.

In a uniform system, working in momentum space,
⇀

ψ (x) = 1√
Ω(0, 1, 0)T +

1√
Ω

(∑
k 6=0

âk,me
ik·r,

∑
k 6=0

âk,me
ik·r,

∑
k 6=0

âk,me
ik·r
)T

, the Hamiltonian in a compact ma-

trix form is given by [55]

ĤB = E0 + 1
2
∑
k 6=0

(
¯̂a†k ¯̂a−k

) H(0)
k +H(1) H(2)

H(2)∗
(
H(0)
−k+H(1)

)∗

 âk

â†k


− 1

2
∑
k 6=0

[
Tr

(
H(0)

k +H(1)
)
− D

2εk

]
,

(3.28)
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where

âk = (âk,1, âk,0, âk,−1)T

¯̂ak = (âk,1, âk,0, âk,−1)

H(0)
k +H(1) =


εk − p+ q + c2n 0 0

0 εk + c0n 0

0 0 εk + p+ q + c2n



H(2) =


0 0 c2n

0 c0n 0

c2n 0 0


E0 = Nc0n/2

D = n2
(
c2

0 + 2c2
2

)
.

The Hamiltonian can be diagonalized to

ĤB = E0 + 1
2
∑
k 6=0

[
Tr

(
Ek −H(0)

k −H(1)
)
− D

2εk

]
+
∑
k 6=0

Ek,mb
†
k,mbk,m, (3.29)

by Bogoliubov transformation

b̂k,0 = sgn (c0)
√
εk + c0n+ Ek,0

2Ek,0
âk,0 +

√
εk + c0n− Ek,0

2Ek,0
â†k,0

b̂k,±1 = sgn (c2)

√√√√εk + q + c2n+ (Ek,±1 ± p)
2 (Ek,±1 ± p)

âk,±1

+

√√√√εk + q + c2n− (Ek,±1 ± p)
2 (Ek,±1 ± p)

â†−k,∓1

(3.30)

And the energy spectrum is

Ek,0 =
√
εk (εk + 2c0n)

Ek,±1 =
√

(εk + q) (εk + q + 2c2n)∓ p,
(3.31)
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Ek,0 and Ek,±1 represent density wave (phonon) and spin wave, repectively. In

the case when the eigen energies are complex, the system is dynamically unstable,

which means when we start in the vacuum (here is the polar state), the number

of quasi-particles increases exponentially, and the time scale is given by Ek,m/~.

Eq. (3.31) can be used to explain the formation of magnetic domain in the

experiment that quench q from above to below 2c2n [40], in this way the the spin

wave mode with εk < 2 |c2|n − q become pure imaginary and |±1〉 populations

grows with spatial periodicity corresponds to the wavelength of the mode. The

effect of parametric amplification can also be investigated by the Bogoliubov

theory [52, 55].

3.3 Mixture of Two-Species Spinor Gases

In this section we start to discuss the dynamics of a mixture of two atomic species

with spin, which is a main subject of this thesis. The problem is in essence a

many-body problem. But before going into the many-body formalism, we can

get a prime picture and insight from a two-particle problem, which is further

simplified to a two-level problem.

Two-Particle Problem

Let us consider two particles with one Rb atom and one Na atom, each has spin

F1,2 = 1 and interaction of the form (3.13). Further, the system is prepared in a

state with total angular momentum projection M = −1, so there exist only one

kind of spin-changing collision |−1Rb, 0Na〉 ↔ |0Na,−1Rb〉 due to magnetization

conservation. Hence we can denote |−1Rb, 0Na〉 as state |1〉 and |0Na,−1Rb〉 as

state |2〉. As the system becomes a two-level system, we would ask what are the

bare energies and couplings. From Eq. (3.1), at an external magnetic field B, the

Zeeman energy associated with the two state are E1 (B) = pRb + qRb, E2 (B) =
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pNa + qNa, while the interaction of the two particles is given by

HI =
∑
F

UF |F,M〉 〈F,M | = U2 |2,−1〉 〈2,−1|+ U1 |1,−1〉 〈1,−1| , (3.32)

where F is the total angular momentum which can only take 1 and 2, UF =
4π~2aF

µ

∫
|ψ|2|φ|2dr is the interaction energy in the F -channel, with ψ (r) and φ (r)

the spatial wavefunction of Rb and Na. Expressed in the two-level basis, according

to the angular momentum coupling relation,

|2,−1〉 = 1√
2

(|1〉+ |2〉)

|1,−1〉 = 1√
2

(− |1〉+ |2〉) .
(3.33)

Hence

HI = 1
2

 U2 + U1 U2 − U1

U2 − U1 U2 + U1

 (3.34)

The total Hamiltonian is

H =

 E1 (B) + (U2 + U1) /2 (U2 − U1) /2

(U2 − U1) /2 E2 (B) + (U2 + U1) /2

 (3.35)

From this Hamiltonian we can see that the problem is similar to the usual two-

level problem with the role of bare energies played by the Zeeman energy and

interatomic interaction, while the coupling comes only from the interaction. We

then expect the interation-driven Rabi oscillations with Rabi frequency

Ω =
√

(E1 (B)− E2 (B))2 + (U2 − U1)2/~ (3.36)

This result predicts a maximum oscillation period at E1 (B)− E2 (B) = 0, or

B ≈ 1.69G, and decreasing period at two sides. The behavior of amplitude
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is similar. The prediction agrees well with experiment at two sides far from

the resonant magnetic field, and in these regions the observed period is well

approximated as 1/Ω. However, the many-body effects are not taken into account

and the two-level model cannot explain the double resonance structure observed

in experiment. Strictly speaking, the model may be realized only in optical lattice

with both atoms in each site [94].

Mean-field treatment

The mean-field treatment presented in this section is mainly developed by our

theoretical collaborator Prof. Zhifang Xu. Consider a system with nRb Rb atoms

and nNa Na atoms with spin F = 1. In principle, the system is a generalization

of the single species spinor gas. However, as we will see, there are some new fea-

tures that are unique in a mixture of spinor gases. The generalization is straight

forward, just include all field operators as well as intraspecies and interspecies

interaction in the general Hamiltonian (2.43). The resulting form is

Ĥ = ĤRb + ĤNa + ĤRbNa

ĤRb =
∫
dr

[
ψ̂†m

(
− ~2

2MRb
∇2 + VRb − pRbm+ qRbm

2
)
ψ̂m

+αRb

2 ψ̂†i ψ̂
†
j ψ̂jψ̂i + βRb

2 ψ̂†i ψ̂
†
kFij · Fklψ̂lψ̂j

]

ĤNa =
∫
dr

[
φ̂†m

(
− ~2

2MNa
∇2 + VNa − pNam+ qNam

2
)
φ̂m

+αNa

2 φ̂†i φ̂
†
jφ̂jφ̂i + βNa

2 φ̂†i φ̂
†
kFij · Fklφ̂lφ̂j

]

ĤRbNa =
∫
dr

[
α

2 ψ̂
†
i φ̂
†
jφ̂jψ̂i + β

2 ψ̂
†
i φ̂
†
kFij · Fklφ̂lψ̂j + γ

2
(−1)i−j

3 ψ̂†i φ̂
†
−iφ̂−jψ̂j

]
,

(3.37)

where ψ̂m and φ̂m are the field opererators of Rb and Na, α, β and γ are the

interspecies interaction parameters defined in (3.13), αi and βi are intraspecies

interaction parameters corresponding to c0 and c2 for each species. Starting from
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this Hamiltonian, we can make mean field approximation and SMA in the case

that both Rb and Na are BEC. However, if they are not in condensed state, but

are thermal cloud instead, the Hamiltonian is still valid but a quantum statistical

treatment is needed for further calculations. To capture the main features of the

dynamics, we start from treating the two BEC case.

From the form of interspecies interaction in Hamiltonian (3.37), we can con-

clude that the allowed spin-mixing collisions between a Rb atom and a Na atom

have the following process characterized by the interaction strength [95]:

β : |1Rb, 0Na〉 ↔ |0Rb, 1Na〉 , |−1Rb, 0Na〉 ↔ |0Rb,−1Na〉

β − γ/3 : |1Rb,−1Na〉 ↔ |0Rb, 0Na〉 , |−1Rb, 1Na〉 ↔ |0Rb, 0Na〉

γ : |1Rb,−1Na〉 ↔ |−1Rb, 1Na〉 .

(3.38)

By choosing proper initial state, we can select only one type of the above process

while suppress the other process. This can be seen if we make the mean field

approximation, i.e., replacing the field operators by their mean value. Specifically,

if we choose

⇀

ψ̂ =


0√

nRb
0 eθ0√

nRb
−1e

θ−1

ψ (x) ,
⇀

φ̂ =


0√

nNa
0 eϕ0√

nNa
−1e

ϕ−1

φ (x)

as the initial state, where nji (i = −1, 0, 1; j = Rb,Na) are the atom number of

the two BECs, θi and ϕi are the condensate phase of each component, ψ (x) and

φ (x) are the condensate spatial wavefunctions for Rb and Na normalized to 1,∫
ψ (x) dx =

∫
φ (x) dx = 1. Substitute the above state into (3.37), we can get
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the mean field energy functional

E = ERb + ENa + E

Ej = −pjmj + qj
(
nj − nj0

)
+ 1

2β
′
jm

2
j

+ β′jn
j
0

[(
nj − nj0

)
+
√(

nj − nj0
)2
−m2

j cos ηj
]

ERbNa = 1
2β
′mRbmNa + 1

6γ
′
(
nRb

1 nNa
−1 + nRb

0 nNa
0 + nRb

−1n
Na
1

)
+ 1

3γ
′
√
nRb

1 nRb
−1n

Na
1 nNa

−1 cos η3

+
(
β′ − 1

3γ
′
)√

nRb
0 nRb

−1n
Na
1 nNa

0 cos
(
η1 + η2 + η3

2

)
+
(
β′ − 1

3γ
′
)√

nRb
1 nRb

0 nNa
0 nNa

1 cos
(
η1 + η2 + η3

2

)
+ β′

√
nRb

0 nRb
−1n

Na
0 nNa

−1,

(3.39)

where nj = nj−1 +nj0 +nj1 is the total number for each species, m1 = nRb
1 −nRb

−1 and

m2 = nNa
1 −nNa

−1 are the magnetization for eahc species, m = m1 +m2 is the total

magnetization, m3 = m1−m2 is the magnetization difference, η1 = θ1 +θ−1−2θ0,

η2 = ϕ1 + ϕ−1 − 2ϕ0, η3 = θ−1 − θ1 + ϕ1 − ϕ−1. β′1 = β1
∫
|ψ (x)|4dx, β′2 =

β2
∫
|φ (x)|4dx, (β′, γ′) = (β, γ)

∫
|ψ (x)|2|φ (x)|2dx.

The dynamical equations are given by

ṅRb
0 = −2

~
∂E

∂η1
, η̇1 = 2

~
∂E

∂nRb
0
,

ṅNa
0 = −2

~
∂E

∂η2
, η̇2 = 2

~
∂E

∂nNa
0
,

ṁ3 = −4
~
∂E

∂η3
, η̇3 = 4

~
∂E

∂m3
.

(3.40)

The first two lines describe the intraspecies dynamics of Rb and Na respectively,

which become fast and small amplitude oscillation at high magnetic field, as

describe in previous section. When the magnetic field reaches as high as 0.7G,

the populations of each components can be viewed as constant for each species in

the absence of interspecies interaction. Hence we can neglect the first two lines
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of equations and concentrate on the third pair of equation, which describe the

magnetization evolution of each species. written down explicitly, they are

ṁ3 = β′

2~

√
(m2 −m2

3) (2nRb +m+m3) (2nNa +m−m3) sin
(
η1 − η2 + η3

2

)
η̇3 = −2 (pRb − pNa)

~
+ β′Rb − β′Na

~
m+ β′Rb + β′Na − β′

~
m3

− β′

2~
m3

√
(2nRb +m+m3) (2nNa +m−m3)√

m2 −m2
3

cos
(
η1 − η2 + η3

2

)
.

(3.41)

This set of equation has a similar structure compare with the single species

dynamical equations (3.26), with the role of (ρ0, θ) played by (m3, η3). Hence,

the solutions are periodic oscillations of these variables, and other populations

can be calculated due to total magnetization conservation and atom number

conservations for each species.

Equation (3.41) can be numerically solved, e.g., by Mathematica. Here, we

give an analytical solution. (3.41) can be written as

(ṁ3)2 =
(
β′

2~

)2 (
d0 + d1m3 + d2m

2
3 + d3m

3
3 + d4m

4
3

)

in which

e1 = −1
2 (pRb − pNa + qRb − qNa)− 1

4 [β′Rb (2nRb +m)− β′Na (2nNa +m)]

e2 = −1
8 (β′Rb + β′Na + β′)

Ẽ = e1m3 + e2m
2
3 + β′

4

√
(m2 −m2

3) (2nRb +m+m3) (2nNa +m−m3)

· cos
(
η1 − η2 + η3

2

)
.

(3.42)



CHAPTER 3. THEORETICAL BACKGROUND: SPINOR GASES 59

10 20 30 40 50 60
t/ms

0.2

0.4

0.6

0.8

Rb
po

pu
la
tio

n

10 20 30 40 50 60

0.2

0.4

0.6

0.8

N
a
po

pu
la
tio

n

t/ms

Figure 3.5: Spin mixing dynamics from mean field equation (3.41). The popula-
tion oscillations are plotted for Rb (left) and Na (right), in hyperfine spin state
|1,−1〉 (red), |1, 0〉 (blue) and |1, 1〉 (black). The experimental atom conditions
are used and the magnetic field is 1.9G.

d0 = −16
β′
Ẽ2 +m4 + 2m3 (nRb + nNa) + 4m2nRbnNa,

d1 = 32e1

β′
Ẽ − 2m2 (nRb − nNa) , d2 = −16

β′

(
e2

1 − 2e2Ẽ
)
− 2m (m+ nRb + nNa) ,

d3 = −32e1e2

β′2
+ 2nRb − 2nNa, d4 = 1− 16e2

2

β′2
.

(3.43)

This form of differential equation has the solution that can be expressed by

elliptic functions. After identifying the four roots of the equation d0 + d1m3 +

d2m
2
3 + d3m

3
3 + d4m

4
3 = 0 and arranging them so that x1 < x2 < x3 < x4, the

solution is given by

m3 (t) = (x4 − x2)x3 + (x2 − x3)x4y
2

x4 − x2 + (x2 − x3) y2 , (3.44)
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where

y1 = F

arcsin

√√√√(x2 − x4) (m3 (0)− x3)
(x2 − x3) (m3 (0)− x4) ,

√√√√(x2 − x3) (x1 − x4)
(x1 − x3) (x2 − x4)


y2 = 2√

(x1 − x3) (x2 − x4)

y3 =

√√√√(x2 − x3) (x1 − x4)
(x1 − x3) (x2 − x4)

y = sn
(
y1 +

√
d4
β′

2~t/y2, y3

)
,

(3.45)

in which F (ϕ, k) is the elliptic function of the first kind, sn (u, k) is one of the

Jocobi elliptic functions. The solution (3.44) is a period function of time, hence

the population of each spin component of each species exhibit oscillations. A

typical dynamics at the external field of 1.9G is depicted in Fig. 3.5.

Many-body formalism

The many-body formalism described in this section is mainly develop my our

theoretical collaborators Prof. Shizhong Zhang and Prof. Zhifang Xu. When one

of the atomic species are not in the condensed state, we can no longer use the mean

field approximation. In this case, finite temperature must be taken into account.

A basic kinetic approach can be adopted to derive the dynamical equations. For

a thermal cloud (87Rb in our experiment), the evolution of spin polarization and

spatial distribution can be describe by the Wigner function [96, 97]

gij (R,p; t) =
∫
dre−ip·r

〈
ψ̂†j

(
R + r

2 , t
)
ψ̂i

(
R − r

2 , t
)〉
, (3.46)

which can be viewed as a thermal average of the Wigner operator. Since there are

three spin component for F = 1, g (R,p; t) is a 3× 3 matrix. The equation that

governs the time evolution of the Wigner function can be written in the following
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general form

∂g (R,p; t)
∂t

+ p
mRb

· g (R,p; t)

− 1
2 {∇RURb,∇Rg (R,p; t)} − i

~
[g (R,p; t) , URb] = IRb,

(3.47)

where IRb is the collision integral that describes the effects of interactions that are

not captured in the effective potential URb (R,p; t), which is in general a matrix

function of R, p and t. The kinetic equation can be derived from the Heisenberg

equation of motion for the Wigner operator. In our calculation, URb (R,p; t) is

obtained within the random phase approximation (RPA), which we generalize to

the case of Bose-Bose mixtures. The anti-commutator {A,B} and the commuta-

tor [A,B] refer to quantities in spin space.

For Na condensate, as is the case in our experiment, the mean-field approx-

imation is adopted, and the field operator is replaced by its expectation value

φi (r, t). Starting from the Hamiltonian (3.37), we can find the expression for

URb (R,p; t) and the time dependences for φi (r, t). There are three contribu-

tions to URb (R,p; t). The first comes from the single particle term

U
(1)
Rb (R) = VRb (R)− pRbFz + qRbF

2
z (3.48)

The second term comes from the intra-species interactions. Here one uses the

RPA and obtain the following expression

U
(2)
Rb (R; t) = cRb

0 (TrnRb + nRb) + cRb
2 Tr (FnRb) · F + cRb

2 Tr (FnRb · F) (3.49)

where F = (Fx, Fy, Fz) is the spin-1 angular momentum vector operator, nRb is

defined to be

nRb,ij (R, t) =
〈
ψ̂†j (R, t) ψ̂i (R, t)

〉
(3.50)
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The last contribution comes from the inter-species interactions and can be written

as

U
(3)
Rb (R; t) = αTrnNa + βTr (FnNa) · F + γUφ (3.51)

where

nRb,ij (R, t) = φ∗j (R, t)φi (R, t) (3.52)

and

Uφ = 1
3


φ∗−1φ−1 −φ∗−1φ0 φ∗−1φ1

−φ∗0φ−1 φ∗0φ0 −φ∗0φ1

φ∗1φ−1 −φ∗1φ0 φ∗1φ1.

 (3.53)

The equation of motion for the condensate order parameter b† =
(
b∗−1, b

∗
0, b
∗
1

)
can

be similary written as

i~
∂

∂t
φ =

[
−~2∇2

2mNa
− pNaFz + qNaF

2
z + VNa + cNa

0 TrnNa + cNa
2 Tr

(
b†Fb

)
· F
]
b

+ αTr (nRb) b+ βTr (nRbF) · Fb+ γUψb,

(3.54)

where

Uψ = 1
3


〈
ψ∗−1ψ−1

〉
−
〈
ψ∗−1ψ0

〉 〈
ψ∗−1ψ1

〉
−〈ψ∗0ψ−1〉 〈ψ∗0ψ0〉 − 〈ψ∗0ψ1〉

〈ψ∗1ψ−1〉 − 〈ψ∗1ψ0〉 〈ψ∗1ψ1〉

 (3.55)

Now equation (3.47) and (3.54) provide a complete description of the Bose mix-

ture system with one component being thermal and the other condensate. The

equations are difficult to solve in general, however, SMA can be made as in the
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following. For Rb thermal cloud, we can write

nRb,ij (R,p; t) = Z−1 exp
[
−p

2/2mRb + VRb (R)
kBT

]
σij (t) . (3.56)

Namely, the R and p dependences of nRb,ij is given by the thermal distribution,

which is also independent of time, while its spin dependence is given by σij (t).

Here

Z =
∫
dR

∫ dp
(2π~)3 exp

[
−p

2/2mRb + VRb (R)
kBT

]
(3.57)

is the classical partition function. For Na condensate, we write

φi (R, t) =
√

Tr (nRb (R))ςi (t) ≡
√
nc (R)ςi (t) , (3.58)

where the total condensate density of Na, nc (R), is independent of time. The

spin part of the condensate wave function is given by ςi (t) which carries all the

time-dependences. The matrix σ and the spinor ςi satisfy the following conditions:

Trσ = 1,
∑
i

ς∗i ςi = 1 (3.59)

The condensate density distribution can be approximated by the usual Thomas-

Fermi form in the harmonic trap. With these prepartions, we can substitute

equation (3.56) into equation (3.47) and integrate over R and p on both sides.

Let us neglect the collision integral IRb, which contributes to the damping of the

oscillations. The second and third terms in the left hand side of equation (3.47)

vanishes upon integration over R and p. Thus we find

∂σ

∂t
= i

~
[σ,MTG] , (3.60)
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where

MTG =− pRbFz + qRbF
2
z + cRb

2 n̄Tr (Fσ) · F + cRb
2 n̄Tr (Fσ · F)

+ βn̄tc

√
NNa

NRb
Tr (Fτ) · F + γn̄tc

√
NNa

NRb
Uς ,

(3.61)

where n̄ and n̄tc are defined by

n̄ = 1
NRb

∫
dR[Tr (nRb)]2

n̄tc = 1√
NRbNNa

∫
dRTr (nRb)nc (R),

(3.62)

and τ is defined by

τij = ζ∗j ζi,Tr (τ) = 1, (3.63)

and the matrix

Uτ = 1
3


ζ∗−1ζ−1 −ζ∗−1ζ0 ζ∗−1ζ1

−ζ∗0ζ−1 ζ∗0ζ0 −ζ∗0ζ1

ζ∗1ζ−1 −ζ∗1ζ0 ζ∗1ζ1.

 (3.64)

The equation of motion of the condensate order parameter φ can be written in

terms of τ , in a similar form as for σ. By substituting equation (3.58) into (3.54)

and integrate over R, we find

∂

∂t
τ = i

~
[τ,MBEC] , (3.65)

where
MBEC =− pNaFz + qNaF

2
z + cNa

2 n̄cTr (Fτ) · F

+ βn̄tc

√
NRb

NNa
Tr (Fσ) · F + γn̄tc

√
NRb

NNa
Uσ,

(3.66)
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in which the matrix Uσ is defined to be

Uσ = 1
3


σ−1,−1 −σ−1,0 σ−1,1

−σ0,−1 σ0,0 −σ0,1

σ1,−1 −σ1,0 σ1,1,

 (3.67)

and the mean density n̄c defined by

n̄c = 1
NNa

∫
dRnc(R)2. (3.68)

By solving the equaitons (3.60) and (3.65), we can calculate the dynamics of the

mixture of a Na BEC and a Rb thermal cloud in a particular initial spin state.

It turns out that the solutions are periodic oscillations of the population in each

spin component. The effect of external magnetic field and interaction strength

can be seen by changing the parameters in the equation. Both mean field theory

and the kinetic equations predict a resonance behaviour near 1.69G, where the

inter-species interaction energy and the differential Zeeman energy between Rb

and Na are comparable.



Chapter 4

Experimental Setup and Methods

In this chapter the experiment setup for trapping Rb and Na and cooling them

to quantum degeneracy is described in detail.

4.1 Components of the setup

Laser cooling and trapping is the basic technique in a lab working on quantum

gases. To avoid severe loss from the background gas collision, the trapped atoms

are placed in an ultra-high vacuum. To further cool down the gas, magnetic trap

or optical trap are needed and the experimental methods utilizing magnetic coils,

lasers and microwave devices become essential. Hence, the experimental appara-

tus for producing a BEC is sophisticated with advanced experimental methods

developed in AMO physis and condensed matter physics. We can roughly divide

our experimental setup into five parts and describe their basic structures and

functions. These includes:

Vacuum system - Provides an ultra-high vacuum environment for the atom

trap so that the atomic cloud has a long enough lifetime for physical experiments,

and the system can be viewed as isolated from the thermal environment.

66
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Lasers and optical system - Several lasers with different wavelengths are gen-

erated to provide lights for trapping, cooling, optical pumping and detecting the

atoms, as well as for spectroscopy study. To guide the light paths and precisely

control the frequency and intensity, a complex and compact optical system is

designed.

Magnetic fields - Helmholtz and anti-Helmholtz coils are used to generate

uniform magnetic field and magnetic gradient field, widely used to control the

energy levels of the atoms and trap the spin polarized atoms.

RF and microwave devices - The high-frequency electronics produce oscillating

electromagnetic waves which are used in evaporative cooling in magnetic trap and

to manipulate the atomic spin states.

Computer control system - Computers are used to control the time sequences

of all components in the system, precisely carry out the operations we design to

run an experiment.

In the following, the five parts of the system will be described in detail.

4.1.1 Vacuum System

The vacuum system consists of a single chamber connected with an ion pump

through standard stainless vacuum components. The chamber is a glass cell with-

out anti-reflection coating, which outer dimensions is 100mm×40mm×40 mm.

The atom sources of Rb and Na are provided by dispensers (Alvatec GmbH)

which are directly inserted into the glass cell from the opposite site the CF35

tube connecting the cell, with a distance of ∼ 12cm from the dispenser and cell

center. The vacuum is maintained by the ion pump Gamma Vacuum 45S, with a

pressure of 1.2× 10−11torr. A titanium sublimation pump (Varian Vacuum TSP

Cartridge) is also installed but was only fired once during the vacuum preparing

stage. The whole vacuum system is shown in Fig. 4.1.

The high vacuum is, however, against the MOT loading due to low vapor
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pressure. To solve the contradiction, an 365nm ultraviolet (UV) light-emitting

diode (LED) is turned on to temporarily increase the vapor pressure, exploiting

the light induced atom desorption (LIAD) effect. The LED (Thorlabs M365L2)

is located near the cell and has a maximum output power of 200mW. A simple

test estimates that the atom number with LIAD loading into a MOT can reach

∼30 times of that without turning on the LED.

After the preparation for the ultra-high vacuum (UHV), the the dispenser

was fired with a 2.5A current for one day in order to coat the cell walls with Rb.

In day-to-day operations, we find a decrease of the Rb atoms without firing the

dispenser while an increase of the pressure with too large current through the

dispenser. Hence a 1.7A current is applied to the dispenser and keep Rb vapor

pressure constant during experiment cycles.

Figure 4.1: Photo of the vacuum system. Inside the dashed box are the ion
pump, glass cell, dispenser, tubes and connectors.
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4.1.2 Lasers

Lasers are essential tools for trapping and cooling atoms. In our experimental

apparatus, the types of lasers with different wavelengths include:

(1) Diode laser

The laser diode is a semiconductor laser, with the active medium formed

by a p-n junction. It is widely used in laser cooling and trapping experiments.

The trapping beam for Rb MOT in our setup is provided by a slave diode laser

(Thorlabs LD785-SH300) with wavelength 780nm and maximum power 300mW.

The slave laser is seeded by another external cavity diode laser (ECDL), which

is locked to the Rb atomic transition F = 2 ↔ F ′ = 3 by means of saturated

absorption spectroscopy. Another ECDL locked to F = 1 ↔ F ′ = 2 is used to

provide the light for repumping the atoms to the cycling transition.

Commercial laser diode has a large output linewidth, and the frequency fluc-

tuation and drift can easily exceed the atomic transition linewidth. In order to

reduce the linewidth, the laser diode is either seeded by another laser with nar-

rower linewidth, or receive feedback from an external cavity, which are the cases

for our slave laser and ECDLs, respectively.

We use a Littrow configuration in our ECDLs [98, 99]. The laser diode output

beam is reflected by a light grating (Thorlabs GH13-18V, with 1800 grooves/mm)

with the angle θ between the surface and the beam about 45◦. The grating is

chosen so that the zeroth order reflected beam is the output of the ECDL, and

the first order diffracted beam coincides with the diode output and travels back,

hence serves as an optical feedback for the laser diode. In this situation the mode

determined by the cavity length (from diode to grating) become dominated and

suppress other modes hence reduce the linewidth, and the output wavelength be-

comes tunable if we add a piezoelectric ceramic transducer (e.g., Pb[ZrxTi1−x]O3,

or PZT) into the mount holding the grating. The configuration is shown in Fig.
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grating 

Figure 4.2: Photo of the structure of the ECDL. The yellow arrow indicates the
position of the grating, which forms an external cavity together with the surface
the laser diode in the Littrow configuration. The diode is inserted in the mirror
mount installed on an aluminum block with a thermoelectric heat pump between
them. The three ports on the rear panel are for the current driver, temperature
controller and temperature sensor. To protect the laser output, a window with
antireflection coating is installed at the output port.

4.2. A special type of diode laser is distributed feedback (DFB) laser in which

the Bragg grating is built internally. DFB lasers have narrow linewidth (<1MHz)

and tunable wavelengths in several hundreds of GHz range. In our lab, a 795nm

DFB laser is setup and used in special purposes, for example in imaging in high

magnetic field and spectroscopy studies.

(2) Dye laser

For Na atoms, the 589nm transition wavelength is not covered by most types
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Figure 4.3: Dye laser generating the 589nm laser light for Na. Upper panel:
Schematic diagram of the structure of the dye laser with a ring cavity. Lower
panel: photo of the dye laser with laser generation. Pictures from the manual of
the Dye laser DYE-SF-077.

of laser makes dye laser the only choice (in early days). Our dye laser (DYE-SF-

077) is a CW single-frequency ring laser, which has a narrow output linewidth

of less than 100kHz. The dye laser system consists of a ring cavity, an electronic

control unit, a dye circulation system and a 532nm diode-pumped solid-state laser

(DPSSL, IPG photonics) used to pump the dye. The dye in use is Rhodamine 6G

powder, methanol and ethylene glycol as the solvent replaced about every three

months due to degradation. The configuration of the ring cavity is shown in Fig.

4.3. The dye laser is placed inside a plexiglass box purged with filtered air to

keep the cavity mirrors clean and maintain the output power, which is typically

600mW. To stabilize the output frequency, the ring cavity is locked to an external
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cavity which has a finesse of 300-400 and free spectral range of 750MHz, and the

cavity is locked to the Na F = 2 ↔ F ′ = 3 atomic transition through saturated

absorption spectroscopy.

(3) Fiber laser

The 1070nm laser beam which provides the far-off-resonant trap or optical

dipole trap (ODT) is generated by a multi-frequency fiber laser (IPG photonics).

The maximum output power is 100W but typically 15W is used. The fiber laser

beam has a Gaussian profile and is particularly suited to form an ODT. Fig. 4.4

shows the intensity profile of the beam at waist after the optical system which

tightly focus the beam and form a three dimensional Gaussian shape.

(4) Diode-pumped solid-state laser

(a) (b)

Figure 4.4: Beam profile of the 1070nm fiber laser. (a) The light spot is mea-
sured by a CCD (Mightex SCE-B013-U) at the focus which is also the center of
ODT. (b) The measured beam sizes along the z direction, which is fitted by the
propagation equation of Gaussian beam. The beam has a good gaussian profile
with beamwaists of 52µm and 47µm in horizontal and vertical directions, and the
typical measured value of M squared parameter is 1.2.
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Compared with diode lasers, DPSSLs can usually have higher power and bet-

ter beam quality. In our lab, the 532nm laser used to pump the dye laser is

a DPSSL. Another DPSSL is working at 660nm, which is overlapped with one

beam of the ODT and used to provide a deeper trap depth for Na while reduces

the trap depth for Rb and makes the two atomic cloud sizes closer.

4.1.3 Optical System

For laser cooling and trapping, an enormous and complex optical system is usu-

ally need: (1) to guide the laser light to desired paths or form atom traps (e.g.,

MOT). (2) to stabilize the frequency and intensity of the light. The optical system

is composed of mirrors, lens, beamsplitters, waveplates, filters, prisms, fibers, op-

tical isolators, acousto-optic modulators (AOMs), atom vapor cells, photodiodes,

charge-coupled devices (CCDs) and related electronic circuits, most of which are

installed on the optical tables.

The optical layouts for producing 780nm beam for Rb are schematically drawn

in Fig. 4.5 and Fig. 4.6 respectively. The trapping beam is generated by the

trapping laser at frequency near F = 2↔ F ′ or 384.22813THz, and pass through

a anamorphic prism pairs (PBS871-B) to acquire a near unity aspect ratio of

the beam profile. Then a small fraction of the beam is split out for saturated

absorption spectroscopy, and the frequency is locked to the crossover peak of

F ′ = 1 and F ′ = 3. The remaining beam is again splitted into two and each

passes through a AOM double-pass configuration which shift the frequency of

about 200MHz. One beam is with a tunable detuning ∼ 20MHz and sent to

the slave laser as a seed. Another beam is on resonance and used for absorption

imaging. The output light from the slave laser is split into three beam and guided

to the optical fibers. The repump laser has a similar configuration, except that
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the output frequency is near 384.23468THz, the AOMs are single-passed, and the

two splitting beams are used for repumping and optical pumping.
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Figure 4.5: Optical layout for Rb laser system. The 780nm laser lights are
generated from diode lasers and sent to fibers for laser cooling and trapping. The
focal lengths of each lens are indicated.
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Figure 4.6: Optical layout for Na laser system. The 589nm laser light is generated
from the dye laser.

Laser frequency stabilization

An important purpose of the optical layout is to lock the laser frequency through

saturated absorption spectroscopy and frequency modulation spectroscopy. The



CHAPTER 4. EXPERIMENTAL SETUP AND METHODS 76

former enables us to resolve the hyperfine structures of the atomic transitions,

and the latter enables us to extract the error signal through modulation and

provide feedback to lock the laser. The details of the spectroscopy methods can

be found in excellent monographs [100]. The main idea of saturated absorption

spectroscopy is to used an strong counterpropagating beam overlapping the probe

beam to reduce the absorption at the peaks of hyperfine transitions, hence solving

the problem of Doppler broadening of the absorption profile of probe beam.

After we get the spectral profile I(ν), we can modulate the laser frequency

(e.g., by driving current modulation) so that the signal becomes I(ν+A sin(ωt)),

where A and ω are the modulation amplitude and frequency. When A is very

small, the Taylor expansion of the signal is a DC term plus a leading AC term:

I(ν + A sin(ωt)) ≈ DCterm + A sin (ωt) dI
dν
. (4.1)

The AC part of this signal is sent through a frequency mixer, in which it is

multiplied by another AC signal B sin (ωt+ φ) with amplitude B and tunable

phase φ. The output is

A
dI

dν
sin (ωt+ φ) ·B sin (ωt+ φ) = AB

2
dI

dν
(cosφ− cos (2ωt)) . (4.2)

Finally by passing the signal through a low-pass filter, we can extract the first

term at the right hand side of Eq. 4.2, which is a DC signal proportional to dI/dν.

This is exactly the error signal we need: it is zero at the resonance position,

positive at one side and negative at another side. The schematic diagram for

saturated absorption spectroscopy and frequency modulation spectroscopy and

corresponding signals for Rb are shown in Fig. 4.7. For Na, the configuration is

similar, except that the modulation is on the AOM driving frequency, and the

Na cell needs to heat up to ∼150◦C due to lower saturated vapor pressure.
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Figure 4.7: Rb saturated absorption spectroscopy. Left: Hyperfine transitions
from F = 2 to F ′, to generate trapping light. Right: Hyperfine transitions from
F = 1 to F ′, to generate repumping light. Upper orange curves are the saturated
aborption peaks resolving hyperfine structure, while lower green curves are their
first-order derivatives obtained by frequency modulation spectroscopy and serve
as error signals. Captured by oscilloscope Tektronix TBS1064.

4.1.4 Magnetic Fields

Two kinds of magnetic fields are widely used in the cold atom experiment: the

uniform magnetic field and magnetic gradient field. The former is produced by

a pair of Helmholtz coil while the latter can be produced by a pair of anti-

Helmhotz coil. In our lab, there are totally five pairs of coils: The first one is

a pair of Helmholtz coils producing uniform magnetic field as large as 1000G.

Each coil is winded by 70 turns of refrigerator copper tube with 4mm diameter,

10 turns at each of the 7 layers. An inductance of ∼650µH is estimated. The

copper tube is hollow and there is water running through the coil from the water

cooling system. The power supply (Delta Elektronika SM30-200) can provide

maximum current of 200A and usually it is working at constant voltage mode.

The magnetic field is controlled and stabilized by a electronic feedback servo. In

the control system the sensor is a current transducer (LEM IT200-S) and the

controller is the MOSFET (IXFN230N10). The relative stability of the magnetic

field can reach 3×10−5. This pais of coils is used in providing high magnetic field
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Figure 4.8: Sketch showing the configuration of the two set of coils. The outer
pair is the Helmholtz coil producing uniform magnetic field up to 1000G. The
inner one is the anti-Helmholtz coil producing magnetic gradient field for magnetic
trapping as well as for MOT. The glass cell and the mount for the coils are also
shown.

in finding Feshbach resonances and producing Feshbach molecules. The second

pair is anti-Helmholtz coils which are used to provide magnetic gradient field in

MOT stage as well as act as magnetic quadrupole trap. Each coil has 4 turns at

each of the 7 layers. In the magnetic trapping stage, the coils produces 160G/cm

magnetic gradient field at the current of 147A, while in MOT stage about 10G/cm

is produced. The appearance of these two pair of coils and the mount is shown

in Fig. 4.8. More detailed descriptions of the magnetic field system including

the performance of the feed back control can be found in the thesis of another

member Fudong Wang in our group.

The other three pairs of coils are used to compensate the earth magnetic field

in three directions, as well as to provide quantization field for spinor gases in

optical trap. They are winded by 50-60 turns of copper wires of 1mm diameter

to rectangular shapes. Using the power supplies (ISO-TECH IPS 303DD), the
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uniform magnetic field can be generated up to 3G. The fluctuation of the magnetic

field is less than 0.2mG without feedback servos, according to an experiment

testing the stability of population transfer between hyperfine states.

4.1.5 RF and Microwave Devices

High frequency electronics are used in several places in our experiments, includes:

(1) 50Hz PZT ramping and 50kHz modulation signal in the laser locking system;

(2) 70-400MHz AC currents driving the AOMs; (3) RF electromagnetic field of

several kHz to several MHz coupling the Zeeman sublevels in the same hyperfine

manifold for Rb and Na; (4) Microwave electromagnetic field of 6.8GHz and

1.7GHz coupling the Zeeman sublevels in different hypfer manifolds for Rb and

Na, respectively.

In dealing with high frequency electronics, the conducting wires are replaced

by coaxial cables with BNC or SMA connector, and the high frequency com-

ponents such as oscillator, mixer, switch, RF amplifier, antenna are used. For

frequency less than 20MHz, the signal generator Rigol DG1022 works well. For

higher frequency, the signal are generated by the generators (SRS SG386 and

APSIN6000). The RF antennas are simply copper wire of a few turns. The

microwave antenna we used in evaporative cooling in magnetic trap is the horn

antenna (Ocean microwave OLB-112-20) which is placed about 10cm away from

the atoms.

4.1.6 Computer Control

All the components described above has a certain time sequences in a single

experiment run, from turning on the magnetic field and light for MOT, to the time

of flight of an atomic cloud in optical trap. The sequence is precisely controlled by

computers through PCI card (NI PCI-6733). The PCI card provides both digital

(transistor-transistor logic, TTL) and analog (digital to analog converter, DAC)
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outputs, with the resolution of 16bits. The whole time sequence is constructed

and modified in labview programs. The communication between the SRS signal

generator and computer is through GPIB interface (NI GPIB-USB-HS). As an

illustration, Fig. 4.14 shows a typical experimental sequence for producing an

ultracold mixture in ODT.

4.2 Properties of atomic cloud in traps

In cold atom experiments, the atoms are contained in atom traps, hence the den-

sity distribution has spatial dependence. This is in contrast with conventional

condensed matter system where usually uniform system is considered. The de-

scription of atomic cloud is therefore more subtle. The equilibrium properties

of atoms in trap at finite temperature and zero temperature are well studied.

Here we summarize these properties which are very useful in real experiments to

characterize the atomic cloud. We can discuss three cases according to the tem-

perature regimes: (1) Thermal clould (T � Tc, Tc is the transition temperature);

(2) Quantum degeneracy (T = 0); (3) Near degeneracy (T ∼ Tc).

Thermal cloud

The starting point is the classical Hamiltonian of an atom in the trapping poten-

tial U (r)

H(r,p) = p2

2m + U (x, y, z)

=
p2
x + p2

y + p2
z

2m + 1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
.

(4.3)

The distribution function is assumed to be Boltzmann distribution for thermal

gas at temperature T

f = 1
e−

µ−H
kT + 0

, (4.4)
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so that the probability of the atom appears in d3rd3p in phase space is given by

fd3rd3p/h3, µ is the normalization constant (chemical potential) keep the total

probability to 1, or N in the case of N non-interacting atoms. In the latter case,

the spatial density is given by

n (x, y, z) = 1
h3

∫
fd3p

= N

(
mω̄2

2πkT

) 3
2

exp
−m

(
ω2
xx

2 + ω2
yx

2 + ω2
zx

2
)

2kT

 , (4.5)

in which the chemical potential satisfy exp (µ/kT ) = N(hω̄/2πkT )3. A useful

form of Eq. 4.5 is written in terms of atom sizes

n (x, y, z) = np exp
[
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

]
, (4.6)

where the rms size σx, σy, σz and the peak density np are

σi =
√
kT

mω2
i

, (i = x, y, z) , (4.7)

np = N

(2π)
3
2σxσyσz

= N

(
mω̄2

2πkT

) 3
2

. (4.8)

In practise, only the column density, i.e., the density integrated along z direc-

tion is detected. In this case,

ñ (x, y) =
∫
n (x, y, z) dz = N

2πσxσy
exp

[
− x2

2σ2
x

− y2

2σ2
y

]
, (4.9)

In the case of time-of-flight, the atomic cloud is allowed to free expand for time

t, then the distribution function ft (r,p, t) has the following relation with the
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distribution function f (r,p) at zero time

ft (r,p, t) =
∫
f (r0,p) δ3

(
r− r0 −

pt
m

)
d3r0. (4.10)

Hence the spatial density distribution at time t is given by

nt (x, y, z, t) = 1
h3

∫
ft (r,p, t) d3p

= np (t) exp
[
− x2

2σ2
x (t) −

y2

2σ2
y (t) −

z2

2σ2
z (t)

]
,

(4.11)

where the size and peak density at time t are given by

σi (t) = σi
√

1 + ω2
i t

2 (4.12)

np (t) = N

(2π)
3
2σx (t)σy (t)σz (t)

. (4.13)

Similarly the column density is

ñt (x, y, t) = N

2πσx (t)σy (t) exp
[
− x2

2σ2
x (t) −

y2

2σ2
y (t)

]
, (4.14)

which can be used directly to fit the absorption image recorded by CCD.

Quantum degenerate gas

At absolute zero temperature, the atomic gas is quantum degenerate. In the case

of Boson, all atoms are condensed to the lowest energy state. In the mean field

level and strong interaction limit, the density distribution is given by the solution

of GP equation neglecting the kinetic energy term

n (x, y, z) = 15
8π

N

RxRyRz

max
[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

, 0
]
, (4.15)
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where Ri are the Thomas-Fermi radii

Ri =
√

2µ
mω2

i

, (i = x, y, z) , (4.16)

in which the chemical potential is

µ =
15~2m

1
2

2 5
2

Nω̄2a

 2
5

. (4.17)

The column density is calculated to be

ñ (x, y) = 5
2π

N

RxRy

max
[
1− x2

R2
x

− y2

R2
y

, 0
] 3

2

. (4.18)

For BEC at time-of-flight, there is no analytical expression, but it turns out that

the density distribution is still keep in parabolic shape, hence one can assume

Ri (t) = λi (t)Ri, where λi are the time varying factors and put them into the

GP equation for numerical solutions. The above distributions are still applicable

at time t except that Ri are replaced by Ri(t).

Near degenerate gas

When the temperature approaches the transition temperature, Bose-Einstein

statistics become significant. The distribution function eq. 4.4 should change

to the Bose distribution function

f = 1
e−

µ−H
kT − 1

. (4.19)

Integration over momentum space gives the spatial density distribution

n (x, y, z) = 1
λ3

dB
g3/2

(
z exp

[
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

])
, (4.20)
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where λdB = h/
√

2πmkT is the thermal de Broglie wavelength, atom sizes σi
have the same form with Eq. 4.7. z = exp (µ/kT ) is the fugacity which can be

determined from the condition

N =
(
kT

~ω̄

)3

g3 (z) , (4.21)

and the Riemann Zeta function gl(z) is

gl (z) =
∞∑
j=1

zj

jl
. (4.22)

The column density is given by

ñ (x, y) = 1
λ3

dB

√
2πσzg2

(
z exp

[
− x2

2σ2
x

− y2

2σ2
y

])
. (4.23)

For time-of-fight, the above density distribution functions are valid when the size

σi are replaced by the sizes σi(t) at time t, and the relation between these two

sizes is still given by Eq. 4.12.

4.3 Detection of atoms

4.3.1 Absorption Imaging

The detection method of the atomic cloud is the well established absorption

imaging. It enables us to detect the spatial density profile by recording the

absorption of the resonant light by a CCD. When a light beam which size is larger

than the atomic cloud and on resonant with the atomic cycling transition pass

through the atom sample, the intensity will have an exponential decay. According

to Beer’s law,
dI (x, y, z)

dz
= −σegn (x, y, z) I (x, y, z) , (4.24)
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where I(x, y, z) is the light intensity, σeg is the resonant absorption cross section,

n(x, y, z) is the atomic cloud density. Integration of the equation along z gives

the intensity profile of the output light I(x, y) relative to the input light I0(x, y)

I (x, y) = I0 (x, y) exp
[
−σeg

∫
n (x, y, z)dz

]
, (4.25)

hence the column density is given by

ñ (x, y) = 1
σeg

ln
(
I0

I

)
. (4.26)

In practise, I(x, y) is recorded by a CCD (pco.pixelfly usb) for a short duration

(100µs), hence the total counts which proportional to the photon number for

each pixel is recorded. However, the background light is recorded together with

the probe light. So the procedure is as follow: we first record a counts profile on

the CCD S(x, y) with probe light passes through the atom at time-of-flight, then

after 700ms a second counts profile S1(x, y) is recorded with the same intensity

and duration of the light (the atoms are absent), finally after 700ms a third profile

S0(x, y) is recorded without probe light and atom. The column density is there

for

ñ (x, y) = 1
σeg

ln
(
S1 (x, y)− S0 (x, y)
S (x, y)− S0 (x, y)

)
. (4.27)

An example of the four profiles S(x, y), S1(x, y), S0(x, y) and σegñ(x, y) are shown

in Fig. 4.9.

4.3.2 Measuring the physical quantities

Atom number

Since we have get the column density profile on the CCD, the total atom number

can be calculated by integration of the density. Considering the discrete nature

of the profile composed of pixels of sizes A and magnification M of the image
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( )a ( )b

( )c ( )d

Figure 4.9: An example of the absorption images. (a) S(x, y), in the presence of
probe beam and atoms; (b) S1(x, y), in the presence of probe beam but without
atoms; (c) S0(x, y), without probe beam and atoms; (d) σegñ(x, y) calculated
optical density (See text).

system, the integration is replaced by summation

N = A

M2σeg

∑
i

ln
(
s1,i − s0,i

si − s0,i

)
, (4.28)

here the summation is over all pixels on the CCD, si is the counts on i-th pixel

corresponds to the Si profile. A more practical approach is when we know that the

atomic cloud has known profile, we can fit the distribution using the corresponding

function and integrate. If a thermal cloud is expanded from a harmonic trap, the

distribution has gaussian form and can be fit using Eq. 4.14, and the total number

can be expressed in terms of the fitting parameters p = ñp (x, y)σeg and σx, σy

N = A

M2σeg
2πpσxσy. (4.29)
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In the case of BEC,

N = A

M2σeg

2π
5 pRxRy. (4.30)

Atom density

The CCD records the column density distribution at time t, to calculate the

initial density profile, the trap frequencies (ωx, ωy, ωz) must be considered. The

peak density at t = 0 for gaussian profile is calculated to be

np = M

σeg
√

2πA

(
1 + ω2

xt
2
) 3

4
(
1 + ω2

yt
2
) 3

4 ωz√
ωxωy

p
√
σxσy

. (4.31)

The average density is given by

〈n〉 =
∫
n2 (x, y, z) d3r

N
= np√

8
. (4.32)

Temperature

The measurement of temperature is straightforward if the trap frequencies are

known. Combining Eq. 4.7 and Eq. 4.12 we can get the temperature from the

sizes at time t

T = m

k

ω2
i σ

2
i (t)

1 + ω2
i t

2 . (4.33)

If the trap frequency are unknown, the temperature can be obtained by the widely

used time-of-flight method: the above equation can be rewritten as

σ2
i (t) = σ2

i + kT

m
t2, (4.34)

thus by measuring the sizes at different t, the data can be used to fit the above

function using σi and T as free parameters. Fig. 4.10 shows such a measurement

for Rb thermal cloud in ODT.
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Figure 4.10: Measurement of the temperature of Rb thermal cloud in ODT. The
atoms are released from the trap and allowed to expand for 3 to 7ms, and the
cloud sizes are measured by absorption imaging. By fitting the sizes at different
time using Eq. 4.34, the temperature is determined to be 900nK. The right panel
shows the absorption images at 3 to 7ms from up to down.

Phase space density

Phase space density is a characterization of atom number occupying a single atom

state. It is given by

D = nλ3
dB. (4.35)

Hence it can be calculated after measuring the density and temperature. An

useful expression is that for trapped atomic gases, from Eq. 4.8, the peak phase

space density is given by

Dp = N

(
~ω̄2

2πkT

)3

. (4.36)

4.3.3 Atom Number Calibration

The detection of atom density (hence atom number) described above is under

some assumptions. The intensity of the probe light is assumed to be weak com-

pared to the saturated intensity, the light has perfect polarization and propaga-
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tion direction along the quantization field, the atoms are always in the cycling

transition. However, imperfection is unavoidable and leads to deviation of the

detected atom number. Particularly this is important in determining the mean

field shift in a BEC which is proportional to the atom density. To take into

account these effects, Eq. 4.24 should be modified by considering the saturated

effect and assuming an effective intensity [101, 102]

dI (x, y, z)
dz

= −σegn (x, y, z) Ieff

1 + Ieff/Is

= −σegn (x, y, z) I/α

1 + I/αIs
,

(4.37)

where we have assumed Ieff = I/α. Integration along z axis gives

σegñ = −α ln
(
I

I0

)
+ I0 − I

Is

= αδ + I0

Is

(
1− e−δ

)
,

(4.38)

where δ is the directly measurable optical density. Integration over the x − y

plane gives
I0

Is

∫ (
1− e−δ

)
dxdy = −α

∫
δdxdy + σegN. (4.39)

This is an equation of the form y = −αx + σegN where y = I0
Is

∫ (
1− e−δ

)
dxdy

and x =
∫
δdxdy. By measuring a set of (xi, yi), the correction factor α can be

obtained from the linear fitting. Experimentally this is done by preparing atomic

clouds at the same condition, but using probe light with different intensities.

The intensity can be measured and (xi, yi) can be obtained by assuming δ has

gaussian profile or doing direct summation. The number correction result for Rb

is shown in Fig. 4.11 where α ≈ 2. For Na we also do similar measurement but

the correction α is found to be near 1 in our system.
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Figure 4.11: Number calibration of Rb atoms. The data are obtained by us-
ing different probe beam intensities for the atomic cloud prepared in the same
conditions, and calculating the corresponding (xi, yi) (See text). The calibration
factor is determined to be α = 2.0± 0.2 from the linear fitting (red line).

4.4 Achievements on the setup

In this section a brief introduction of the works on the setup is described previous

to the spinor dynamics experiments. The main subject is to produce an ultracold

mixture of Rb and Na towards the ground-state NaRb molecule in our simple

and compact setup.

4.4.1 Rb BEC in a Hybrid Trap

After laser cooling in MOT, CMOT and Molasses stage, we have 3×108 Rb atoms

at temperature of about 20µK. The atoms are then pumped to the hyperfine

level |F = 1,mF = −1〉 by a 1ms optical pumping pulse and transfer to the

magnetic quadrupole trap with axial gradient field of 160G/cm. Then we apply

the microwave field for evaporative cooling. The microwave frequency start at
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6774MHz and the slope is optimized in different time segments to achieve highest

cooling efficiency. Down to 6822MHz, the Majorana loss become severe and we

solve the problem by applying an 1070nm optical beam displaced 150µm away

from the QT center vertically, as shown in Fig. 4.12. Thus the atoms stay in the

potential in the hybrid trap rather than the QT center. After further evaporative

cooling in the hybrid trap to 6832MHz, the QT is ramped off and the atoms are

transfer to the cross ODT for final evaporation. A BEC of 2× 105 atoms can be

obtained after 3s of evaporative cooling in ODT.

3

We have measured the magnetic trap lifetime by MOT
recapturing. After different holding times, the atoms are
released from the quadrupole trap by suddenly reducing
the gradient from 160 G/cm to the value used for nor-
mal MOT operation. The MOT beams are then turned
back on and the remaining atoms reveal themselves by
fluorescences. As shown in Fig. 1, the 16 s trap lifetime
coupled with the large atom number is a clear evidence
of the LIAD technique’s effectiveness.

Direct forced radio (RF) or microwave (MW) fre-
quency evaporation in the quadrupole trap stops at a
PSD of 10−4 due to Majorana loss. To partially mitigate
this loss, we superimpose a crossed ODT to the atoms
together with the quadrupole field. The crossed ODT is
produced by a 1070 nm, multi-frequency, linear polarized
fiber laser(IPG Photonics). A 110 MHz acousto-optical
modulator (Crystal Technology) is used for intensity sta-
bilization and rapid trap switching off in less than 1 µs.
We divide the laser power into two arms using a λ/2
waveplate and a polarizing beamsplitter cube. They in-
tersect each other with an angle of 62◦. The beam waists
are 90 µm, while the vertical offset between the foci and
the magnetic field zero is 150 µm. Only 4.5 W power is
used in each beam, which produces a trap depth of 110
µK for 87Rb. They are ramped up in 200 ms after the
quadrupole trap has reached its full strength and remain
there during the MW evaporation.
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FIG. 2. (color online). Variation of the hybrid trap potential
along y (gravity) direction during the magnetic quadrupole
gradient ramping down. The black dashed line is the mag-
netic trap potential at 160 G/cm without the dipole trap. The
dotted lines show the overall potential with different mag-
netic trap strengths ranging from gradients of 160 G/cm to
26 G/cm. The optical trap and magnetic trap centers are
displaced by 150 µm from each other.

The effective potential for atoms in this hybrid trap is

U(r) =
1

2
µBB

′
√

x2

4
+ y2 +

z2

4
− mgy

−U0e
−2(x2+(y−y0)

2)/w2
0 + E0. (1)

where B′ is the quadrupole field gradient along the ver-
tical direction ŷ. U0 is the optical trap depth at y = y0

and w0 is the beam waist. E0 is the potential difference
between the quadrupole trap center and the final trap
minimum. µB , m and g are the Bohr magneton, 87Rb
atomic mass and the acceleration of gravity, respectively.
As illustrated in Fig. 2, at 160 G/cm, there are two po-
tential minima as a result of the displaced optical and
magnetic trap centers. The potential difference between
these two minima is ∼ 40 µK. This is comparable to the
20 µK cloud temperature where Majorana loss becomes
severe. Thus this loss cannot be suppressed completely.

D. Majorana loss

In an effort to quantify the Majorana loss in this setup,
we evaporate the atoms to different temperatures by con-
trolling the final evaporation cut frequency, and then
measure the lifetimes to obtain loss rates. Following
ref.[19], the Majorana induced loss rate can be estimated
as:

Γm = χ
~
m

(
0.5µBB′

kBT
)2. (2)

Here χ is a proportional constant, T is the temperature,
~ is the Planck constant over 2π and kB is the Boltzmann
constant.
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FIG. 3. (color online). Majorana loss in the bare quadrupole
trap. Black dots are measured atom loss rates at different
temperatures obtained by MW evaporative cooling to differ-
ent final frequencies. The red solid curve is a fit of the data
with a loss model.(see text for detail).

To account for the background loss, we modify this
equation as ΓL = aT−2 + Γb [15], where ΓL, and Γb are
the measured total loss rate and the background loss rate,

respectively. The coefficient a = χ
~
m

(
0.5µBB′

kB
)2, as a

Figure 4.12: Hybrid trap potentials along y (gravity) direction. The optical beam
is displaced 150µm below the QT center. The black dashed line is the potential
without optical beam and the dotted lines are the overall potential at 26G/cm to
160G/cm with optical beam.
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result of equation (2). The fitting yields a = 8.3(9)µK2/s
and Γb = 0.071(4). Further analysis is not pursued due
to the comparably large background loss rate, but the
T−2 dependence is already evident.

III. BEC PRODUCTION

A. Evaporation in magnetic trap

Evaporative cooling in magnetic trap starts right after
the loading is finished. Condensates of similar numbers
can be obtained with either RF or MW evaporation. Here
only the current MW setup will be described. The MW
signal driving the transition between |1, −1⟩ and |2, −2⟩
hyperfine levels is generated by doubling the output of
a signal generator (Anapico ASPIN6000-HC). After a 3
W amplifier (Minicircuit ZVE-3W-183), it is broadcast
to the atoms by a microwave horn antenna. Thanks to
the excellent initial PSD, this evaporation step can be
completed within 6 seconds during which the frequency
is swept from 6774 MHz to 6822 MHz. The sweep is
divided into several segments with different slopes and
powers. This is done empirically by optimizing the PSD
obtained after each segment. During the whole proce-
dure, a truncation factor of η ≈ 6 is roughly maintained.
After the MW evaporation, we typically end up with
2.5 × 107 atoms at temperatures of ∼ 29 µK and calcu-
lated densities of 1012/cm3. This corresponds to a PSD
of 7 × 10−5.

B. Transfer to the optical dipole trap

After the MW evaporation in magnetic trap, the atoms
are transfered into the ODT by ramping down the B′

linearly from 160 G/cm to 26 G/cm in 500 ms. This
final B′ value is chosen to below 30.5 G/cm, which is
the minimum gradient required for levitating Rb |1, −1⟩
atoms against gravity. During this process, the confine-
ment provided by the magnetic trap gradually decreases.
The atoms sag down under the influence of gravity until
they are trapped by the ODT. The trap potential de-
formation during the quadrupole trap decompression is
shown in Fig.2. At the final B field gradient, the atoms
occupy mainly the near bottom part of the potential and
Majorana loss is suppressed by the high potential wall.

The magnetic field gradient ramping speed is selected
experimentally for best final condensate numbers. This
rate is rather fast compared with the NIST experiment
[12] (2 seconds for the same gradient range). We sus-
pect that this is due to the compromise between the
larger background loss under our vacuum condition and
the adiabaticity requirement. We also observe that no
MW sweep is necessary in this step, while a factor of
40 increase in PSD is still observed because of contin-
uous evaporation during the potential deformation. At
the point of 85 G/cm and 43 G/cm, we measure the

FIG. 4. (color online). Absorption images after 30 ms time of
flight showing evidence of the BEC phase transition following
evaporation in the ODT. Bottom panels: (a) thermal cloud
at just above the transition temperature; (b) bimodal distri-
bution; (c) a quasi-pure condensate with 105 atoms. Field of
view: 900 µm by 900 µm. Top panels: the integrated opti-
cal densities of corresponding images. Blue dots are experi-
mental data, red solid lines are fittings to Gaussian (thermal
atoms) or/and parabola (condensed atoms) functions. The
red dashed line is the Gaussian fitting of thermal atoms in
the bimodal phase.

atom temperatures to be 15 µK and 8 µK, respectively.
The corresponding PSDs are 1.9 × 10−4 and 2.7 × 10−4.
When the gradient reaches the final value, the atoms are
loaded into the crossed ODT with temperatures of 14.6
µK, which is about one-eighth of the trap depth. Corre-
spondingly, the PSD increases to 3 × 10−3. The overall
transfer efficiency from the quadrupole trap to the ODT
is about 15%.

C. Evaporation in optical trap

With 4 × 106 atoms of PSD 3 × 10−3 in the crossed
ODT, condensate production is straightforward. Forced
evaporation is carried out by lowering the ODT power
and thus the trap depth. We control the trap power fol-
lowing the scaling law P (t) = Pi(1 + t/τ)−β , where Pi is
the initial power. Both τ and β are determined experi-
mentally for best final condensate number. According to
the reference[20], power ramping like this should result
in optimal evaporation efficiency with fixed truncation
factors. However, our case is complicated by thermal
effect induced foci position shifts, mainly coming from
the 3 mm thick Pyrex cell wall. These shifts will further
loosen the trap in addition to the power reduction. In-
deed, phase transition is already observed after lowering
the power by a factor of 12. While following the scaling
law, a reduction factor of ∼100 is needed. Judging from
the final BEC number repeatability, we conclude that the
thermal shift is reproducible to a great extent and thus
further effort to minimize the shifts is not pursued. As

Figure 4.13: Absorption images at 30ms time-of-flight showing the BEC transi-
tion of Rb. Lower pannel: absorption images for (a) thermal cloud, (b) partially
condensed atomic cloud, (c) quasi-pure BEC. Upper pannel indicate the inte-
grated optical densities and fitting using (a) Gaussian distribution, (b) bimodal
distribution (Gaussian + parabola), (c) parabola distribution. The size of the
picture is 900µm by 900µm.

4.4.2 Two Species BEC

Since Na has much lower saturated vapor pressure than Rb in the vacuum cham-

ber, the initial atom number in MOT is 5× 106. It is difficult to get Na BEC by

evaporative cooling, hence sympathetic cooling is adopted. In the MOT stage, in

order to avoid severe light assisted collision loss, the Rb cloud is displaced away

from the Na cloud until optical pumping. The two clouds then overlap in QT.

By evaporative cooling of Rb, Na is cooled down through interspecies elastic col-

lisions. The scheme works well due to appropriate interspecies scattering length

(∼ 75a0) and relative fast equilibrium.

To optimize the sympathetic cooling process, we try to place the optical beam



CHAPTER 4. EXPERIMENTAL SETUP AND METHODS 93

3

- 2 0 0 - 1 0 0 0 1 0 0 2 0 00

2 0

4 0

6 0

( b )

H o r i z o n t a l  p o s i t i o n  ( µm )

 

 

Tra
p p

ote
nti

al 
(µK

)

- 2 0 0 - 1 0 0 0 1 0 0 2 0 00

2 0

4 0

6 0

( a )

 

 

Tra
p p

ote
nti

al 
(µK

)
V e r t i c a l  p o s i t i o n  ( µm )

0 . 0
0 . 5
1 . 0

 

 

OD
T o

ne

0 2 4 6 8 1 0 1 2 1 40 . 0
0 . 5
1 . 0

 E v a p o r a t i o n  t i m e  ( s )

 

OD
T t

wo

0
8 0

1 6 0

( c )

 

 

B’ 
(G

/cm
)

C r o s s e d  O D T

D e c o m p r e s s e d
Q T

FIG. 2. (color online). Comparison of the original (a) and
the modified (b) hybrid trapping potentials (blue solid lines)
after decompression. The ODT displacements from the QT
center are 75 µm in both cases. The potential walls from the
potential minimum to the center of the QT depicted by the
horizontal dashed lines are 19 µK and 31 µK for configurations
(a) and (b), respectively. The QT potentials are shown in red
dashed lines for comparison. The evolution of the QT and
ODT powers during the evaporation sequence in the hybrid
trap are shown schematically in (c).

tuning.

Evaporation in the decompressed QT stops at 6833.98
MHz where only 4.7 × 104 87Rb atoms are left with
4.2 × 105 23Na atoms. At this point, the 23Na(87Rb)
temperature is 2.5 µK (2.3 µK) and the calculated phase-
space density (PSD) is 0.058(0.006) for 23Na(87Rb). We
note that sympathetic cooling has already stopped when
the coolant 87Rb atoms are less than 23Na atoms at about
6833.75 MHz. The further removal of 87Rb atoms is for
the benefit of the pure ODT loading and the following
ODT evaporation. In the same 1070-nm ODT, the trap
depth for 23Na atom UNa is ∼3 times less than than URb

of 87Rb atoms. Thus when we ramp down the ODT
power for evaporation, 23Na always evaporates faster and
it becomes the coolant while 87Rb is sympathetically
cooled. With an excessive amount of 87Rb atoms as the
thermal load, we have found that it is impossible to cre-
ate the double BEC.

The atoms are then loaded into the crossed ODT by
simultaneously lowering down the magnetic field gra-
dient to zero and ramping up a second laser beam in
500 ms, as illustrated in Fig. 2(c) in between the two
shaded regions. Both ODT beams are of 65 µm beam
waist and they intercept each other with an angle of

62◦. A 16 G homogeneous magnetic field is applied at
the end of the loading to provide a quantization axis
for the spin polarized atoms. Typically, about 70%
of the 23Na atoms and almost all 87Rb atoms can be
loaded into the crossed ODT. The PSDs are improved
to 0.19(0.02) for 23Na(87Rb), due to the trap geometry
deformation and also continuous evaporation during this
loading procedure[29]. In the crossed ODT, the trap fre-

quencies ωNa : ωRb =
√
UNa/mNa :

√
URb/mRb ≈ 1.1.

Assume thermal equilibrium, the sizes of the two clouds
σNa : σRb ≈ 1.8. Thus using 23Na as the coolant is ad-
vantageous for sympathetic cooling because 87Rb atoms
are always immersed in the 23Na bath. Indeed, a high
sympathetic cooling efficiency of 3.4 has been observed
for 87Rb.

Continuous evaporation in the crossed ODT leads to
a bimodal distribution in 23Na first which signifies its
BEC phase transition, while that for 87Rb always lags
behind. We attribute this to 87Rb atom’s lower transition
temperature kTc ≈ 0.94~ωN1/3 because of its smaller
atom number N and lower trap frequency ω. Here k is
the Boltzmann’s constant. In the end, we are able to
produce a quasi-pure double BEC with 2.4 × 104 (1.0 ×
104) 23Na(87Rb) atoms. The whole ODT evaporation
lasts for 4.3 s. The final trap frequencies are measured
with parametric resonances to be 2π×(124,143,74) and
2π×(112,129,66)Hz for 23Na and 87Rb, respectively. We
can also produce a single species 23Na BEC with 1.5×105

atoms, if we remove all 87Rb atoms at the microwave
evaporation step.

IV. RESULTS AND DISCUSSIONS

(a) 

(c) 

87Rb 23Na 

(b) 

(d) 

FIG. 3. (color online). Absorption images after 10 ms TOF
which show immiscibility of the double BEC with their back-
ground interaction. (a) and (c) are pairs of a 87Rb and a
23Na condensates with different atom number ratios. Field
of view: 210 µm × 210 µm. (b) and (d) are the center cross
sections along the vertical direction for images in (a) and (c),
respectively.

Immiscibility of the two simultaneously condensed

Figure 4.14: Time sequence of QT and cross ODT for producing two species
BEC. To optimized the atom number of the BECs, the ODT is displaced 75µm
horizontally from the QT center, and a decompress process for QT is found to
avoid severe Majorana loss for Na before loading to ODT.

horizontally beside the QT center and find a larger trap depth for Na. Further-

more, when evaporation goes to 6822MHz, the QT is ramped down so that the

Majorana loss for Na is suppressed. At the end of microwave evaporation at

6833.75MHz, the two clouds are transfer to ODT. Since Na has a shallower trap

depth for Rb, it serves as the coolant in ODT instead. Finally, two BEC with

1 × 105 atoms in each species can be obtained. The number ratio can be tuned

by controlling the final microwave frequency. Pure Na BEC of 2×105 is achieved

when Rb is all removed before loading to ODT. Fig. 4.14 shows the time se-

quence for obtaining two species BECs and Fig. 4.15 shows the spatial density

profile after time-of-flight of the BECs. We can see that a notch in the Na profile

indicating the large repulsive interaction of the two BECs, which is consistent
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with theoretical predictions [31, 32, 84, 85] that when the g2
12/g11g22 > 1, the two

condensates are immiscible. Recently we use Feshbach resonance to change the

miscibility of the two BECs [81]
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FIG. 2. (color online). Comparison of the original (a) and
the modified (b) hybrid trapping potentials (blue solid lines)
after decompression. The ODT displacements from the QT
center are 75 µm in both cases. The potential walls from the
potential minimum to the center of the QT depicted by the
horizontal dashed lines are 19 µK and 31 µK for configurations
(a) and (b), respectively. The QT potentials are shown in red
dashed lines for comparison. The evolution of the QT and
ODT powers during the evaporation sequence in the hybrid
trap are shown schematically in (c).

tuning.

Evaporation in the decompressed QT stops at 6833.98
MHz where only 4.7 × 104 87Rb atoms are left with
4.2 × 105 23Na atoms. At this point, the 23Na(87Rb)
temperature is 2.5 µK (2.3 µK) and the calculated phase-
space density (PSD) is 0.058(0.006) for 23Na(87Rb). We
note that sympathetic cooling has already stopped when
the coolant 87Rb atoms are less than 23Na atoms at about
6833.75 MHz. The further removal of 87Rb atoms is for
the benefit of the pure ODT loading and the following
ODT evaporation. In the same 1070-nm ODT, the trap
depth for 23Na atom UNa is ∼3 times less than than URb

of 87Rb atoms. Thus when we ramp down the ODT
power for evaporation, 23Na always evaporates faster and
it becomes the coolant while 87Rb is sympathetically
cooled. With an excessive amount of 87Rb atoms as the
thermal load, we have found that it is impossible to cre-
ate the double BEC.

The atoms are then loaded into the crossed ODT by
simultaneously lowering down the magnetic field gra-
dient to zero and ramping up a second laser beam in
500 ms, as illustrated in Fig. 2(c) in between the two
shaded regions. Both ODT beams are of 65 µm beam
waist and they intercept each other with an angle of

62◦. A 16 G homogeneous magnetic field is applied at
the end of the loading to provide a quantization axis
for the spin polarized atoms. Typically, about 70%
of the 23Na atoms and almost all 87Rb atoms can be
loaded into the crossed ODT. The PSDs are improved
to 0.19(0.02) for 23Na(87Rb), due to the trap geometry
deformation and also continuous evaporation during this
loading procedure[29]. In the crossed ODT, the trap fre-

quencies ωNa : ωRb =
√
UNa/mNa :

√
URb/mRb ≈ 1.1.

Assume thermal equilibrium, the sizes of the two clouds
σNa : σRb ≈ 1.8. Thus using 23Na as the coolant is ad-
vantageous for sympathetic cooling because 87Rb atoms
are always immersed in the 23Na bath. Indeed, a high
sympathetic cooling efficiency of 3.4 has been observed
for 87Rb.

Continuous evaporation in the crossed ODT leads to
a bimodal distribution in 23Na first which signifies its
BEC phase transition, while that for 87Rb always lags
behind. We attribute this to 87Rb atom’s lower transition
temperature kTc ≈ 0.94~ωN1/3 because of its smaller
atom number N and lower trap frequency ω. Here k is
the Boltzmann’s constant. In the end, we are able to
produce a quasi-pure double BEC with 2.4 × 104 (1.0 ×
104) 23Na(87Rb) atoms. The whole ODT evaporation
lasts for 4.3 s. The final trap frequencies are measured
with parametric resonances to be 2π×(124,143,74) and
2π×(112,129,66)Hz for 23Na and 87Rb, respectively. We
can also produce a single species 23Na BEC with 1.5×105

atoms, if we remove all 87Rb atoms at the microwave
evaporation step.

IV. RESULTS AND DISCUSSIONS

(a) 

(c) 

87Rb 23Na 

(b) 

(d) 

FIG. 3. (color online). Absorption images after 10 ms TOF
which show immiscibility of the double BEC with their back-
ground interaction. (a) and (c) are pairs of a 87Rb and a
23Na condensates with different atom number ratios. Field
of view: 210 µm × 210 µm. (b) and (d) are the center cross
sections along the vertical direction for images in (a) and (c),
respectively.

Immiscibility of the two simultaneously condensed

Figure 4.15: Absorption images at 10ms time-of-flight for two species BEC.
The immiscibility of the two BECs is clearly seen from the density profiles. (a)
3.5 × 103 atoms for Rb and 3.2 × 104 atoms for Rb. (c)8.5 × 103 atoms for Rb
and 1.3 × 104 atoms for Rb. (b) and (d) are the center cross sections along the
vertical direction for images in (a) and (c),respectively. The size of the picture is
210µm by 210µm.

4.4.3 Feshbach resonance and Feshbach molecule

After preparing the ultracold mixture of Rb and Na and the high magnetic

field Helmholtz coil, We have search the Feshbach resonances between these two

species. The method is to prepare the sample in ODT with external magnetic

field, and detect the number loss at different magnitudes of the field. Knowing
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the positions of the resonances enables a precise determination of the interac-

tion strengths between Rb and Na atoms. From all found resonances the inter-

species scattering length of Rb and Na is fitted to be aSinglet = 106.74a0 and

aTriplet = 68.62a0. The Feshbach resonance is also used to produce Feshbach

molecules by sweeping the magnetic field across the resonance at 347.7G. We

estimate that about 4000 molecules are produced which is ready for transfer to

the absolute ground state [103–105] by STIRAP. Details of these experiments can

be found in references [106, 107] and one of our group members Fudong Wang’s

thesis.



Chapter 5

Spin Dynamics in a Spin-1

Mixture

5.1 Introduction

Understanding collective spin dynamics is a problem of fundamental importance

in modern many-body physics. Central to this understanding is the role of spin-

spin interactions and their interplay with the Zeeman energy. In this regard,

the ultracold spinor quantum gas [55, 87] provides a powerful platform due to

the high controllability. So far, a rich variety of phenomena have been explored

theoretically and experimentally. Here we give a brief review of the studied of

coherent spinor dynamics so far.

Coherent dynamics of spinor gases have attracted a great deal of attention

since the success of creating a ultracold gas sample in an optical trap where the

spin degree of freedom is frozen. In [35, 36], Ho and Ohmi, Machida pioneered the

studies of the properties of the spinor gases, including the ground state structure

in the absence of magnetic field, collective excitations, and topological defects.

The antiferromagnetic interaction of Na is supported by the experiment studying

the ground state while the domain formation is observed. Law pioneered the

96
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study of dynamics of spinor gases in spin degree of freedom, and pointed out the

spin-mixing process that lead to interesting dynamics including the oscillation of

spin populations. Pu detailed the study and put forward the mean field coupled

GP theory. Their work motivated the search for the coherent dynamics in ex-

periments. The spin-mixing collision were observed and studied in Hamburg and

Georgia tech group in 2004. The coherence of the spin-mixing dynamics is evi-

dent in later experiment by Chang, where clean sinusoidal oscillations of the spin

populations are observed. They attributed the observed behaviors to collisional

coherence and pointed out the analog with Josephson oscillation and four wave

mixing. Meanwhile, an analytical solution of the mean-field SMA dynamics was

found and provided a simple model to describe the experiment, and the compe-

tition between mean field energy and Zeeman energy is predicted to produce a

resonance of the period and amplitude in the dynamics. The resonance is indeed

observed in Rb F = 2 spinor gases in Hamburg. Similar coherent dynamics is also

found in Na. An interesting aspect of this kind of coherent dynamics is that the

directly measurable frequency and amplitude of the oscillation can precisely pro-

vide quantitative information about the parameters of the systems. Recently, the

study on coherent spinor dynamics has been extended to other spinor systems,

including the Na thermal gas, Fermi gas, spinor gases with microwave coupling

and in optical lattice.

Until now, however, spin dynamics in ultracold atoms has been explored only

in a single atomic species. In this chapter, we decribe the realize of a system

consisting of distinguishable spin-1 87Rb and 23Na atoms, and demonstrate well-

controlled and long-lived coherent spin oscillations between them. The study is

motivated not only because it is a experimentally assessable new system and being

a naturally extension of the study of single species spinor gases, but also because

the underlying unique properties and possible applications of the system. There

are several unique features of the spinor mixutre. (1) For collisions between two
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distinguishable spin-1 atoms, the interaction takes place over all possible total

spin F channels [35, 36, 57, 108–112], while only even F are allowed for homonu-

clear collisions. (2) Both the linear and quadratic Zeeman shifts are different

for the two species and are thus important for spin dynamics. Only quadratic

Zeeman shift plays a role for single species spinor gases due to magnetization

conservation [113]. (3) The two species also have very different response to op-

tical field. A differential effective magnetic field can thus be generated with the

vector light shift. Together with the external magnetic field, this can be used to

further control the spin dynamics. Furthermore, the system can be viewed as a

Josephson junction without spatial barrier, and the oscillating current replaced

by oscillating spin current. It may find the applications in quantum computing,

e.g., as a qubit. Other possible topics based on this system includes entangled

BEC, magnetic impurity problems and two orbital-magnetism problem. In this

chapter, we concentrate on the coherent spin-mixing dynamics between F = 1

Na and Rb spinor gases.

5.2 The Role of Interaction and Magnetic Field

Let us consider the collision between a 87Rb atom in spin state |m1〉 and a 23Na

atom in spin state |m2〉, which we denote as |m1,m2〉 in the following. Here

m = ±1, 0 are the three Zeeman sub-levels of the f = 1 hyperfine state. The

magnetic energy associated with |m1,m2〉 will be denoted as Em1,m2(B). With

the interaction between the Rb and Na described by Eq. (3.13), the β and γ terms

can support several possible heteronuclear spin-changing processes satisfying the

individual species population and total magnetization conservation, as given in

(3.38). This is in stark contrast to the homonuclear spin-1 case, where the only

allowed spin-changing process is the one between two |0〉 states, and one in |−1〉,

another one in |+1〉. In this work, we focus on the following heteronuclear spin-
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changing process,

|0,−1〉 ↔ |−1, 0〉 , (5.1)

which is driven solely by the β term [95].
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Figure 5.1: (color online) Magnetic energy diagram for two heteronuclear spin-
changing processes. For the process in Eq. (5.1), ∆E has a zero-crossing point
at B0 = 1.69 G where spin oscillations can happen with large amplitude. Other
homonuclear and heteronuclear processes are suppressed.

Intuitively, coherent spin dynamics of Eq. (5.1) can be understood from the in-

terplay between the spin-dependent interaction energy (β term) and the total Zee-

man energy difference between these two states: ∆E(B) ≡ E0,−1(B)−E−1,0(B),

as depicted in Fig. 5.1. In analogy to a driven two-level system, when the two en-

ergies are very different, the system undergoes fast but small amplitude detuned

oscillations, while when they are comparable, the system oscillates slowly with

large amplitude [113]. Since β is small, typical spin-dependent mean-field energy

is of the order of 10 Hz, and as a result, visible heteronuclear spin oscillations

can only occur near ∆E = 0. As shown in Fig. 5.1, ∆E depends on the magnetic
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field B in a non-monotonic manner, and in particular vanishes at B0 = 1.69 G,

where one expects resonant spin dynamics. This coincidence is a result of the

slightly different Landé g-factors for 23Na and 87Rb, including contributions from

both the linear and the quadratic Zeeman energies. Near B0, homonuclear spin

dynamics is greatly suppressed due to large quadratic Zeeman shifts and the other

heteronuclear spin-changing processes are also suppressed due to large detuning.

For example, the spin-changing process |0, 1〉 ↔ |1, 0〉 has a magnetic energy dif-

ference larger than 1000 Hz and will be substantially suppressed. Thus, working

near B0, we can single out the process in Eq. (5.1) and obtain clear signatures of

heteronuclear spin dynamics.

The considerations above offer only a qualitative picture of the inter-species

spin dynamics. Experimentally, we use a bulk sample consisting of an essentially

pure 23Na BEC and a thermal gas of 87Rb to increase the overlap of the two

clouds. This many-body system is distinctively different from the conventional

two-level system since spin- and density-dependent mean-field interactions enter

nonlinearly into the equations of motion and furthermore, vary in the course of

spin dynamics. One of the important consequences is the appearance of two

magnetically tuned resonances as we shall discuss momentarily.

5.3 State Preparation

We produce the ultracold mixture of an essentially pure 23Na BEC with 1.0×105

atoms and a 87Rb thermal gas with about 6.3 × 104 atoms in a crossed ODT,

following the procedure described in [81]. Thermal 87Rb is used here to increase

the overlap between two species as double BEC is immiscible [1]. The number

imbalance is chosen such that the 87Rb cloud is 100nK above its BEC transition

temperature. The final stage of the evaporation is performed in the presence

of a 2 G magnetic field to make sure that all atoms are polarized in the |−1〉
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spin state. The final trap frequencies for Rb and Na are 2π × (110, 215, 190) Hz

and 2π × (98, 190, 168) Hz, respectively. The average density is 5.9 × 1013 cm3

(6.5 × 1012 cm3) for Na (Rb). Along the vertical direction, the Thomas-Fermi

radius of the Na BEC is 7.1µm and the size of the thermal Rb cloud is 5.1µm.

There is a differential gravitational sag of about 2.4µm due to the trap frequency

difference in the vertical y-direction.
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0 . 0
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 | 1 , 1 >
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Figure 5.2: Experimental observed Rabi oscillation of F = 1 Rb spinor gas in
the presence of radio frequency. Blue:|−1〉, green:|−1〉, purple:|−1〉. The power
input to the rf coil is -5dBm, produced by the SRS signal generator, and the
frequency is 0.722MHz. The solid lines are used to guide eye.

Both 23Na and 87Rb atoms are initially prepared in the spin state |−1〉 [81,

106]. To initiate the spin oscillations, we apply a radio-frequency (rf) Rabi pulse

to simultaneously prepare both Rb and Na in coherent superposition states with

most population in |−1〉 and |0〉 states, while populations in the |+1〉 states are

typically less than 10%. The radio-frequency is produced by homemade magnetic

coil, which magnetic field perpendicular to the bias magnetic field used to provide

the quantization axis and maintain the spin state. Starting from the |−1〉 state,

the resonance frequency is calibrated by scanning the rf requency at fixed pulse

time smaller than a π-pulse, measuring the population of |0〉 state and fitting
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the resulting curve by Gaussian function. Then we fixed the rf frequency at

resonance, and change the pulse length so that the Rabi oscillation between the

three Zeeman states is oberved, as shown in fig. 5.2. By changing the input power

to the coil, we can fix the π-pulse to 30µs, and the initial state is set to the state

with 10µs pulse length. According to the calculation (3.9), the initial population

is (ρ1, ρ0, ρ−1) = (0.0625, 0.375, 0.5625) while the initial relative phase is 0, for

both Rb and Na.

5.4 Observation of Coherent Heteronuclear Spin

Dynamics

To monitor the spin dynamics, we detect the fractional spin population ρim =

N i
m/N

i for each species from the absorption images after various holding time.

Here N i
m is the atom number of species i in spin state |m〉. N i = N i

−1 +N i
0 +N i

+1

is the total number of atoms of species i, with i = Na,Rb.

Fig. 5.3a and 5.3b show typical time evolution of ρRb
m and ρNa

m at B = 1.9

G, respectively. The population in states |−1〉 and |0〉 oscillate periodically,

while those in state |1〉 stays nearly constant. It is important to note the fol-

lowing features: (1) States |−1〉 and |0〉 of each individual species oscillate with

π-phase shift due to number conservation; (2) The synchronized oscillation be-

tween the two species reflects the coherent spin dynamics driven by heteronuclear

spin-changing interaction. This is even more clearly exhibited in the individ-

ual magnetization dynamics. The fractional magnetization for each species is

Mi = (N i
+1 − N i

−1)/N i. The total magnetization of the system is defined as

M = (NNa
+1 − NNa

−1 + NRb
+1 − NRb

−1)/N , where N = ∑
iN

i is the total number of

atoms. As shown in Fig. 5.3c, 5.3d and the inset, MNa andMRb are not con-

served, but M is conserved within a few percent. The small variation in M is

comparable to the uncertainties (∼ 5%) in atom number detection. The coherent
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Figure 5.3: (color online) Coherent heteronuclear spin dynamics at B = 1.9 G. a,
b, evolution of the fractional spin populations of Rb (circle) and Na (square). c, d,
magnetization oscillations of Rb and Na. The oscillation amplitudes differences
are due to the number imbalance. Inset: total magnetization. Solid lines are
sinusoidal fitting.

oscillations of MNa and MRb with a π-phase difference is a clear signature of

the coherent heteronuclear spin-changing process. The clean oscillations between

the |−1〉 and |0〉 states also indicates that homonuclear and other heteronuclear

spin-changing processes are greatly suppressed.

Similar measurements are performed for a range of magnetic fields; three

examples are plotted in Fig. 5.5a. Away from B0, fast oscillation with small

amplitude can be observed, while very close to B0, e.g. at B = 1.7 G (middle),

the oscillation is slow but with large amplitude. One further feature is worth

noticing. Comparing oscillations at B = 1.5 G (top) and 1.9 G (bottom), we

note that the initial slopes of population change for the same spin states have

opposite signs on different sides of B0. For instance, at the very beginning, the Rb

|−1〉 population decreases at 1.5 G but increases at 1.9 G. The same behavior is

observed for Na. This is a direct reflection of the sign change in ∆E, as depicted

in Fig. 5.1. These behaviors are well reproduced in our numerical simulations
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Figure 5.4: Experimental setup for the spinor dynamics at different magnetic
fields. (a) The quantization field is along vertical direction (y-axis), so that the
effective magnetic field is zero projected to this direction. The setup corresponds
to Fig. 5.5. (b) The quantization field is along horizontal direction (z-axis), and
the projected effective magnetic field can be control by adding a λ/4 waveplate.
The setup corresponds to Fig. 5.6.

and the initial oscillation directions are consistent with the ferromagnetic spin-

changing interaction β < 0.

We extract the oscillation amplitudes and periods for different magnetic fields

and summarize the results in Fig. 5.5c and 5.5d. Near B0, the system is in

the interaction dominated regime where an asymmetric double peak appears in

the oscillation amplitude with a non-zero dip in between. This can be under-

stood by noting that resonances appear when the absolute values of ∆E and

spin-dependent interaction are comparable, which can occur on either side of

B0, analogous to the single species case where the quadratic Zeeman shift is
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Figure 5.5: (color online) Dependence of heteronuclear spin dynamics on external
magnetic field B. a, spin oscillations at B = 1.5 G (top), 1.7 G (middle) and 1.9 G
(bottom) for |−1〉 of Rb (red circle) and |0〉 of Na (blue squares). The solid curves
are for eye guiding and error bars are from statistics of several shots. b, magnetic
energy ∆E vs. B. c, d, spin oscillation amplitudes c and periods d extracted
from the Rb data. Solid blue lines are calculations based on many-body kinetic
equations using experimental atomic conditions without fitting parameters. Error
bars for both the amplitude and the period are from fitting of the oscillations and
represent one standard deviation.

tuned by microwave [114]. However, the exact resonance positions depend also

on homonuclear spin-dependent interactions and initial conditions. The double

peak behavior is, however, not readily distinguishable in the period where only

one peak is observed.

To understand the observed spin dynamics quantitatively, we model the Na

condensate with the time-dependent Gross-Pitaevskii equation [57, 95] and the

thermal Rb cloud with the kinetic equation for the Wigner distribution func-

tion [96, 97]. The dynamics of the two species are coupled through the interaction

in Eq.(3.13). Within the random phase and single mode approximations (SMA),

our simulation agrees well with the measurements, as shown in Fig. 5.5c and 5.5d.

The simulated oscillation period shows only a small kink near B0, consistent with

our experiment conditions. This kink can be regarded as a remnant of the double

peak structure that occurs if the numbers of the two species are equal. As the



CHAPTER 5. SPIN DYNAMICS IN A SPIN-1 MIXTURE 106

number imbalance increases, one of the peaks gradually disappears, leading to a

kink structure in our simulation. We note that the SMA is valid for both BEC

and thermal clouds in the tight crossed ODT [96, 97].

5.5 Control of the Resonance

A unique feature of the heteronuclear spin dynamics is its dependence on the

vector light shift, which is spin- and species-dependent. The position of the

resonance is determined by the differential Zeeman shift as well as the interspecies

interaction strength. The zero point of the Zeeman energy can be tuned by the

trapping 1070nm optical dipole beam, which generate an effective magnetic field

for atoms. In the following, we tune the ellipticity of the ODT beams to control

the spin dynamics. We start by evaluating the magnitude of the effective field.

Vector Light Shift

The interaction of optical field with atoms causes the energy shifts of the levels,

which is called the AC stark shift. The total shift can be calculated and expressed

in terms of the quantum numbers due to the angular momentum structure of the

atom, and divided into three parts [60]:

∆U (F,mF ;ω) = −α(0) (F ;ω)
∣∣∣E(+)

0

∣∣∣2 − α(1) (F ;ω)
(
iE(−)

0 × E(+)
0

)
z

mF
F

−α(2)

(
3
∣∣∣E(+)

0z

∣∣∣2−∣∣∣E(+)
0

∣∣∣2)
2

(
3m2

F−F (F+1)
F (2F−1)

)
,

(5.2)

where F and mF are the quantum numbers of the total angular momentum and

its projection on z-axis, ω is the frequency of the light. The complex vector fields

are defined such that the electric field is rewritten as

E (t) = E(−)
0 eiωt + E(+)

0 e−iωt, (5.3)
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α(0), α(1), α(2) are the scalar, vector and tensor polarizabilities, defined as

α(0) (F ;ω) = ∑
F ′

2ωF ′F |〈F‖d‖F ′〉|
2

3~(ω2
F ′F−ω

2)

α(1) (F ;ω) = ∑
F ′

(−1)F+F ′+1
√

6F (2F+1)
F+1

 1 1 1

F F F ′

 ωF ′F |〈F‖d‖F ′〉|
2

~(ω2
F ′F−ω

2)

α(2) (F ;ω) = ∑
F ′

(−1)F+F ′
√

40F (2F+1)(2F−1)
3(F+1)(2F+3)

 1 1 2

F F F ′

 ωF ′F |〈F‖d‖F ′〉|
2

~(ω2
F ′F−ω

2) ,

(5.4)

where F ′ runs over all other states, 〈F ‖d‖F ′〉 is the reduced matrix element

related to the transition dipole matrix element 〈J ‖d‖ J ′〉. α(1) is calculated to

be 1.22× 10−40C ·m2 · V−1 for Rb, and two orders of magnitude smaller for Na.

For a given F , neglecting the much smaller tensor part, the scalar part gives an

overall shift for all mF , while the vector part is mF -dependent and resembles

the linear Zeeman effect, thus the light acts as an effective magnetic field, which

magnitude depends on the polarization.

To estimate the effective magnetic field, we need to calculate the circular polar-

ization component of the light beam of optical trap. Assume that the electric

field at atom position is

E (t) = Exêx cos (ωt+ θx) + Eyêy cos (ωt+ θy) . (5.5)

So E(±)
0 =

(
Exêxe∓iθx + Eyêye∓iθy

)
/2, and the term related to the polarization

in 5.2 is

iE(−)
0 × E(+)

0 = i

∣∣∣∣∣∣∣∣∣∣∣
êx êy êz

Exe
iθx/2 Eye

iθy/2 0

Exe
−iθx/2 Eye

−iθy/2 0

∣∣∣∣∣∣∣∣∣∣∣
= 1

2ExEy sin (θx − θy) êz. (5.6)

In our case, the optical beam is linear initially, so Ex = E, Ey = 0 and θx = θy =

0. In the presence of a λ/4 waveplate, which optical axis is rotated by θ with
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respect to the linear polarization direction, we can decompose the electric field

in the frame with the waveplate (x, y-axis along fast and slow axis):

Ex = E cos (θ)

Ey = E sin (θ)

θx − θy = k λ4 = π
2 .

(5.7)

Hence

iE(−)
0 × E(+)

0 = 1
4E

2 sin (2θ) êz = 1
4E

2℘êz, (5.8)

where we define the polarization factor ℘ = sin (2θ) such that ℘ = 0,±1 for π, σ±

polarization (θ = 0,±45◦).

In terms of the intensity I = 1
2cε0E

2, the effective magnetic field along the optical

beam is given by

Bac,max = α(1) 1
4E

2℘/c1 = α(1) I

2cε0
℘/c1, (5.9)

where c1 = 0.70MHz/Gauss is the coefficient for the linear Zeeman shift p = c1B.

For our optical beam with 128mW power and 48µm beamwaist, the maximum

effective field is Bac,max = 1.74mG. Finally when the angle between the quan-

tization axis and the optical beam is α, the effective magnetic field experienced

by the atoms is Bac = Bac,max cos (α), in our horizontal quantization axis case,

α = 31◦ and Bac = 1.49mG.

For large detuning ∆ (laser frequency relative to the center of mass frequency

of D-lines) exceeding the excited state fine structure splitting ∆FS, a useful ex-

pression for estimation of the spin-dependent vector light shift is [115]

Um(~r) ∝ ℘m

ω3
0

∆FS

∆2 I(~r), (5.10)

It is more clear from this expression that due to the larger ∆, ω0 and smaller ∆FS
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for 23Na, Bac for 23Na is less than 1% of 87Rb. So effectively speaking, by tuning

℘, we can control the linear Zeeman energy for Rb and Na independently. The

measurements shown in Fig. 5.3 and Fig. 5.5 are performed with Bac essentially

zero.

Tuning the Dynamics

Although small, Bac has a dramatic influence on the heteronuclear spin dynamics.

For simplicity, the much smaller Bac for Na is ignored from now on. On the other

hand, the much larger Bac for 87Rb can shift ∆E significantly, as illustrated in

Fig. 5.6a. For Bac < 0, the zero crossing point is shifted to smaller external

magnetic fields. Eventually, for Bac < −0.2 mG the entire ∆E curve is shifted

to below zero and the zero crossing disappears. In such cases, the spin dynamics

will be essentially driven by Zeeman energies with a peak at the field of minimum

|∆E|. When Bac > 0, the zero crossing point and thus the resonance position

always shifts to higher magnetic field.

Experimentally, ℘, and hence Bac, is tuned by applying the external magnetic

field in the horizontal plane and inserting a λ/4 waveplate into one of the ODT

beams as discussed above, with θ the angle between the waveplate’s axis and the

input linear polarization of the light. For the typical range of θ varied in our

experiment without causing significant heating, Bac ranges from −0.32 to 0.32

mG. As shown in our measurement in Fig. 5.6b, a rather small Bac can cause a

significant change of the resonance position. For example, at Bac = 0.32 mG, the

resonance is shifted upward by about 0.4 G. On the other hand, for negative Bac

such that the zero crossing disappears, the lineshape of the oscillation becomes

much broader, as for example when Bac = −0.32 mG, where the oscillation is

always far off resonance.
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Figure 5.6: (color online) Optical control of coherent heteronuclear spin dynamics
with vector light shift. a, modified dependence of ∆E on B with light induced
effective magnetic field Bac on Rb. b, resonance positions as observed in the
period vary with changing Bac. Solid curves are for eye guiding and error bars
are from fitting of the oscillations. Bac is calculated based on the measured light
intensity I and ℘.
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5.6 Prospect

To summarized the experiments described above, we have observed interaction

driven coherent spin-changing dynamics between two different spin-1 Bose gases.

Both the oscillation period and amplitude can be tuned over a large range with

either external magnetic fields or, quite unique to our system, the light polar-

izations of the ODT. This latter capability is especially promising because it

allows sensitive and versatile control of the spin dynamics, as demonstrated in

our experiment.

Our system can serve as an ideal platform for simulating complicated spin

systems, such as the coupled electronic and nuclear spin system. The exchange

interaction allow us to simulate the magnetic impurity problems. For example,

a bosonic version of Kondo model [116, 117] may be realized in optical lattice.

Out system is similar to the two-orbital magnetism model originally proposed for

alkali-earth atoms [118], but the two orbits are replaced by two different kinds of

atoms with one the species prepared in the Mott regime while the other in the

superfluid regime. In addition, in analogous to the generation of entanglement

with spin-changing interactions in single species spinor condensates [119, 120], the

inter-species spin-changing interaction can also be used to generate entanglement

between distinguishable atoms and strongly correlated state [121]. Finally, simi-

lar dynamics should exist in other ultracold spinor mixtures consisting of atoms

of all possible statistical combinations. Furthermore, what we have investigated

here with Na and Rb can be readily extended to other Bose-Bose, Fermi-Fermi

and Bose-Fermi mixtures, which are already available in many labs around the

world. Our work can be a wake-up call for them toward a new research direction

in ultracold atoms. In fact, theoretical proposals motivated by our experiment

already appeared for Bose- Fermi spinor mixtures. Recently it is predicted that

the spin-exchange interaction between bosons and fermions can lead to sponta-

neous quantum Hall effect and a chiral superfluid [122]. The collective modes in
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a Bose-Fermi spinor mixture are also investigated very recently [123].
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Chapter 6

Spin Dynamics in Thermal 87Rb

Gases

6.1 Introduction

In chapter 5 we study the coherent spin mixing dynamics between Rb and Na

with spin F = 1. The focus is on the interspecies spin-exchange interaction and

its interplay with differential Zeeman energy. In this chapter, we focus on the

thermal nature of a spinor gas and address the problem of whether coherence

exist in such gas rather than condensate and what would be the difference. The

experiments are carried out with Rb thermal gases both in spin-1 and spin-2

cases.

A significant difference between a BEC and a thermal cloud is that atoms in

a BEC occupy the lowest energy state and share the same spatial wavefunction.

In analyzing the coherent spin-mixing dynamics in spinor BECs, nice agreements

can typically be obtained under SMA, in which the external and internal degree

of freedom are seperated [57, 124–126]. It is thus natural to ask whether such

dynamics can be observed with multi-spatial-mode spinor gases. Although colli-

sions in these gases are typically considered random or incoherent in sptial degree

113
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of freedeom, coherence among spin degree of freedeom can persist for a long time

[127, 128]. In fact, coherent spin-mixing dynamics were recently observed in a

thermal spin-1 23Na gas [129] and a degenerate Fermi gas 40 [53, 130]. The ex-

perimental result agree well with dynamical equations consider only spin degree

of freedom, indicating that the spin and spatial degree of freedom can still be

decoupled even without condensate.

In this work, we present experimental investigation of coherent spin-mixing

dynamics in ultracold thermal 87Rb gases. Different from the antiferromagnetic

spin-1 Na spinor gas [34], the spin-dependent interaction in spin-1 87Rb is fer-

romagnetic and typically much smaller in magnitude [131, 132]. Amazingly we

still observe robust and long-time coherent spin-mixing dynamics driven by the

70pK spin-dependent interaction in thermal samples with a typical temerature

of 400nK. In addition, we also observe clean coherent spin-mixing dynamics in

spin-2 87Rb thermal gas, which has more spin-mixing channels and thus richer

dynamics [133, 134]. In both cases, dependences of the spin dynamics on external

magnetic fields are studied in detail and are explained well by a theoretical model

develped under a single-spatial-mode approximation.

6.2 Dynamical Equation for F = 2 thermal gas

While spinor BECs are well described by coupled Gross- Pitaevskii equations,

pure thermal spinor gases can be handled with the semiclassical Boltzmann trans-

port equation with the Wigner function as the distribution function. Following

this approach, several groups have predicted the existence of spin waves and

spin-mixing oscillations in spin-1 thermal gases [96, 97]. These theoretical results

were successfully applied to the spin-1 Na thermal spinor gas in Ref. [129]. It

was found that under the right experimental conditions, the spin dynamics can

be separated from the multispatial modes. Compared with spin-1 spinor BECs,
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one needs only to multiply a factor of 2 in the spin-dependent interaction co-

efficient [129]. The formalism for spin-1 has been derived in the last chapter.

For spin-2 case, considering the interaction of the form 3.12, the Hamiltonian in

second-quantization language is expressed as

H =
∫
dr

[
ψ̂†k

(
− ~2

2m∇
2 + V (r) + qF 2

z

)
ψ̂k

+ g0

2
∑
kj

ψ̂†kψ̂
†
j ψ̂jψ̂k + +g1

2
∑
kjlm

ψ̂†kψ̂
†
jFkj · Flmψ̂mψ̂j

+ g2

2
∑
kj

1
5(−1)k−jψ̂†kψ̂

†
−kψ̂−jψ̂j

 ,
(6.1)

where all parameters have been defined previously. Spin-2 87Rb is believed to be

antiferromagnetic withg1 positive and g2 negative but of much smaller magnitude.

Following the derivation of the spin-1 Boltzmann equation in Sec. 3.3, we define

the Wigner distribution function 3.46, and the Boltzmann equation is given by

Eq. 3.47, where the matrix elements of the interaction potential U are

Ukj (r) =
[
qF 2

z + g0Tr (n) + g0n
]
kj

+
[
g1
∑
µ

Tr (Fµn) Fµ + g1
∑
µ

Tr (Fµn)Fµ
]

+ 2g2
(−1)k−j

5 n−j,−k,

(6.2)

here µ = x, y, and z, and Tr is the trace operation. The factor of 2 in the last

term is a result of equal Hartree and Fock term contributions. Note that this

term vanishes for the spin-1 case.

In the limit of strong trapping potential where the spatial motion is mod-

erately faster than the spin dynamics character- ized by interaction energies

g1,2Tr (n), the spatial-dependent interactions can be averaged out. As done in

Sec. 3.3, we can decouple the spinor evolution σkj (t) = √ρkeiθk
√
ρje
−iθj from

the spatial and momentum distribution w (r,p) and express the Wigner function
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matrix elements as fkj (r,p, t) = w (r,p)σkj (t), analogous to the popular SMA

in dealing with spin dynamics in BECs. Substituting this into Eq. 3.47 and inte-

grating over position and momentum, we obtain the following equation of motion

for the coherent spinor dynamics in a thermal gas:

∂

∂t
σkj = 1

i~
[
U spin, σ

]
kj, (6.3)

where the spin-dependent interaction potential

U spin
kj (r) =

[
qF 2

z + g1n̄
∑
µ

Tr (Fµσ) Fµ

+g1n̄
∑
µ

FµσFµ

]
kj

+ 2g2n̄
(−1)k−j

5 σ−j,−k,

(6.4)

here, n̄ =
∫
dr[Tr (n (r))]2/N , N is the total atom number.

For spin 1, σ is represented by 3 × 3 matrices. With identity ∑
µ
FµAFµ =

TrA + A + ∑
µ

Tr (FµA)Fµ for any 3 × 3 matrix A, it can be easily shown that

the two g1 terms have equal contributions in Eq. 6.3. Thus the spin-dependent

interaction can be summed as 2g1n̄
∑
µ

Tr (Fµσ)Fµ, which is a factor-of-2 larger

than that in spin-1 pure BECs [129].

In the case of spin 2, σ is represented by 5×5 matrices and the above identity

is not true in general. However, if σ is constructed from pure-state spinor wave

functions, which is the case in our experiment, contributions from the two g1

terms are again the same and thus the factor of 2 still holds. Combined with the

factor of 2 in the g2 term, the overall spin-dependent interaction is also doubled

compared with spin-2 pure BECs.
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6.3 Experimental Procedure

The experimental procedures are similar to those in the spin-1 mixture experiment

described in the last chapter. In brief, we prepare the ultracold 87Rb sample by

evaporative cooling in a hybrid magnetic quadrupole plus ODT [81, 106, 135]

first. The magnetic trap ensures a 100% spin-polarized sample in the |1,−1〉

hyperfine Zeeman state. The sample is then transferred to a crossed ODT in

which the final evaporation is performed within a weak magnetic field to preserve

the atom’s spin state. In the same setup, we can produce a pure 87Rb BEC with

2×105 atoms. For the current experiment, we control the atom number and stop

the evaporation before the BEC phase transition to make pure thermal gases. The

measured typical final trap frequencies are (ωx, ωy, ωz) = 2π × (190, 211, 113)Hz.

For investigating the spin-1 case, after the final evaporation, we hold the

sample in the ODT for several hundred milliseconds to ensure full thermalization

before the magnetic field is set to a desired value along the z axis, with the

transverse magnetic fields compensated to less than 3mG. To initialize the spin

dynamics, we directly apply a resonant RF π/2 pulse to transfer the sample

from the |1,−1〉 hyperfine state to the fully transversely magnetized initial state

ς1 (0) =
(
1/2, 1/

√
2, 1/2

)T
.

To investigate spinor dynamics in the spin-2 case, we first transfer the atoms

to a |2,−2〉 hyperfine state with a microwave rapid adiabatic passage at a Bield

of 1.3 G with a near-unity efficiency. The magnetic field is then changed adia-

batically to a desired value before a fully transversely magnetized state ς2 (0) =(
1/4, 1/2,

√
3/8, 1/2, 1/4

)T
is pre- pared with a RF π/2 pulse. The magnetization

is defined as 2ρ+2 − 2ρ−2 + ρ+1 − ρ−1 in this case.

After initialization, the system is in a far-from-equilibrium state and spin-

mixing dynamics will start. After holding the sample in the trap for a range of

time for the dynamics to evolve, the ODT is turned off abruptly and atoms in

different spin states are detected with the time-of-flight Stern-Gerlach absorp-
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tion imaging technique after 12-ms expansion. Our absorption imaging setup is

calibrated with the high saturation method [101, 102]. The number of atoms in

each spin state Ni is extracted from the images and the fractional population

ρi = Ni/N is then calculated.

6.4 Experimental Result

Spin-1 Case

COHERENT SPIN-MIXING DYNAMICS IN THERMAL . . . PHYSICAL REVIEW A 91, 033635 (2015)

To investigate spinor dynamics in the spin-2 case, we
first transfer the atoms to a |2, − 2〉 hyperfine state with a
microwave rapid adiabatic passage at a B field of 1.3 G with
a near-unity efficiency. The magnetic field is then changed
adiabatically to a desired value before a fully transversely
magnetized state ζ2(0) = (1/4,1/2,

√
3/8,1/2,1/4)T is pre-

pared with a rf π/2 pulse. The magnetization is defined as
2ρ+2 − 2ρ−2 + ρ+1 − ρ−1 in this case.

After initialization, the system is in a far-from-equilibrium
state and spin-mixing dynamics will start. After holding the
sample in the trap for a range of time for the dynamics to
evolve, the ODT is turned off abruptly and atoms in different
spin states are detected with the time-of-flight Stern-Gerlach
absorption imaging technique after 12-ms expansion. Our
absorption imaging setup is calibrated with the high saturation
method [29,30]. The number of atoms in each spin state Ni

is extracted from the images and the fractional population
ρi = Ni/N is then calculated.

IV. RESULTS AND DISCUSSIONS

A. Spin-1 case

In Figs. 1(a) and 1(b) we present spin population oscilla-
tions for 87Rb thermal spin-1 gases at magnetic fields of 0.1
and 0.18 G, respectively. We can immediately see that the
oscillation depends strongly on the magnetic field. This can be
understood from U spin, which has only the 2g1 term and the
quadratic Zeeman q term for spin 1. While the negative 2g1

term favors the ferromagnetic state, the positive q favors the
polar state [3]. Nonequilibrium spin-mixing dynamics is just
the result of the competition between them. Similar to spin-1
BEC, depending on their relative strengths, spin dynamics
can be divided into the interaction regime and the Zeeman

regime [8]. With the 2g1 term fixed by the density, external
magnetic fields can be applied to tune the system into either
regime.

When the magnetic field is low and thus q is small, the
system is in the interaction regime and the oscillation period is
predominately determined by the 2g1 term [8]. This is the case
in Fig. 1(a). At higher magnetic field B, q (∼72B2Hz/G2)
dominates the rather small 2g1 term (2g1〈n〉 ∼1.45 Hz for our
typical density) and the system enters the Zeeman regime in
which the oscillation period is ∝ 1/q [8]. In both cases these
oscillations last for a rather long time, although only data in the
first 3 s are shown. For longer times, the oscillation continues
but becomes nonperiodic. To extract the oscillation period and
amplitude, we fit the first several oscillations to a damped
sinusoidal function.

For the current initial state, the crossover between these two
regimes happens when q ≈ 2g1〈n〉 [7,14]. A resonance feature
is observed near this crossover in our experiment, as illustrated
in Figs. 1(c) and 1(d). The resonance happens at about 0.14
G, evident by the longest period and the largest amplitude
at this field. On the higher field side where the dynamics is
dominated by q, the oscillations become faster with smaller
amplitude. This is similar to the detuned Rabi oscillations in
driven two-level systems. Eventually, when the magnetic field
is too large, which corresponds to the large detuning case, the
oscillation amplitude becomes too small to be observed. On
the lower field side, the behavior is quite different. While
the amplitude also keeps decreasing, the period levels off
to ∼1/2g1〈n〉.

As illustrated by the solid curves in Figs. 1(c) and 1(d), these
behaviors are well captured by the simulation with Eq. (4).
These curves are fits to the data points with the measured mean
density of 〈n〉 ≈ 3.0 × 1013cm−3 and a residual magnetization
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FIG. 1. (Color online) Coherent spin population oscillation of 87Rb spin-1 normal gas and its dependence on magnetic field. (a, b) Exemplary
temporal evolution of ρ0 at magnetic fields of 0.1 and 0.18 G, respectively. Red solid curves are to guide the eye. (c, d) The magnetic field
dependence of the oscillation period (◦) and amplitude (�) with a resonant feature located near 0.14 G. Error bars here are from fitting of the
oscillations. Blue solid curves are fittings with Eq. (4).
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Figure 6.1: Coherent spin population oscillation of 87Rb spin-1 normal gas and
its dependence on magnetic field. (a, b) Exemplary temporal evolution of ρ0
at magnetic fields of 0.1 and 0.18G, respectively. Red solid curves are to guide
the eye. (c, d) The magnetic field dependence of the oscillation period (◦) and
amplitude (�) with a resonant feature located near 0.14G. Error bars here are
from fitting of the oscillations. Blue solid curves are fittings with Eq. 6.3.

In Figs. 1(a) and 1(b) we present spin population oscilla- tions for 87Rb

thermal spin-1 gases at magnetic felds of 0.1 and 0.18G, respectively. We can

immediately see that the oscillation depends strongly on the magnetic field. This

can be understood from U spin, which has only the 2g1 term and the quadratic

Zeeman q term for spin 1. While the negative 2g1 term favors the ferromagnetic
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state, the positive q favors the polar state [35]. Nonequilibrium spin-mixing

dynamics is just the result of the competition between them. Similar to spin-1

BEC, depending on their relative strengths, spin dynamics can be divided into

the interaction regime and the Zeeman regime [136]. With the 2g1 term fixed by

the density, external magnetic fields can be applied to tune the system into either

regime.

When the magnetic field is low and thus q is small, the system is in the

interaction regime and the oscillation period is predominately determined by

the 2g1 term [136]. This is the case in Fig. 6.1. At higher magnetic field B,

q(∼ 72B2Hz/G2) dominates the rather small 2g1 term (2g1〈n〉 ∼ 1.45Hz for our

typical density) and the system enters the Zeeman regime in which the oscillation

period is ∝ 1/q [136]. In both cases these oscillations last for a rather long time,

although only data in the first 3s are shown. For longer times, the oscillation con-

tinues but becomes nonperiodic. To extract the oscillation period and amplitude,

we fit the first several oscillations to a damped sinusoidal function.

For the current initial state, the crossover between these two regimes happens

when q ≈ 2g1〈n〉 [92, 129].Aresonance feature is observed near this crossover in

our experiment, as illustrated in Figs. 6.1(c) and 6.1(d). The resonance happens

at about 0.14G, evident by the longest period and the largest amplitude at this

field. On the higher field side where the dynamics is dominated by q, the oscilla-

tions become faster with smaller amplitude. This is similar to the detuned Rabi

oscillations in driven two-level systems. Eventually, when the magnetic field is

too large, which corresponds to the large detuning case, the oscillation ampli-

tude becomes too small to be observed. On the lower field side, the behavior is

quite different. While the amplitude also keeps decreasing, the period levels off

to ∼ 1/2g1〈n〉.

As illustrated by the solid curves in Figs. 6.1(c) and 6.1(d), these behaviors

are well captured by the simulation with Eq. 6.3. These curves are fits to the data
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points with the measured mean density of 〈n〉 ≈ 3.0 × 1013cm3 and a residual

magnetization of 0.06(2) due to imperfect control of the RF pulse area in the

initial state preparation. With g1 as the only fitting parameter, we obtain a2 −

a0 ≈ −1.00± 0.12aB (aB) is the Bohr radius), consistent with the reported value

of a2 − a0 ≈ −1.07aB in Ref. [137]. The rather small but nonzero magnetization

also explains the nondivergance on the resonance oscillation period [92].

Here we observe magnetically tuned spin oscillation resonance in the spin-1
87Rb spinor gas. Previous works with BECs were performed with either an initial

state with large magnetization [124] or in a quasi-one-dimensional trap [136]. In

the former case, the resonance does not exist [92]. For the latter, the spin healing

length ξ = ~/
√

2mn |g1| is smaller than the size in the elongated direction and

thus SMA is violated. Spin-mixing dynamics is unstable [113] in this case, as

perturbations can cause irreversible conversion of the spin-dependent energy to

collective excitation modes. This will lead to the formation of multiple spin

domains and destroy the spin coherence within a single full oscillation, making

it impossible to observe the resonance. This problem is mitigated in the current

work by the tight and near three-dimensional crossed trap.

Spin-2 Case

The interaction between spin-2 87Rb atoms is antiferromagnetic with g1 > 0,

g2 < 0, and |g2| � g1 [138]. Unlike the spin-1 case, spin-2 spinor oscillations can

have more than one interaction channel and the spin-2 equation of motion has no

exact analytic solutions. The spin-2 87Rb gas is also subject to inelastic hyperfine

changing collisions which greatly limit its lifetime to be about 0.5s.

As shown in Figs. 6.2(a) and 6.2(b), several full oscillations show up within

hundreds of milliseconds. The observed behaviors are similar to those studied

previously on spin-2 87Rb BECs with the same initial state [125, 139] and can be

understood intuitively from the competition between q and the spin-dependent
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FIG. 2. (Color online) Spinor dynamics and its dependence on magnetic field for the 87Rb spin-2 normal gas. (a, b) Evolutions of ρ0(�),
ρ1(•), ρ−1(�), ρ2(�), and ρ−2(�) at 0.1 and 0.45 G, respectively. Red solid curves in (a) and (b) are fits to the damped sinusoidal function for
ρ0, ρ1, and ρ2 only. The measured periods (◦) and amplitudes (�) of ρ0 vs magnetic fields are summarized in (c) and (d). The accompanying
error bars are fitting errors. The blue solid curves here are obtained from numerical calculations with Eq. (4) and the black dashed curve is
a plot of π/q. The insets of (c) and (d) show dependence of the oscillation periods (up triangle) and amplitudes (squares), respectively, on
densities at 0.6 G (see text).

of 0.06(2) due to imperfect control of the rf pulse area in the
initial state preparation. With g1 as the only fitting parameter,
we obtain a2 − a0 ≈ −1.00 ± 0.12 aB (aB is the Bohr radius),
consistent with the reported value of a2 − a0 ≈ −1.07 aB

in Ref. [31]. The rather small but nonzero magnetization
also explains the nondivergance on the resonance oscillation
period [7].

Here we observe magnetically tuned spin oscillation res-
onance in the spin-1 87Rb spinor gas. Previous works with
BECs were performed with either an initial state with large
magnetization [9] or in a quasi-one-dimensional trap [8]. In the
former case, the resonance does not exist [7]. For the latter, the
spin healing length ξ = �/

√
2mn|g1| is smaller than the size in

the elongated direction and thus SMA is violated. Spin-mixing
dynamics is unstable [32] in this case, as perturbations can
cause irreversible conversion of the spin-dependent energy to
collective excitation modes. This will lead to the formation of
multiple spin domains and destroy the spin coherence within
a single full oscillation, making it impossible to observe the
resonance. This problem is mitigated in the current work by
the tight and near three-dimensional crossed trap.

B. Spin-2 case

The interaction between spin-2 87Rb atoms is antiferro-
magnetic with g1 > 0, g2 < 0, and |g2| � g1 [24]. Unlike the
spin-1 case, spin-2 spinor oscillations can have more than one
interaction channel and the spin-2 equation of motion has no

exact analytic solutions. The spin-2 87Rb gas is also subject to
inelastic hyperfine changing collisions which greatly limit its
lifetime to be about 0.5 s.

As shown in Figs. 2(a) and 2(b), several full oscillations
show up within hundreds of milliseconds. The observed
behaviors are similar to those studied previously on spin-2
87Rb BECs with the same initial state [11,33] and can be
understood intuitively from the competition between q and
the spin-dependent interactions. Indeed, ignoring the small
g2 term, for the chosen initial state ζ2, approximate solutions
have been obtained in Refs. [11] and [33], both in the deep
interaction and Zeeman regimes. These solutions can be
directly generalized to our case by replacing the g1 factor
with 2g1, as discussed in Sec. II.

The factor-of-2 thermal enhancement of the spin-dependent
interaction can be verified experimentally. In the Zeeman
regime, the spin-mixing process (0) + (0) ↔ (−1) + (1) dom-
inates and the oscillation follows the fundamental period
π/q [11,33], as depicted by the dashed curve in Fig. 2(c).
Although the amplitude is typically small, the oscillations are
quite fast so that several periods can be observed clearly. As
shown in the insets of Figs. 2(c) and 2(d), with the density
varied from 1.3 × 1013 cm−3 to 2.9 × 1013 cm−3 at 0.6 G,
the periods are nearly constant, while the amplitudes increase
linearly with a slope of 0.022(2.5)/1013 cm−3. With the
best-known value a4 − a2 ≈ 6.95 aB [31], this slope gives the
oscillation amplitude as 2.0(3) × 3g1 〈n〉 /8q, while for F = 2
spinor BEC, the oscillation amplitude is 3g1 〈n〉 /8q [11,33].

033635-4

Figure 6.2: Spinor dynamics and its dependence on magnetic field for the 87Rb
spin-2 normal gas. (a, b) Evolutions of ρ0(N), ρ1(•), ρ−1(O), ρ2(�), and ρ−2(/)
at 0.1 and 0.45 G, respectively. Red solid curves in (a) and (b) are fits to the
damped sinusoidal function for ρ0, ρ1,and ρ2 only. The measured periods (◦)
and amplitudes (�)of ρ0 vs magnetic fields are summarized in (c) and (d). The
accompanying error bars are fitting errors. The blue solid curves here are obtained
from numerical calculations with Eq. 6.3 and the black dashed curve is a plot
of π/q. The insets of (c) and (d) show dependence of the oscillation periods (up
triangle) and amplitudes (squares), respectively, on densities at 0.6 G (see text).

interactions. Indeed, ignoring the small g2 term, for the chosen initial state ζ2,

approximate solutions have been obtained in Refs. [125] and [139], both in the

deep interaction and Zeeman regimes. These solutions can be directly generalized

to our case by replacing the g1 factor with 2g1, as discussed in the last section.

The factor-of-2 thermal enhancement of the spin-dependent interaction can

be verified experimentally. In the Zeeman regime, the spin-mixing process (0) +

(0) ↔ (−1) + (1) dominates and the oscillation follows the fundamental period

π/q [125, 139], as depicted by the dashed curve in Fig. 6.2(c). Although the

amplitude is typically small, the oscillations are quite fast so that several periods
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can be observed clearly. As shown in the insets of Figs. 6.2(c) and 6.2(d),

with the density varied from 1.3 × 1013cm−3 to 2.9 × 1013cm−3 at 0.6G, the

periods are nearly constant, while the amplitudes increase linearly with a slope

of 0.022(2.5)/1013cm−3. With the best-known value a4 − a2 ≈ 6.95aB [137],

this slope gives the oscillation amplitude as 2.0 (3)× 3g1 〈n〉 /8q, while for F = 2

spinor BEC, the oscillation amplitude is 3g1 〈n〉 /8q [125, 139]. This measurement

thus confirms our theoretical prediction that, given a pure initial spin state, the

factor-of-2 enhancement in the g1 term holds for the spin-2 thermal gas.

Figure 6.2(a) is taken in the interaction regime at 0.1G, where q is smaller

than the g1 term, while Fig. 6.2(b) is taken at 0.45G with q much larger than the

g1 term. Besides the rather different oscillation amplitudes and periods, we also

find that in the interaction regime, populations only oscillate between mF = 0

and mF = ±2 states, while those of the mF = ±1 states are nearly 0.25. In

the other regime, all spin states are involved but the mF = ±2 states have a

smaller oscillation amplitude. In the interaction regime at very low field, the

oscillation period is π/4g1 〈n〉 [125, 139], which is typically long as g1 〈n〉 is small.

As a result, few oscillations can be observed within the sample lifetime and these

oscillations also show strong damping.

We have carried out similar measurements with magnetic fields ranging from

0.1 to 0.6G and extracted the amplitudes and periods by fitting the oscillations

to the damped sinusoidal function. As summarized in Figs. 6.2(c) and 6.2(d),

a resonance is observed near 0.3G. Close to resonance, the approximate solution

fails. Numerical calculation of the equation of motion in Eq. 6.3 is thus nec-

essary to fully describe the magnetic field dependence. This is performed with

the g1 term obtained from the enhancement factor verification above and the ex-

perimentally measured number densities. As shown by the solid curves in Figs.

6.2(c) and 6.2(d), without any free parameters the results already agree with our

measurements very well.
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As a summary, we have observed and analyzed the nonequilibrium inter-

action-driven collective spin-mixing dynamics in ferromagnetic spin-1 and an-

tiferromagnetic spin-2 gases of ultracold but noncondensed 87Rb atoms. These

dynamics and their magnetic field dependence are proved to be the same as those

found in spinor BECs under SMA,with only a factor-of-2 enhancement in the spin-

dependent interactions. In the spin-1 case, we can observe oscillations lasting for

a very long time limited only by the trap lifetime. Although these oscillations al-

ready become irregular at 3s, we nevertheless cannot tell any obvious equilibrium

state is reached within 10s. Spin domain formations are fully suppressed in both

cases, but even for the spin-1 case without hyperfine changing losses, damping is

still observed for most oscillations. This may come from the ignored collisional

integral in the Boltzmann equation [53] as well as technical imperfections, such

as the residual magnetic field gradient.
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Chapter 7

Summary

In this thesis, we describe our two experimental work on the dynamics of spinor

gases. The first one is the heteronuclear spin-mixing dynamics between spin-1
87Rb and 23Na. We successfully observe the coherent oscillations of the population

in each spin state by preparing the sample in particular spin states, densities

and external magnetic fields. We find that the period and amplitude have a

resonance while vary the magnetic field up to 2.4G. The resonance is found to

be extremely sensitive to the polarization of the trapping, due to the produced

vector light shift. This is unique in the 87Rb-23Na spinor mixture system because

they have similar hyperfine structure and nearly equal energy scales, and the

relevant Zeeman energy is the difference of the linear and quadratic shift of both

species, which is sensitive to a small effective magnetic field for one species.

In the second work we describe the spin-mixing dynamics in thermal spin-1

and spin-2 87Rb gases. We observed long- lasting oscillation of the population,

which indicate the coherence can also exist and in noncondensed atomic cloud.

We highlight the role of interaction energy and Zeeman energy in the dynamics,

and make a comparison between BEC and thermal cloud. It is interesting that

they can obey the same equation of motion, with the spin-dependent interaction

term multiplied by a factor-of-2 in the thermal cloud.
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We also introduce the necessary theoretical background and describe our ex-

perimental apparatus in detail. The experimental findings described above benefit

from the stable working of the system. As working in a very compact setup, we

are able to load 3 × 108 87Rb and 5 × 106 23Na in to the MOTs, and steadily

produce 1×105 BEC for each species in the final stage. We have also controllable

lasers, magnetic fields, RF and microwaves. The system is a versatile platform

to study multicomponent quantum gases, as well as to produce ground state
23Na87Rb molecule in the future. For the spinor experiments, we have discussed

some research directions in Sec. 5.6 in the setup, including possible studies of the

magnetic impurity and entangled BEC. We also hope that our experiment would

stimulate more studies on Bose-Bose mixture as well as Bose-Fermi mixture, such

as the recent prosposed spontaneous quantum Hall in a mixture of spinor bosons

and fermions [122].
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