

Luk Kam Biu (陸錦標) Department of Physics University of California, Berkeley

Informal Talk at CUHK, 23 November, 2004

~5 x 10⁶ solar neutrinos/cm²/s raining down on Earth

1 GW_{electric} produces ~10²⁰ anti-neutrinos/s

Fill the space with black ink:

A 1 MeV neutrino, on the average, will collide with a water molecule by the time it gets to Regel Regel: about 1000 light years away

0)

Standard Model

 Three types of massless neutrinos in the Standard Model of particle physics

 Massive neutrinos will indicate the Standard Model is incomplete and have profound implications

Something Funny Is Going On In The Sun

Davis experiment in Homestake mine 2002 Nobel prize

Solar
$$v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$$

1 SNU = 1 interaction/10³⁶ target atoms/sec

Neutrino Oscillation

Neutrino Oscillation

Sudbury Neutrino Observatory

An Anti-neutrino Candidate

Some Reactor \overline{v} 's are missing!

Super-Kamiokande (Japan)

_ 50,000 tons of ultra-pure water

Study atmospheric neutrinos

Half of atmospheric ν_{μ} Is Missing!

Measured θ_{23} and Δm^2_{32} 22

Another Kind of Neutrino Oscillation

23

2+2(+2) reactors: 11.6 (17.4) GW_{th}

Ranking of Reactors

Daya Bay Nuclear Power Plant

Ling Ao Nuclear Power Plant

Location of Far Detector

I II II

What Need To Be Done?

- Where should we position the detectors?
- How deep should we place the detectors underground to reduce the cosmic-ray background?
- How bad is the cosmic-ray background?
- How can we identify and remove the unwanted events?
- Can we do study the background before we start the Daya Bay experiment?
- What should be the size of the detector?
- What is the optimal design of the detector?
- What kind of materials should be used to build the detector?
- What are the properties of the liquid scintillator?
- Need to carry out a lot of calculations (Monte Carlo simulation)
- Need to carry out small-scale experiments in the laboratory and in the Aberdeen underground laboratory.

Summary

Neutrinos

- are tiny particles, a lot lighter than electrons.
- are plentiful

- can change type when running in space
- are magicians, full of surprises:

What is next?

- the Daya Bay experiment will tell

Thank You

