Chu Ming-Chung 朱明中 Department of Physics The Chinese University of Hong Kong mcchu@phy.cuhk.edu.hk

- The physics governing elementary particles is deeply connected to that governing the evolution of stars/galaxies/the universe - Interface between Astrophysics and Particle Physics: one of the most exciting areas with many new discoveries in recent years

Photo courtesy NASA/STScI

- Unification of forces \rightarrow conditions at early universe, inflation, ...

- Dark energy and dark matter \rightarrow new particle experiments/theories

Production of particles in accelerator courtesy STAR/BNL

Hubble Deep Field South PRC98-41a · STScI OPO · November 23, 1998 The HDF-S Team • NASA

HST · WFPC

Deep space showing galaxies Photo courtesy NASA/STScI

Astroparticle Physics

Two examples: 1. 3 ways to set quarks free – Big Bang, supernova, LHC 2. Dark matter – cosmological probes, direct detection, LHC, hybrid stars

Standard Model of Particle Physics

• All matter are made up of quarks and leptons, which are elementary (point-like, structureless)

• Interactions (strong, weak, EM, gravity) are characterized by a set of fundamental constants

• strong, electroweak are unified as gauge interaction; gravity is still described by General Relativity

• There are 3+1 space-time dimensions

Quark Confinement

Strong interaction among quarks/gluons \rightarrow tightly bound to form hadrons (eg. protons, neutrons) No free quarks \rightarrow permanent confinement?

Quark Matter

- Quantum Chromodynamics (QCD): asymptotic freedom quarks interact weakly when they are very close together!
- \rightarrow high T/density: free quarks/gluons in a phase transition
- Analogy: water \rightarrow steam $T_c \sim 10^{12} \text{ K!}$
- How to get that?

Prof. Frank Wilczek's Nobel Lecture: http://nobelprize.org/nobel_prizes/physics/laureates/2004/wilczek-lecture.html 3 possible ways to release quarks: Big Bang, Supernova, LHC

Hot Big Bang

Supernova (超新星)

- Massive stars $(M > 3M_{o})$ die as supernovae
- As bright as $10^9 10^{10}$ x Sun. Releases 10^{46} J ~ 10^{12} yr of solar energy in days; T~ 10^{11} K! A dense core remains (~ 1.5 M_{o} ,

Animation courtesy Bryan Preston (STScI/AVL)

R ~ 10-100 km; ρ ~ 10¹⁴ g/cc, nucleus density): neutron star?

- ~10% rest mass \rightarrow neutrinos, carrying most energy \rightarrow neutrino physics critical importance!

n

- Supernova neutrinos: observed, new observational tool

Neutrino Observatory

Neutrino (中微子) Physics

Daya Bay: 6 nuclear reactors = one of the most powerful neutrino sources in the world

CUHK team:

-Actively involved in the Daya Bay neutrino oscillation experiment

- study cosmic rays surface and underground

Lab recreation of quark matter

Eg. ALICE in LHC: collisions of heavy ions to reach ~10¹²K for 10⁻²²s Mini-Bang

Simulation of detectors' view

Downloaded from http://aliceinfo.cern.ch/Public/en/Chapter4/Chapter4_ForPress.html

2. Dark matter –cosmological probes, direct detection, LHC, hybrid stars

Dark Matter (暗物質)

- Must have much more dark matter than normal matter (~ 5 times more)
- Enormous implications on evolution of the universe → look for their signatures in cosmological signals
- They should be all around $us \rightarrow direct detection$
- Most candidates are massive undiscovered particles \rightarrow need high energy to create them $\rightarrow LHC$
- Our crazy idea: use stars as our detectors

Large Scale Structure Survey

Simulation of structure formation in the universe

Large scale simulation of how structures (galaxies, clusters, etc.) form \rightarrow must have lots of dark matter! Eg. Millenium II Simulation: 10^{10} particles, > $2\chi 10^{7}$ galaxies, $2\chi 10^{9}$ l.y.s, standard cosmology (83% of matter is dark). Dark matter properties are important for the evolution of the universe!

Structure formation animation by Cheng Dalong

Movie from Millenium simulation project http://www.mpa-garching.mpg.de/galform/virgo/millennium/

http://www.youtube.com/watch?v=W35SYkfdGtw&feature=related

CMB = Cosmic thermal radiation from 13.7 billion years ago-At t ~ 400,000 years (decoupling), T ~ 3,000 K \rightarrow mostly red light -the universe has expanded by ~ 1,000 since then

- red light $(\lambda \sim 10^{-6} m) \rightarrow microwave (\lambda \sim 10^{-3} m)$

- fluctuations \rightarrow physics of early universe!

Study dark energy and dark matter properties via CMB fluctuation pattern

Wilkinson Microwave Anisotropy Probe

- Launched 1/4/02, at L2 (~ 1.5x10⁶ km from Earth)
- Collecting data since 12/02
- Resolution < 0.3°; sensitivity ~ 20 μK

Direct Search for Weakly Interacting Massive ParticleS

WIMPS: weak interaction \rightarrow elastic scattering off nuclei in matter - long de Broglie wavelength \rightarrow scatter with many nucleons at once

→ Put a large and sensitive detector underground and monitor rare signals vs. time for years shield against cosmic rays Our cosmic ray study in Aberdeen Tunnel will be useful!
There will be an underground lab in Sichuan. One in Hong Kong? photo from CDMS: http://cdms.berkeley.edu/experiment.html

WIMP-detection Experiments Worldwide

From http://cdms.berkeley.edu/experiment.html

China Deep Underground Lab

Taken from Qian Yue's talk: http://taup2009.lngs.infn.it/slides/jul1/yue.pdf

China Darkmatter EXperiment (CDEX)

J. P. Cheng, Z. Deng, D. Han, K.J. Kang, Y.J. Li, Y.L. Li, Y. Wang, Q.F. Wu, Q. Yue, Y.G. Yang, Z. Zhang (Tsinghua University, THU) K.X. Jing, C.J. Tang, Z.Y. Tang, H.Y. Xing, C. W. Yang, J.J. Zhu (Sichuan University, SCU) X.Q. Li, Y. Xu, C.X. Yu (Nankai Univeristy, NKU) K.J. Dong, X.C. Ruan, Z.Y. Zhou (China Institute of Atomic Energy, CIAE) JLi (Institute of Hign Energy Physics, IHEP) Y.H. Chen, B.M. Shen, J.M. Wang, S.Y. Wu, X.H. Zeng (Ertan Hydropower Development Company, EHDC) K.M. Cheung, S.C. Lee (National Tsinghua University, NTHU) H.T. Wang S.K. Kim (TEXONO Collaboration) UPD (KIMS Collaboration) PI JinPing Tunnel **YaLong Riv** 仁 邦 同 裕 道 兼 图 共成 图 明 <u>但</u> 注 起 哈 法第 共成 国 July 1,2009

LHC production of supersymmetric (SUSY) partners

A popular theory: supersymmetric partners (超對稱粒子) eg: fermionic partner of photons/gluons = neutralino, m~100 GeV-1 TeV, weakly interacting, stable

Search for missing energy/momentum Eg.: 2 stable SUSY particles (X)leaving the detector

Illustration downloaded from CMS website http://cms.web.cern.ch/cms/Physics/Supersymmetry/CMS.html

Dark Matter (暗物質)

Drawing from LSST: http://www.lsst.org/lsst

CUHK Hybrid stars

What happens if a white dwarf /neutron star 'eats' up some dark matter (d.m.)?

Summary

Astroparticle Physics = *Extreme science*!

- astro/cosmological objects: natural labs with extreme conditions Eg. white dwarfs: average density ~ 10^6 g/cc; neutron stars: 10^{14} g/cc; Early universe: > 10^{10} K at t <1s. Universe today: density ~ 10^{-30} g/cc - Stretching to the extremes \rightarrow stringent tests of, new insights in particle physics theories

- many particle physics experiments: astrophysics/cosmology in the lab Still ahead: Many exciting discoveries and mysteries! Tons of new data!

From underground to outer space!

PLANCK

Chu Ming-Chung 朱明中 Department of Physics The Chinese University of Hong Kong mcchu@phy.cuhk.edu.hk