Th Hi ^B The Higgs Boson

1. The Higgs Mechanism – extremely simplified 2. Significance of the recent discovery *3. The detectors (John Leung) 4. Th d (k) he data (Martin Kwok)*

> *Chu Ming-chung, Department of Physics, CUHK mcch h hk d hk hu@phy.cuhk.edu.hk*

The "God particle"

http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html

蘋果日報:「它是所有物質的質量之源,是促成宇 宙形成的重要粒子,…」http://www.youtube.com/watch?v=av_hWBQ7C_8 都市日報:「有一種說法認為,找到「上帝粒子」,就找到 萬物之源。」 //www.metrohk.com.hk/pda/pda_detail.php?id=189963&selectedDate=2012-07-05&categoryID=all

LA Times: "…the so-called God particle that theorists believe gives all other*x*particles mass."

Nownews:「『上帝粒子』被認為是宇宙中所有基本粒子 的質量之源,使得物質得以形成、凝聚、演化。」

http://www.nownews.com/2012/07/05/91-2831211.htm

Hi Fi ld (l ⁱ l l) Higgs Field (popu lar sc ience level)

Excited states of Higgs field = Higgs particles *Vacuum = lowest energy state, could be full of particles/energy Animation from CERN*

3

Elementary particles

http://nobelprize.org/nobel_prizes/physics/laureates/2008/phyadv08.pdf http://www.scholarpedia.org/article/Englert-Brout-Higgs-Guralnik-Hagen Kibble_mechanism_%28history%29

History

1973: asymptotic freedom, only for gauge theories! yf g g Nobel Prize 2004

1967: electroweak unification SU(2)xU(1) *gauge theory + SSB Nobel Prize 1979*

Basic concepts

- *- Gauge symmetry and gauge interactio n*
- *-Why* must gauge fields be massless?
- *Spontaneous Symmetry Breaking*
- *- Higgs Mechanism: preserving gauge symmetry, yet massive gauge fields*

Gauge Symmetry

• *Global symmetry: a transformation independent of* (x, t) *that leaves the system unchanged. Eg. rotating the angle coordinates of all particles*

$$
\theta_{i} \rightarrow \theta_{i} + \theta_{o}
$$
\n
$$
\uparrow
$$
\n
$$
\text{constant, same for all particles anywhere}
$$
\n
$$
\Delta \theta_{ij} \equiv \theta_{i} - \theta_{j} \text{ independent of } \theta_{o}
$$
\n
$$
\uparrow
$$
\n
$$
\mathcal{L} \theta_{2} \rightarrow 0
$$

- *• Can we make the symmetry local?* θ _{*o*} (x,t) *or* θ _{*oi*} (t) *? local gauge symmetry*
- *Yes, as long as each particle also carries* $\theta_{oi}(t)$ *and lets others know: imagine putting in a string between each pair of particles carrying the information* $\theta_{oi}(t)$ and $\theta_{oj}(t)$.
a gradient $\nabla \theta$

 $\Delta \theta_{ij}^{} \!\equiv \theta_{i}^{}$ - $\theta_{j}^{} (\!\!+\!\theta_{oi}^{}$ - $\theta_{oj}^{}$

 θ_j *field) to restore the local gauge symmetry 10 the info. gauge field EM vector potential ^A ^A* ⁺

i \bigvee θ_{oj}

 θ_{oi}

 θ_i

 θ_i θ_{oj} $\Delta \theta_{ij} \equiv \theta_i - \theta_j + \theta_{oj}$ θ_{oj} a gradient θ_i θ_{ij} θ_j θ_{ij} θ_{ij}

Free particle Schrödinger Equation:

$$
i\hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(x,t)
$$

$$
\psi = |\psi| e^{i\theta(x,t)}
$$

Clearly have global gauge symmetry $U(1)$ *:* $\theta \rightarrow \theta + \phi$ *Local U*(1) *Gauge Symmetry?* $\theta(x,t) \rightarrow \theta(x,t) + \phi(x) \quad \psi \rightarrow \psi' = \psi e^{i\phi(x)}$

Schrödinger Equation becomes:

$$
\vec{\nabla}\psi' = \vec{\nabla} \left[\psi e^{i\phi(x)} \right] = \left[\vec{\nabla}\psi \right] e^{i\phi(x)} + i \left[\vec{\nabla}\phi \right] \psi e^{i\phi(x)}
$$
\n
$$
\Rightarrow i\hbar \partial_t \psi' = -(\hbar^2/2m) \left[\nabla \cdot \left(i \nabla \phi \right)^2 \psi' \right]
$$
\n
$$
\text{Extra term } \sim \theta_{oi} - \theta_{oj}
$$

hd d b l l U(1) *Free Schrödinger Equation does not obey local symmetry!*

11

R g Gg y y escuing Local Gauge Symmetry

What if the particle is not free, but coupled to EM field? + *A (G iffi h Ch 7) EM Vector potential* $p \rightarrow p + qA$ (Griffiths Ch. $A \rightarrow A + (\hbar/q)\nabla\phi$ gauge freedom: $Q.M.: p \rightarrow -i\hbar \nabla \Rightarrow \nabla \rightarrow \nabla + (i/\hbar)qA$ *choose any* $\phi(x)$ *without affecting physics! The extra term in the free Schrödinger Equation can be cancelled by a gauge transformation in A!* $s.t.$ $i\hbar \partial_t \psi' = -(\hbar^2/2m)[\nabla + (i/\hbar)qA]^2 \psi'$ *i.e., local* $U(1)$ *invariant!* $A =$ *qauge field EM coupling makes Schrödinger Equation local gauge invariant! Requiring local gauge invariant gives rise to interaction! symmetry* <u>*dynamics 12*</u>

Gauge theories

 $U(1) \rightarrow EM$ is the simplest gauge theory.

 $SU(2) \rightarrow \gamma$ ang-Mills (θ becomes a 2x2 *unitary matrix*)

 $SU(3) \rightarrow QCD$ (θ *becomes a* 3x3 *unitary matrix*)

All interactions are believed to be generated by gauge theories.

Special relativity: global Lorentz covariance General relativity: local Lorentz covariance

General covariance: physics is invariant w.r.t. coordinate choice

Asymptotic freedom: needed for consistency of field theory, only true for gauge theories!

But gauge fields must be massless! Weak interaction: short ranged massive gauge fields! short-ranged 13 *Why must gauge fields be massless?*

Euler-Lagrange Equation

- Eq. of motion can be 'derived' from a La gran gian

 $L = T - V = L(q_i, \dot{q}_i; t)$ via Euler-Lagrange Equation $T = KE, V = PE$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i} \qquad (1)
$$

- Generalization to field theory:

$$
q_{i} \rightarrow \phi_{i}(x), \quad \dot{q}_{i} \rightarrow \partial_{\mu} \phi_{i}(x)
$$

$$
(1) \rightarrow \left[\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \phi_{i})}\right] = \frac{\partial \mathcal{L}}{\partial \phi_{i}}, \quad (2)
$$

where $\mathcal{L} =$ Lagrangian density = functional of ϕ_i .

symmetries of Lagrangian symmetries of equation of motion (eg. Lorentz and gauge invariant)

Mass of gauge fields

Euler-Lagrange Eq. \rightarrow *equation of motion (F = ma) from Lagrangian*

$$
\left|\partial_{\mu}\left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{i})}\right]=\frac{\partial \mathcal{L}}{\partial\phi_{i}},\right|
$$

Can construct Lagrangian from known equations of motion

Can show that the mass of a particle (field) is given by the coefficient of the quadratic term in L. Eg. $\mathcal{L} = \frac{1}{2} \left[\partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2 \right]$ *for a scalar field*

Think of ϕ^2 *as* ∞ *number density of particles, each contributing ^m*² *to energy density gy y*

*Mass term for photons (if exists): -m*²*AA But gauge transformation:* $A \rightarrow A + \nabla \phi$ *Mass of photon (gauge fields) would violate local gauge symmetry! Local* $U(1)$ *symmetry* \rightarrow *photon has exactly zero mass!*

Good for EM, strong interactions, bad for weak (W, Z)! ¹⁶

Giving mass to gauge fields: ^S ^t ^S tr Br ki Spon taneous Symmetry Breaking

Spontaneous Symmetry Breaking (SSB)

Symmetries of the Lagrangian/Hamiltonian may not be realized in all states. Eg. H atom: rotational symmetry is observed in 1s, but not in some of the p states.

Not SSB: 1s (g.s.) obeys rotational symmetry

Eg. some 2p orbitals that 'break' rotational symmetry

SSB = ground state does not obey a symmetry of the Lagrangian. The symmetry is not broken for the dynamics, just hidden for the ground state. No external field is needed for this to occur (spontaneous). Usually happen for systems with many possible degenerate ground

states, each hides the symmetry, but all together reveals it. high

Examples of SSB SSB: ground state of a system does not exhibit a symmetry of the Lagrangian

The system is symmetric w.r.t. left/right for each seat. The first person picking his/her glass induces SSB SSB.

Axial symmetric pencil in vertical position Ax y p p is not the ground state. The g. s. chooses a direction randomly: SSB.

Note that $SSB \neq no$ *symmetry. The Lagrangian (dynamics) has the symmetry. It's not exhibited by one g.s., but restored if all degenerate g.s. are taken together. ¹⁹*

More examples of SSB

Eg. ferromagnet: U = - *^sⁱ sⁱ* ¹*lowest energy state: all spins aligned symmetric w.r.t. rotation: no preferred direction*

^Z l fi ld Zero external field $T = 0$

These are all degenerate ground states, but each 'breaks' the symmetry of
the Hamiltonian. All possible g.s. together 'restores' the symmetry.

 $\mathcal{S}\mathcal{S}\neq 0$ for any one possible g.s. <*s*> = 0 *if averaged over all possible g.s.* $\langle s \rangle = 0 \rightarrow \neq 0$ indication of SSB *if averaged over all possible g.s.* and *order parameter* and *condensate*

External fields can also break the symmetry, but not SSB: Explicit Symmetry Breaking. $U = -s_i \cdot s_{i+1} - B \cdot s_i$

Vacuum

ground states ²¹

Higgs Mechanism

-there exists a field (bosonic), which condenses in f () the vacuum (BEC), s.t. $\langle \phi \rangle = \phi_o \neq 0$, because of *self interaction V (P.E.) Higgs field interacts with* W , Z *: interacti* ϕ_{0}^* $\phi_0 A_\mu A^\mu \rightarrow \frac{1}{2} m_A^2 A_\mu A^\mu$ - *Higgs field interacts w th* W, *: interact ion energy effective mass m A* $\int_0^L \psi_0^A \psi^{A'} \rightarrow$ /2 $m_A A_\mu$

*-*But W , Z are *intrinsically massless* \rightarrow gauge *z Gut W, L are intrinsically massless* \rightarrow *gaug symmetry ok*

gggillustration taken from: http://www.scholarpedia.org/article/Eng22t-Brout-*Higgs-Guralnik-Hagen-Kibble_mechanism_(history) ²²*

Hi d f ⁱ Higgs and fermion mass

Fermion mass can also be generated by interacting with Higgs field : $\mathcal{L} = \mathcal{L}_{\text{o}} + g \overline{\psi} \phi \psi$ *^Y k li Yukawa coupling*

$$
SSB: \langle \phi \rangle \neq 0 \rightarrow \text{mass term of } \psi
$$

$$
m_i \sim g_i \langle \phi \rangle
$$

Fermion masses generated from interacting with Higgs field!

Neutrinos, photons, gluons are assumed to be massless in the Standard Model they do not interact with Higgs field; remain massless.

Significance of the recent discovery

- -*Found a new heavy scalar particle* (*^m* ~ 125 GeV), *Higgs-like*
- -*New elementary particle!*

- If Higgs boson: Confirm Higgs Mechanism, Standard Model (SM) *Confirm gauge theory approach to interaction Confirm electroweak unification, boost confidence on GUT Discover a new force different from EM, Weak, Strong, gravity Constrain details of Higgs mechanism and physics beyond SM*

Most of your mass is in protons/neutrons fy p / ^u, *d quark rest mass (few* MeV*s) negligible, gluons have zero rest mass proton* = u , u , d + g *luons* + $q\overline{q}$ *pairs Where is the mass of the proton?*

Major contributions: KE of quarks and gluons ~ 300 MeV

PE stored in the gluons, particularly instantons <i>roven <i>y mc^2 !

The God particle "God particle"

蘋果日報:「它是所有物賞的質量之源,是促成宇 宙形成的重要粒子,…」http://www.youtube.com/watch?v=av_hWBQ7C_8 都市日報:「有一種說法認為,找到「上帝粒子」,就找到 萬物之源。」 //www.metrohk.com.hk/pda/pda_detail.php?id=189963&selectedDate=2012-07-05&categoryID=all

LA Times: "…the so-called God particle that theorists believe gives all other*x*particles mass."

Nownews:「『上帝粒子』被認為是宇宙中所有基本粒子 的質量之源,使得物質得以形成、凝聚、演化。」

http://www.nownews.com/2012/07/05/91-2831211.htm

Th Hi ^B The Higgs Boson

1. The Higgs Mechanism – extremely simplified 2. Significance of the recent discovery *3. The detectors (John Leung) 4. Th d (k) he data (Martin Kwok)*

> *Chu Ming-chung, Department of Physics, CUHK mcch h hk d hk hu@phy.cuhk.edu.hk*

Classical field theory

Generalized coordinates: qi, qi ˙ ; i = 1, …, N q_i could even be a function of (\mathbf{x},\mathbf{t}) . $\mathcal{L}(\hat{x}_i, \dot{x}_i) \rightarrow \mathcal{L}(q_i, \dot{q}_i)$ *Eg. normal modes of a string.*

- Field theory: use fields as generalized coordinates
- Lagrangian \to Lagrangian density \qquad $\mathcal{L}(q_i, q_i)$ \to $\mathcal{L}(\phi_i, \partial_\mu \phi_i)$ $\phi_i(x)$ is a field (i labels different fields) *space-time coordinates* $\partial_\mu \phi_i$ is treated as an independent field

Conjugate momentum density: $\pi_{i} \equiv \partial \mathcal{L}/\partial \phi_{i}$ *˙* ψ *ijugate momentum density:* π_{i} \equiv $\partial \mathcal{L}/\partial \phi_{i}$

Hamiltonian density: $\mathbf{\mathcal{H}}(\phi_i, \pi_i) \equiv \pi_i \dot{\phi_i} \cdot \mathbf{\mathcal{L}}(\phi_i, \partial_\mu \phi_i)$

Ref.: Goldstein, 'Classical Mechanics'. Landau, 'Classical Field Theory'.28

Lag g ran ian Mechanics

Noether's Theorem: symmetry [→] *conservation Eg. translation invariance* $(x \rightarrow x + a) \Rightarrow$ *momentum conservation invariance under some operations Global* $U(1)$ *symmetry:* $\psi \rightarrow e^{i\theta}\psi \Rightarrow \partial_{\mu}j^{\mu} = 0$ *;* $j^{\mu} = E.M.$ *current Gauge symmetry Charge conservation!*

Local $U(1)$ *symmetry:* $\psi \rightarrow e^{i\theta(x)}\psi \Rightarrow$ *Maxwell equations! Gauge fields dynamics (eg. electrodynamics)*

Spontaneous Symmetry Breaking

\n- 1. The mass term
\n- Massless, free Klein-Gordon field:
$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi
$$
 Vacuum: $\phi = 0$
\n- $\mathcal{L} = \frac{1}{2} [\partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2]$ (1) *mass* = $(-a)^{1/2}$, *a* = coefficient of the quadratic term in ϕ (mass term)
\n

Mass is the energy needed for an excited state above the vacuum.

With interaction: addition of a potențial can hide the mass term. Eg. $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} \mu^2 \phi^2 - \frac{1}{4} \lambda^2 \phi^4$ (2)

The mass is not - i μ , (would be tachyon, but not physical)

because the vacuum (ground state) is not $\phi = 0$.

$$
U = -\frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda^2 \phi^4
$$
 (3)
\nMinima at $\phi = \pm \phi_o$; $\phi_o = \mu/\lambda$
\n2 degenerate vacuum: $\phi = \pm \phi_o$
\nUnstable (false) vacuum: $\phi = 0$
\nExpand around $\phi = \pm \phi_o$: $\psi = \phi - (\pm \phi_o)$
\n
$$
U = -\frac{1}{2} \mu^2 (\psi \pm \phi_o)^2 + \frac{1}{4} \lambda^2 (\psi \pm \phi_o)^4
$$

\n
$$
= -\frac{1}{2} \mu^2 \psi^2 - \pm \mu^2 \phi_o \psi - \frac{1}{2} \mu^2 \phi_o^2 + \frac{1}{4} \lambda^2 \psi^4 + (3/2) \lambda^2 \psi^2 \phi_o^2
$$

\n
$$
\pm \lambda^2 \psi^3 \phi_o \pm \lambda^2 \psi \phi_o^3 + \frac{1}{4} \lambda^2 \phi_o^4
$$

\n
$$
= \mu^2 \psi^2 - \frac{1}{4} \mu^4/\lambda^2 \pm \lambda \mu \psi^3 + \frac{1}{4} \lambda^2 \psi^4
$$
 (4)
\n
$$
L = \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \mu^2 \psi^2 + \frac{1}{4} \mu^4/\lambda^2 \pm \lambda \mu \psi^3 - \frac{1}{4} \lambda^2 \psi^4
$$
 (5)
\nKE for ψ mass for $\psi = 2^{1/2} \mu$ potential for ψ
\nZero mass around $\phi = 0$, but unphysical.
\nPhysicsal excitations around $\psi = 0$ have mass = 2^{1/2} μ .

Note that (2) and (5) are identical, except for a change of variable. *Symmetry:* $\mathcal{L}(\phi) = \mathcal{L}(-\phi)$ *Spontaneous symmetry breaking (SSB):* $\mathcal{L}(\psi) \neq \mathcal{L}(-\psi)$ (ψ^3 term in (5)) *Interaction with the medium (described by the potential)* \rightarrow *mass*

2. SSB of continuous symmetry: Goldstone Theorem Generalize (2) *to two (real) fields:* $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \frac{1}{2} \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 + \frac{1}{2} \mu^2$ $(\phi_1^{\; 2}$ $+\phi_2^{\;\;2})$ - ½ λ 2 $(\phi_1^{\; 2}$ $+\phi_2^{\;\;\;\lambda}$ $)^{2}$ (6) *U* $^2+\phi_2^{\;2}=\phi_o^{\;2}\equiv \mu^2\lambda$ 2 Minima of U : $\phi_{\rm l}$ *SSB: choose* $\phi_1 = \phi_o$ *,* $\phi_2 = 0$ *as the vacuum* $\mathbf{z}_{\boldsymbol{\phi}_2}$ Expand around this vacuum: $\psi \equiv \phi_{\text{l}}$ - ϕ_{o} \mathbf{I} 2 - $\frac{1}{2} \lambda^2 \phi_0^2$ Mass term for ϕ_2 : ½ *Mass term for* ϕ_2 *: 1/2* μ^2 *- 1/2* $\lambda^2 \phi_o^2 = 0$ *massless* - $\mu^2 \psi^2$ $\boldsymbol{\mathcal{L}} = \frac{1}{2}\,\partial_{\mu}\psi\partial^{\mu}\psi + \frac{1}{2}\,\partial_{\mu}\phi_{2}\partial^{\mu}\phi_{2}$ $+\mu\lambda(\psi^3+\psi\phi_2^2)-\frac{1}{4}\lambda^2(\psi^2+\phi_2^2)^2+\mu^4/(4\lambda^2)$ (7) $\lambda(\not\!\nu^3$ ϕ_2^2 2 (ψ^2) ϕ_2^2 $)^2$ 2) - $\frac{1}{4}\lambda$) (7) $\phi_1^2 + \phi_2^2 = \phi_0^2$

 Ψ acquires a mass $2^{1/2}\mu$, but ϕ_2 becomes massless!

SSB: pick this as p the ground state

, Goldstone Theorem: Spontaneous breaking of a continuous symmetry gives l l(b ld) rise to a mass less sca lar (Nambu-Goldstone Boson).

But there's no massless scalar particle observed! ³³

4. Wh i Hi M h i What is Higgs Mec han ism?

Higgs mechanism = SSB of gauge symmetry

Pictorially, it's clear that the symmetry in (6) is rotation in (ϕ_1, ϕ_2) *plane,* \rightarrow can be represented in 'polar form' as symmetry w.r.t. θ .

$$
\phi = \phi_1 + i\phi_2
$$

\n
$$
\mathcal{L} = \frac{1}{2} \left(\partial_\mu \phi \right)^* \partial^\mu \phi + \frac{1}{2} \mu^2 (\phi^* \phi) - \frac{1}{4} \lambda^2 (\phi^* \phi)^2
$$
 (8)
\n
$$
\mathcal{L} \text{ is clearly invariant w.r.t. } \phi \to \exp(i\theta) \phi \text{ (U(1) transformation)}.
$$

Make local $\theta(x) \rightarrow U(1)$ *gauge theory:*

 ${\bm {\cal L}} = \frac{1}{2}\left({\bm {\cal D}}_\mu \phi\right)^* {\bm {\cal D}}^\mu \phi + \frac{1}{2}\,\mu^2 (\phi^* \phi)$ - $\frac{1}{4}\,\lambda^2\, (\phi^* \phi)^2 - (1/16\pi) F^{\mu\nu} F_{\mu\nu}\,\,(9)$

 $\mathbf{D}_{\mu} = \partial_{\mu} + iqA_{\mu}$ Must couple to **A** to make **L** gauge invariant! *Now SSB! 35*

SSB: Expand around the vacuum
$$
\phi = (\phi_o, 0) \rightarrow \phi = (\phi_o + \psi) \exp(i\phi_2/\phi_o)
$$

\n $\langle \phi \rangle = \phi_o$
\n $\psi = \phi_1 - \phi_o$ (real); $\phi_o = \mu/\lambda$
\nmassive scalar
\n $\mathcal{L} = \frac{1}{2} \partial_\mu \psi \partial^\mu \psi - \mu^2 \psi^2 + \frac{1}{2} \partial_\mu \phi_2 \partial^\mu \phi_2$
\n $+ \frac{1}{2} (q \mu/\lambda)^2 A_\mu A^\mu - 2i (q \mu/\lambda)(\partial_\mu \phi_2) A^\mu - (1/16\pi) F_{\mu\nu} F^{\mu\nu}$
\n $+ \text{interaction/terms}$ (10)
\nmass term for gauge field! $\boxed{m_A = 2\pi^{1/2} q \mu/\lambda}$ gauge field energy
\nThe mass of the gauge field comes from gauging
\n $\mathcal{O}_\mu \rightarrow \mathcal{D}_\mu$ and SSB around $\phi \sim \phi_o$ $\phi \phi A_\mu A^\mu \rightarrow \frac{1}{2} m_A^2 A_\mu A^\mu$
\nNote that Higgs mass (~ μ) is related to massive boson mass m_A , but also depends on the potential (λ).
\nBut there is still the unseen massless scalar (Goldstone boson) ϕ_2 ...

Higgs Mechanism

Make use of the remaining gauge freedom in A_u *to cancel* ϕ_2 *!* $A_{\mu} \rightarrow A_{\mu} + (i/q\phi_{0}) \partial_{\mu}\phi_{2}$

$$
\mathcal{L} = \frac{1}{2} \left(\frac{\partial_{\mu} \psi}{\partial^{\mu} \psi} - \mu^2 \psi^2 + \frac{1}{2} (q \mu/\lambda)^2 A_{\mu} A^{\mu} - (1/16\pi) F^{\mu\nu} F_{\mu\nu} \right)
$$

+ interaction terms (11)

Higgs mechanism: SSB of gauge symmetry $(SU(2)) \rightarrow$ massive vector *boson* A_{μ} . Goldstone boson got 'eaten' by the third polarization of A_{μ} .

Electroweak theory: Higgs mechanism to make W^{\pm} *, Z heavy* A_μ

Higgs particle: ψ *(scalar particle(s), composite, ...), mass related to those of W*, *Z, but depends on details of potential.*

Higgs condensate fills the vacuum: $\langle \phi \rangle = \phi_0$ *37* *Higgs mechanism for superconductivity: Ginzburg-Landau Model*

 (*x*) *= macroscopic complex wavefunction of Cooper pairs (Landau: superfluid of electrons)*

 $= |\phi(x)| \exp[i\theta(x)]$

Density of pairs: $|\phi(x)|^2$

Cooper pairs are charged coupled to external EM fields Hamiltonian density: $H = (1/4m)[\mathcal{D}\phi^* \cdot \mathcal{D}\phi] + V(\phi)$ $\mathbf{D} \equiv \nabla + i2e\mathbf{A}$ *minimal coupling;* $q = 2e$ *for a Cooper pair* $V(\phi) = a|\phi(x)|^2 + b|\phi(x)|^4$ \sim \sim \sim Taylor expansion around $\phi = 0$; a, b depend on T Local $U(1)$ symmetry θ (x) *³⁸*

G g inzburg-Landau Model

Normal state, $a > 0$ *for* $T > T_c$ *:* $\langle \phi \rangle = 0$ massless A , massive ϕ

 $a < 0$ for $T < T_c$: minima of V shifted to $|\phi_{o}|^{2}$ = -*a*/*b*, *arbitrary phase*

SSB: ground state of system picks a particular phase and breaks U(1): *<> = o (Cooper pair condensate)*

 $(1/4m)[\mathcal{D}\phi^*\mathcal{D}\phi] = (1/4m)[4e^2\phi_0^2A^2]$ *A* acquires an effective mass $e\phi_o/m^{1/2}$ \rightarrow *Meissner effect* Re $\phi \times \theta$ *massive A (short range),*

SSB and mass

 Ground state is the vacuum of a system must identify the correct vacuum before finding the excitations and their masses!

Excitations above the vacuum will have different energies above the *two states. Eg.: energy (mass) for* $m = 2A/N$ for true vacuum $\langle E_1 \rangle = -A(1-2/N)$ $m = -A(1-2/N)$ *for false vacuum (negative mass indicates wrong vacuum)*

Higgs mechanism summary

Gauge theory: generates interactions, renormalizable, but gauge iinvar ance massl fi ld less gauge fields

SSB: ground state may 'break' symmetry (but the Lagangian does not). Excitations around the g.s. \rightarrow *massive particles (Higgs) + massless Goldstone bosons*

SSB of gauge fields: effective mass for gauge fields $\partial_{\mu} \rightarrow 2\!\!\!\!\!\!\!\!\!D_{\mu} \quad , \; \phi \sim \phi_o \; \; \rightarrow \; \; (1/8\pi) m_{A}^{-2} A_{\mu} A^{\mu}$

Make use of gauge freedom of A to get rid of Goldstone bosons. Only massive boson (Higgs) and massive gauge fields remain.

Summary

• Spontaneous Symmetry Breaking

- Ground state of a system may not show the symmetries of the Lagrangian (eg. $\langle \phi \rangle \neq 0$)

- *- Need to expand around the true vacuum to identify the mass term* SSB of continuous symmetry \longrightarrow massless scalar (Goldstone boson) *of continuous symmetry* [→] *massless scalar (Goldstone boson)*
- *• Higgs mechanism*
	- *Assume existence of a scalar field with some continuous gauge symmetry* \rightarrow *coupling to gauge field*
	- *SSB of gauge symmetry* → *massive gauge field*
	- Use gauge freedom to eliminate Goldstone boson *- Use gauge freedom to eliminate Goldstone boson*
	- *Electroweak: massive* W^{\pm} , Z