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ABSTRACT CCS CONCEPTS

Node classification and graph classification are two graph learning
problems that predict the class label of a node and the class label of
a graph respectively. A node of a graph usually represents a real-
world entity, e.g., a user in a social network, or a protein in a protein-
protein interaction network. In this work, we consider a more
challenging but practically useful setting, in which a node itself
is a graph instance. This leads to a hierarchical graph perspective
which arises in many domains such as social network, biological
network and document collection. For example, in a social network,
a group of people with shared interests forms a user group, whereas
a number of user groups are interconnected via interactions or
common members. We study the node classification problem in the
hierarchical graph where a “node” is a graph instance, e.g., a user
group in the above example. As labels are usually limited in real-
world data, we design two novel semi-supervised solutions named
SEmi-supervised grAph cLassification via Cautious/Active Iteration
(or SEAL-C/AI in short). SEAL-C/AI adopt an iterative framework
that takes turns to build or update two classifiers, one working at
the graph instance level and the other at the hierarchical graph
level. To simplify the representation of the hierarchical graph, we
propose a novel supervised, self-attentive graph embedding method
called SAGE, which embeds graph instances of arbitrary size into
fixed-length vectors. Through experiments on synthetic data and
Tencent QQ group data, we demonstrate that SEAL-C/AI not only
outperform competing methods by a significant margin in terms of
accuracy/Macro-F1, but also generate meaningful interpretations
of the learned representations.
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1 INTRODUCTION

Graph has been widely used to model real-world entities and the
relationship among them. Two graph learning problems have re-
ceived a lot of attention recently, i.e., node classification and graph
classification. Node classification is to predict the class label of
nodes in a graph, for which many studies in the literature make
use of the connections between nodes to boost the classification
performance. For example, [25] enhances the recommendation pre-
cision in LinkedIn by taking advantage of the interaction network,
and [27] improves the performance of document classification by
exploiting the citation network. Graph classification, on the other
hand, is to predict the class label of graphs, for which various graph
kernels [3, 9, 29, 30] and deep learning approaches [22, 23] have
been designed. In this work, we consider a more challenging but
practically useful setting, in which a node itself is a graph instance.
This leads to a hierarchical graph in which a set of graph instances
are interconnected via edges. This is a very expressive data repre-
sentation, as it considers the relationship between graph instances,
rather than treating them independently. The hierarchical graph
model applies to many real-world data, for example, a social net-
work can be modeled as a hierarchical graph, in which a user group
is represented by a graph instance and treated as a node in the
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hierarchical graph, and then a number of user groups are intercon-
nected via interactions or common members. As another example,
a document collection can be modeled as a hierarchical graph, in
which a document is regarded as a graph-of-words [26], and then a
set of documents are interconnected via the citation relationship.
In this paper, we study graph classification in a hierarchical graph,
which predicts the class label of graph instances in a hierarchical
graph.

One challenge in this problem is that a hierarchical graph is
a much too complicated input for building a classifier. To tackle
this challenge, we design a new graph embedding method which
embeds a graph instance of arbitrary size into a fixed-length vector.
All graph instances in the hierarchical graph are transformed to
embedding vectors which are the common input format for classifi-
cation. Specifically, the embedding method builds an instance-level
classifier called IC from graph instances, and produces embedding
vectors and predicted class probabilities of the graph instances.
Another classifier HC at the hierarchical graph level takes the em-
bedding vectors and their connections as input, and outputs the
predicted class probabilities of all graph instances. To enforce a
consistency between the two classifiers, we define a disagreement
loss to measure the degree of divergence between the predictions
by them and aim to minimize the disagreement loss.

Another challenge is that the amount of available class labels is
usually very small in real-world data, which limits the classification
performance. To address this challenge, we take a semi-supervised
learning approach to solving the graph classification problem. We
design an iterative algorithm framework which takes turns to build
or update classifiers IC and HC. We start with the limited labeled
training set and build IC, which produces the embedding vectors
of graph instances. HC takes the embedding vectors as input and
produces predictions. We cautiously select a subset of predicted
labels by HC with high confidence to enlarge the training set. The
enlarged training set is then fed into IC in the next iteration to
update its parameters in the hope of generating more accurate
embedding vectors and predictions. HC further takes the new em-
bedding vectors for model update and class prediction. This is our
proposed solution, called SEmi-supervised grAph cLassification via
Cautious Iteration (SEAL-CI), to the graph classification problem.

We also extend this iterative algorithm to the active learning
framework, in which we iteratively select the most informative
instances for manual annotation, and then update the classifiers
with the newly labeled instances in a similar process as described
above. This method is called SEAL-AI in short.

Our contributions are summarized as follows.

o We study semi-supervised graph classification from a hier-
archical graph perspective, which, to the best of our knowl-
edge, has not been studied before. Our proposed solutions
SEAL-C/AI achieve superior classification performance to
the state-of-the-other graph kernel and deep learning meth-
ods, even when given very few labeled training instances.

o We design a novel supervised, self-attentive graph embed-
ding method called SAGE to embed graphs of arbitrary size
into fixed-length vectors, which are used as a common form
of input for classification. The embedding approach not only
simplifies the representation of a hierarchical graph greatly,
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Class: game

Class: non-game

Group C Group D
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Figure 1: A hierarchical graph with four graph instances
A, B,C, D, each of which corresponds to a user group in a so-
cial network.

but also provides meaningful interpretations of the under-
lying data in two forms: 1) embedding vectors of graph in-
stances, and 2) node importance in a graph instance learned
through a self-attentive mechanism that differentiates their
contribution in classifying a graph instance.

e We evaluate SEAL-C/AI on both synthetic graphs and Ten-
cent QQ group data. From the social networking platform
Tencent QQ, we select 37,836 QQ groups with 18,422,331
unique anonymized users and classify them as “game” or
“non-game” groups. SEAL-C/AI achieve a Macro-F1 score
of 70.8% and 73.2% respectively with only 2.6% labeled in-
stances. They both outperform other competing methods by
a large margin.

The remainder of this paper is organized as follows. Section 2
gives the problem definition and Section 3 describes the design of
SEAL-C/AI We report the experimental results in Section 4 and
discuss related work in Section 5. Finally, Section 6 concludes the

paper.

2 PROBLEM DEFINITION

We denote a set of objects as O = {01, 02, ...,0N} which represent
real-world entities. We use ¢ attributes to describe properties of
objects, e.g., age, gender, and other information of people.

We use a graph instance to model the relationship between ob-
jects in O, which is denoted as g = (V,A,X), V C O is the node
set and |V| = n, Ais an n X n adjacency matrix representing the
connectivity in g, and X € R™? is a matrix recording the attribute
values of all nodes in g.

A set of graph instances G can be interconnected, and the connec-
tivity between the graph instances is represented by an adjacency
matrix ©. The graph instances and their connections are modeled
as a hierarchical graph.

A graph instance g € G is a labeled graph if it has a class label,
represented by a vector y € {0,1}¢, where ¢ is the number of
classes. A graph instance is unlabeled if its class label is unknown.
Then G can be divided into two subsets: labeled graphs G; and



unlabeled graphs G, where G = G; U Gy, |G;| = L and |G| = U.
In this paper, we study the problem of graph classification, which
determines the class label of the unlabeled graph instances in G,
from the available class labels in G; and the hierarchical graph
topological structure. As the amount of available class labels is
usually very limited in real-world data, we take a semi-supervised
learning approach to solving this problem.

Figure 1 depicts a hierarchical graph in the context of a social
network. A, B, C, D denote four user groups. Group A has the class
label of “game”, B has the label of “non-game”, while the class labels
of C and D are unknown. These four groups are connected via
some kind of relationships, e.g., interactions or common members.
The internal structure of each user group shows the connections
between individual users. From this hierarchical graph, we want to
determine the class labels of groups C and D.

3 METHODOLOGY
3.1 Problem Formulation

In our problem setting, we have two kinds of information: graph
instances and connections between the graph instances, which
provide us with two perspectives to tackle the graph classification
problem. Accordingly, we build two classifiers: a classifier IC con-
structed for graph instances and a classifier HC constructed for the
hierarchical graph, both of which make predictions for unlabeled
graph instances in Gy,.

For both classifiers, one goal is to minimize the supervised loss,
which measures the distance between the predicted class probabili-
ties and the true labels. Another goal is to minimize a disagreement
loss, which measures the distance between the predicted class prob-
abilities by IC and HC. The purpose of this disagreement loss is to
enforce a consistency between the two classifiers.

Formally, we formulate the graph classification problem as an
optimization problem:

min (Gy) + &(Gu), @

where {(Gj) is the supervised loss for the labeled graph instances,
and £(Gy) is the disagreement loss for the unlabeled graph in-
stances.

Specifically, {(G;) includes two parts:

(G = D (Liyi) + Lo ), B)

gi EG[

where ¢; is a vector of predicted class probabilities by IC, and
yi is a vector of predicted class probabilities by HC. L(:,-) is the
cross-entropy loss function.

The disagreement loss £(-) is defined as:

£Gu) = ) Dxr(villys), )

9i€Gy
where Dk (-||-) is the Kullback-Leibler divergence, Dx.(P||Q) =
2, Pjlog (g],) In the following subsections, we describe our de-

sign of classifiers IC and HC, and our approach to minimizing the
supervised loss and the disagreement loss.
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3.2 Design of Classifiers

Classifier IC takes a graph instance as input. As different graph
instances have different numbers of nodes, IC is expected to handle
graph instances of arbitrary size. Classifier HC takes the hierarchical
graph as input, in which individual graph instances are the “nodes”.
This is a much too complicated input for a classifier. To deal with the
above challenges, we propose to embed a graph instance g; € G into
a fixed-length vector e; via IC first. Then HC can take as input the
embedding vectors of graph instances and the adjacency matrix ©.
In particular, IC takes as input the adjacency matrix A; and attribute
matrix X; of an arbitrary-sized graph instance g;, and outputs an
embedding vector e; and a vector of predicted class probabilities
Vi, ie., (ei, i) = IC(A;, X;). HC takes the embedding vectors E =
{e }{“:IU and O, and outputs the predicted class probabilities I' =
{yi }{flU, ie, I' = HC(E,®). In the following, we illustrate the
design of IC which performs discriminative graph embedding, and
then the design of HC which performs graph-based classification.

3.2.1 Discriminative graph embedding. Our graph embedding task
is to produce a fixed-length discriminative embedding vector of a
graph instance. In the literature, graph representation techniques
have recently shifted from hand-crafted kernel methods [33] to
neural network based end-to-end methods, which achieve better
performance in graph-structured learning tasks. In this vein, we
adopt neural network methods for the graph embedding task, for
which, however, we identify three challenges:

o Size invariance: How to design the neural network structure
to flexibly take an arbitrary-sized graph instance and produce
a fixed-length embedding vector?

e Permutation invariance: How to derive the representation
regardless of the permutation of nodes?

o Node importance: How to encode the importance of different
nodes into a unified embedding vector?

In particular, the third challenge is node importance, i.e., different
nodes in a graph instance have different degrees of importance. For
example, in a “game” group the “core” members should be more
important than the “border” members in contributing to the derived
embedding vector. We need to design a mechanism to learn the node
importance and then encode it in the embedding vector properly.

To this end, we propose a self-attentive graph embedding method,
called SAGE, which can take a variable-sized graph instance, and
combine each node to produce a fixed-length vector according to
their importance within the graph. In SAGE, we first utilize a multi-
layer GCN [16] to smooth each node’s features over the graph’s
topology. Then we use a self-attentive mechanism to learn the node
importance and then transform a variable number of smoothed
nodes into a fixed-length embedding vector, as proposed in [18].
Finally, the embedding vector is cascaded with a fully connected
layer and a softmax function, in which the label information can
be leveraged to discriminatively transform the embedding vector e
into . Figure 2 depicts the overall framework of SAGE.

Formally, we are given the adjacency matrix A € R™" and the
attribute matrix X € R™® of a graph instance g as input. In the
preprocessing step, the adjacency matrix A is normalized:

A=D"t(A+1,)D 7, )
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Figure 2: The supervised self-attentive graph embedding method SAGE.

where I, is the identity matrix and Dj; = >m (A+1In)im. Then we
apply a two-layer GCN network:

H = AReLU(AXWO)W!. (5)

Here W € R#*" and W! € R"*? are two weight matrices. GCN
can be considered as a Laplacian smoothing operator for node
features over graph structures, as pointed out in [17]. Then we
get a set of representation H € R™ ? for nodes in g. Note that
the representation H does not provide node importance, and it is
size variant, i.e., its size is still determined by the number of nodes
n. So next we utilize the self-attentive mechanism to learn node
importance and encode it into a unified graph representation, which
is size invariant:

S= softmax(Wsztanh(WslHT)), (6)

where Ws1 € R and Wy, € R™9 are two weight matrices. The
function of Wy is to linearly transform the node representation
from a v-dimensional space to a d-dimensional space, then nonlin-
earity is introduced by tying with the function tanh. W3 is used as
r views of inferring the importance of each node within the graph.
It acts like inviting r experts to give their opinions about the impor-
tance of each node independently. Then softmax is applied to derive
a standardized importance of each node within the graph, which
means in each view the summation of all the node importance is 1.

After that, we compute the final graph representation e € R"™*?
by multiplying S € R™" with H € R"*:
e=SH. 7)

e is size invariant since it does not depend on the number of nodes
n any more. It is also permutation invariant since the importance
of each node is learned regardless of the node sequence, and only
determined by the task labels.

One potential risk in SAGE is that r views of node importance
may be similar. To diversify their views of node importance, a
penalization term is imposed:

P=|ssT -5 . ®)

Here || . || F Tepresents the Frobenius norm of a matrix. We train the
classifier in a supervised way with the task at hand, in the hope of
minimizing both the penalization and the cross-entropy loss.

To summarize, we use SAGE to construct the instance-level
classifier IC. It produces not only the estimated class probability
vector ¥, but also a graph embedding e, which is the input for
classifier HC described in the next subsection.
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3.22  Graph-based classification. Given the graph embedding E =
{e; }{flU and the adjacency matrix © € REAUXL+U) oy next task
is to infer the parameters of classifier HC and derive the predicted
probabilities T' = {yi}{flU. This problem falls into the setting of
traditional graph-based learning where E can be treated as the
set of node features. Recently neural network based approaches
such as [16, 34] have demonstrated their superiority to traditional
methods such as ICA [27]. In this context we make use of GCN [16]
again for the consideration of efficiency and effectiveness. In the
following, we consider a two-layer GCN and apply preprocessing

. . _1 . _1
by ® =Dg 2(® + I +y)De ?.Then the model becomes:
I' = HC(E, ©) = softmax(6 ReLU(OEW)Wg). (9)

where WG)O € RIrO*M s an input-to-hidden weight matrix with M

feature maps and Wé € RMX¢ i a hidden-to-output weight matrix.
The softmax function is applied row-wise and we get I'. With T
and ¥ we can compute the supervised loss in problem (2) and the
disagreement loss in problem (3).

3.3 The Proposed SEAL-CI Model

In this subsection, we present our method to minimize the objective
function (1). In real-world scenarios, the number of labeled graph
instances L can be quite small compared to the number of unlabeled
instances U. In this context, neural network based classifiers such
as IC may suffer from the problem of overfitting. To mitigate this,
we have both the disagreement loss (3) and the supervised loss (2)
included in the objective function (1). The disagreement loss can
be regarded as a regularization to prevent overfitting.

Problem (1) is a mixed combinatorial and continuous optimiza-
tion problem. The supervised loss (2) includes two parts, L(y;, ¢/;)
and L(y;, yi), i.e., the supervised loss of IC and HC. L(y;, y;) de-
pends on classifier IC to provide accurate graph embedding. All
these issues make the problem highly non-convex. As such, we use
the idea of iterative algorithm to alternate minimizing the super-
vised loss of IC and HC, and minimizing the disagreement loss by
trusting a subset of predictions by HC in the next iteration of graph
embedding by IC.

To be more specific, we combine the graph embedding algorithm
in Section 3.2.1 and graph-based classification algorithm in Section
3.2.2 into one iterative algorithm. We build IC to produce graph
embedding E’ for all graph instances in iteration ¢, and then feed
E! into HC to get the predicted probabilities I'. We then make use
of T'? to update the parameters of IC and generate E*!, which is



Algorithm 1: SEAL-CI

Algorithm 2: SEAL-AI

Input: A, X, ©.

Output: ¥/, T?,
1 Initial: G¢mp = 0, G‘; =G, t=0;
2 while tA1 < U do
3 Wit argmin((GltI’VVt);
4 \Pt+1,Et+1 — IC(A,Xl(Wt+1);
5 rt+1 — HC(Et+1,®|(Wt+1);
6 Gtmp < h(tA, Fézl);
7 Glt+1 — Gy U Gmp;
8 | Gtmp =0;
o Return ¥, T'¢;

then used as the input of HC in iteration ¢ + 1. Figure 3 depicts the
overall framework of this iterative process. Although this method
may not reach the global optimum, similar setting [20, 27] has been
proven to be effective.

3.3.1 How to utilize T ? To update the graph embedding vectors,
a naive approach is feeding the whole set of I'? for the parameter
update in IC, which is the idea of the original ICA [27]. However, not
all T are correct in their predictions. The false predictions may lead
the update of embedding neural network to the wrong direction.
To this end, we make use of the idea of [20], a variant of the original
ICA, and cautiously exploit a subset of T'* to update the parameters
of IC in each iteration. Specifically, in iteration ¢, we choose the tA
most confident predicted labels while ignoring the less confident
predicted labels. This operation continues until all the unlabeled
samples have been utilized. To further improve the efficiency, the
parameters of IC are not re-trained but fine-tuned based on the
parameters obtained in the previous iteration. This algorithm is
called SEmi-supervised grAph cLassification via Cautious Iteration
(SEAL-CI) and is presented in Algorithm 1. Note here ‘W is the set
of all the parameters of IC and HC. In line 6, the training set for IC
has been enlarged by tA instances and it is done by “committing”
these instances’ labels from their maximum probability. In other
words, the newly enrolled training instances are found by:

h(A,T) = top(maxy, A). (10)
yer

Here function top(-, A) is used to select the top A instances and func-
tion max y is used to select the maximum value in the probability
vector y.

3.4 The Proposed SEAL-AI Model

Our proposed model is easy to extend to the active learning sce-
nario. In case further annotation is available, we can perform active
learning and ask for annotations with a budget of B. Denote the
set of graph instances being annotated as Gp, then the objective
function in the active learning setting is re-written as:

min f(G|B, W)
s.t. |Gg| £ B,
where f(G|B, W) = {(G; UGg|W) + £(Gy, \ Gp|'W). This is still

a mixed combinatorial and continuous optimization problem. It is

(11)
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Input: A, X, ©.
Output: ¥/, T?.
1 Initial: Grmp = 0,G% =0, G? =G;,GY =Gy, t=0;
2 while |GL| < B do
3 W eargmin{(Gfl(Wt);
s | PITLEMT 1A X|IWIL);
5 rt+1 — HC(Et+1,®|(Wt+1);
6 Gimp < argmin|g,, =k E(GL\ Grmp | W),
7 GL! « G U Grmp;
8 Gl“'1 — Glt U Gemps
s | GL' e GL\ Grmp;
10 | Gimp= 0;
1 Return ¢, T'%;

o

very hard to infer the model parameters and the active learning
set Gp simultaneously. By definition, the active learning set Gp is
intractable unless the model parameters are completely inferred. To
solve this chicken-and-egg problem, we decompose the objective
function into two sub-steps: parameter optimization and candidate
generation. Then we optimize f(G|B, W) iteratively. This algo-
rithm is called SEmi-supervised grAph cLassification via Active
Iteration (SEAL-AI) and is shown in Algorithm 2.

At the beginning of this iterative process, we optimize the super-
vised loss {(G;|‘W) based on current labeled graphs in G; (line 3 in
Algorithm 2). In active learning, the choice of candidate generator
is a key component. We exploit the idea of ALFNET [1] and choose
the candidate graph instances Gy by maximizing the decrease of
the current disagreement loss based on the new parameter obtained
in the first step (line 6 in Algorithm 2). At last we label G¢pmp and
update Gp, G; and Gy, respectively (line 7-9 in Algorithm 2).

It is worth noting that from the hard example mining perspec-
tive, the disagreement score is an excellent criterion for the active
learning setting. Specifically, we choose the candidates by first cal-
culating the distribution divergence of (y;,¥;) from I3, = {y; }l.[il
and ¥, = (i) :

z(Yi.vi) = DrrL(yillyi)- (12)

Then we choose k instances with the largest KL divergence. Intu-
itively, the KL divergence between i; and y; can be viewed as the
conflict of two supervised models. A large KL divergence indicates
that one of the models gives wrong predictions. To this end, the
instances with a large KL divergence are more informative to help
the algorithm converge more quickly.

3.5 Complexity Analysis

We analyze the computational complexity of our proposed methods.
Here we only focus on Algorithm 1, since Algorithm 2 is almost
the same except the step of selecting candidate graph instances
to the training set. In Algorithm 1, the intensive parts in each
iteration contain the updates of IC and HC as well as the selection
of candidate instances. We discuss each part in details below.
Regarding IC, the core is to compute the activation matrix H in
Eq. (5) where the matrix-vector multiplications are up to O(E1¢)
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Figure 3: Schematic diagram of the learning framework SEAL-CI. There are two subroutines: discriminative graph embedding
(in the orange box) and graph-based classification (in the green box).

flops for one input graph instance; here E; denotes the number of
edges in the graph instance and ¢ is the input feature dimension.
Thus, it leads to the complexity of O(E1 (L + U)¢) by going through
all L + U graph instances.

Next, the computation by HC in Eq. (9) requires O(Ezrv) flops
in total, where E; denotes the number of links between graph
instances. Then in candidate selection, performing comparisons
between all unlabeled graph instances has a complexity of O(L+U)
given the outputs of two classifiers IC and HC.

Overall, the complexity of our method is O(E; (L + U)¢ + Ezrv)
which scales linearly in terms of the number of edges in each
graph instance (i.e., E1), the number of links between graph in-
stances (i.e., E2) and the number of graph instances (i.e., (L + U)).
Thus, our method is computationally comparable to the GCN-based
method [16], and more efficient than PSCN [23] that is quasi-linear
with respect to the numbers of nodes and edges.

4 EXPERIMENTS

We first validate the effectiveness of our graph embedding algorithm
SAGE on two data sets: PROTEINS and D&D. Then we evaluate
our SEAL-C/AI methods on both synthetic and Tencent QQ group
data sets.

4.1 Performance of SAGE

We use two benchmark data sets, PROTEINS and D&D, to evaluate
the classification accuracy of SAGE, and compare it with the state-
of-the-art graph kernels and deep learning approaches. PROTEINS
[4] is a graph data set where nodes are secondary structure elements
and edges represent that two nodes are neighbors in the amino-acid
sequence or in 3D space. D&D [7] is a set of structures of enzymes
and non-enzymes proteins, where nodes are amino acids, and edges
represent spatial closeness between nodes. Table 1 lists the statistics
of these two data sets.

4.1.1 Baselines and Metrics. The baselines include four graph ker-
nels and two deep learning approaches:

the shortest-path kernel (SP) [3],

the random walk kernel (RW) [9],

the graphlet count kernel (GK) [30],

the Weisfeiler-Lehman subtree kernel (WL) [29],
PATCHY-SAN (PSCN) [23], and
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Table 1: Statistics of PROTEINS and D&D

PROTEINS D&D
Max number of nodes 620 5748
Avg number of nodes 39.06 284.32
Number of graphs 1113 1178

Table 2: Accuracy of different classifiers

Approach PROTEINS D&D
SP 75.07+0.54% -
RW 74.22+0.42% -
GK 71.67+0.55%  78.45%0.26%
WL 72.92+£0.56%  77.95+0.70%
PSCN 75.89+2.76%  77.1212.41%
graph2vec  73.30£2.05% -
SAGE 77.26+£2.28% 80.88+2.33%

e graph2vec [22].

We follow the experimental setting as described in [23], and
perform 10-fold cross validation. In each partition, the experiments
are repeated for 10 times. The average accuracy and the standard
deviation are reported. We list results of the graph kernels and the
best reported results of PSCN according to [23].

For SAGE, we use the same network architecture on both data
sets. The first GCN layer has 128 output channels, and the sec-
ond GCN has 8 output channels. We set d = 64, r = 16, and the
penalization term coefficient to be 0.15. The dense layer has 256
rectified linear units with a dropout rate of 0.5. We use minibatch
based Adam [15] to minimize the cross-entropy loss and use He-
normal [11] as the initializer for GCN. For both data sets, the only
hyperparameter we optimized is the number of epochs.

4.1.2  Results. Table 2 lists the experimental results. As we can see,
SAGE outperforms all the graph kernel methods and the two deep
learning methods by 1.27% — 5.59% in accuracy. This shows that
our graph embedding method SAGE is superior.



Table 3: Statistics of generated graph instances

Type Number Nodes Edges Density

Watts-Strogatz 351 173 347 2.3%
Tree 217 127 120 1.5%

Erd6s-Rényi 418 174 3045 20% The
Barbell 818 169 2379 16.3%
Bipartite 426 144 1102 10.6%
Barabasi-Albert 298 173 509 3.4%
Path 180 175 170 1.1%

node and edge numbers and density are the average for each type

of graph.

4.2 SEAL-C/AI on Synthetic Data

We evaluate the performance of SEAL-C/AI on synthetic data. We
first give a description of the synthetic generator, then visualize the
learned embeddings and analyze the self-attentive mechanism on
the generated data. Finally we compare our methods with baselines
in terms of classification accuracy.

4.2.1 Synthetic Data Generation. The benchmark data set Cora
[19] contains 2708 papers which are connected by the “citation”
relationship. We borrow the topological structure of Cora to provide
the skeleton (i.e., edges) of our synthetic hierarchical graph. Then
we generate a set of graph instances, which serve as the nodes of
this hierarchical graph. Since there are 7 classes in Cora, we adopt 7
different graph generation algorithms, that is, Watts-Strogatz [32],
Tree graph, Erd6s-Rényi [8], Barbell [13], Bipartite graph, Barabasi-
Albert graph [2] and Path graph, to generate 7 different types of
graph instances, and connect them in the hierarchical graph.
Specifically, to generate a graph instance g, we randomly sample
anumber from [100, 200] as its size n. Then we generate its structure
and assign the class label according to the graph generation algo-
rithm. In this step, the parameter p in Watts-Strogatz, Erdés-Rényi,
Bipartite graph and Barabasi-Albert graph is randomly sampled
from [0.1, 0.5], the branching factor for Tree graph is randomly
sampled from [1, 3]. At last, to make this problem more challenging,
we randomly remove 1% to 20% edges in the generated graph g.
The statistics of the generated graph instances are listed in Table 3.

4.2.2  Visualization. To have a better understanding of the synthe-
sized graph instances, we split all 2708 graph instances into two
parts. 1708 instances are used for training and the remaining 1000
instances are used for testing. We apply SAGE on the training set
and derive the embeddings of the 1000 testing instances. We then
project these learned embeddings into a two-dimensional space by
t-SNE [31], as depicted in Figure 4. Each color in Figure 4 represents
a graph type. As we can see from this two-dimensional space, the
geometric distance between the graph instances can reflect their
graph similarity properly.

We then examine the self-attentive mechanism of SAGE. We
calculate the average attention weight across r views and normalize
the resulting attention weights to sum up to 1. From the testing
instances, we select three examples: a Tree graph, an Erds-Rényi
graph and a Barbell graph, for which SAGE has a high confidence (>
0.9) in predicting their class label. The three examples are depicted
in Figure 5, where a bigger node implies a larger average attention
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Watts-Strogatz e Bipartite

Tree e Barabasi-Albert
Erdos-Renyi Path

Barbell

Figure 4: Two-dimensional visualization of graph embed-
dings generated from the synthesized graph instances using
SAGE. The nodes are colored according to their graph types.

weight, and a darker color implies a larger node degree. On the left is
a Tree graph, in which most of the important nodes learned by SAGE
are leaf nodes. This is reasonable since leaves are discriminative
features to distinguish Tree graph from the other 6 types of graphs.
In the center is an Erdés-Rényi graph. We cluster these nodes into
5 groups by hierarchical clustering [14], and see that SAGE tends
to highlight those nodes with large degrees within each cluster. On
the right is a Barbell graph, in which SAGE pays attention to two
kinds of nodes. The first kind is those nodes that connect a dense
graph and a path, and the second kind is the nodes that are on the
path.

4.2.3 Baselines and Metrics. We use 6 approaches as our baselines:

e GK-SVM/GCN [30], which calculates the graphlet count ker-
nel (GK) matrix, then GK-SVM feeds the kernel matrix into
SVM [12] whereas GK-GCN feeds the kernel vector of each
graph instance to GCN.

e WL-SVM/GCN [29], which is similar as above but using the
Weisfeiler-Lehman subtree kernel (WL).

e graph2vec-GCN [22], which embeds the graph instances by
graph2vec and then feeds the embeddings to GCN.

o cautious-SAGE-Cheby, which is similar to SEAL-CI except
that we replace GCN with Cheby-GCN [6].

o active-SAGE-Cheby, which is similar to SEAL-AI except that
we replace GCN with Cheby-GCN [6].

e SAGE, which ignores the connections between graph in-
stances and treats them independently.

We use 300 graph instances as the training set for all methods
except SEAL-ATI and active-SAGE-Cheby, for which only 140 graphs
are used as labeled graph instances at hand and then B = 160 is
set for active learning. We use 1000 graph instances as the testing
set. We run each method 5 times and report its average accuracy.
The number of epochs for graph2vec is 1000 and the learning rate
is 0.3. To avoid overfitting of SAGE on this small data set, we use
a relatively small number of neurons. The first GCN layer has 32
output channels and the second GCN layer has 4 output channels.
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Figure 5: Attention of graph embeddings on 3 different types of graphs (left: Tree graph; middle: Erd6s-Rényi graph; right:
Barbell graph). A bigger node indicates a larger importance, and a darker color implies a larger node degree.

We set d = 32 and r = 10. The dense layer has 48 units with a
dropout rate of 0.3. We set M = 16 in HC.

4.2.4 Results. Table 4 shows the experimental results for semi-
supervised graph classification. Among all approaches, SEAL-C/AI
achieve the best performance. In the following, we analyze the
performance of all methods categorized into 4 groups.

Group *1: Both GK-SVM and WL-SVM outperform their GCN-based
counterparts, indicating that SVM is more effective than GCN with
the computed kernel matrix. All the embedding-based methods
perform better than these two kernel methods, which proves that
embedding vectors are effective representations for graph instances
and are suitable input for graph neural networks.

Group *2: graph2vec-GCN achieves 85.2% accuracy, which is com-
parable to that of SAGE, but lower than that of SEAL-C/AI One
possible explanation is that graph2vec is an unsupervised embed-
ding method, which fails to generate discriminative embeddings
for classification. Another possibility is that there is no iteration
in this method, and the 300 training instances do not include very
informative ones. These limitations of graph2vec are also motiva-
tions for us to design the supervised embedding method SAGE and
the iterative framework in SEAL-CI.

Group *3: cautious-SAGE-Cheby outperforms SAGE by only 0.8%,
which is not remarkable considering that it exploits many more
training instances. The accuracy of active-SAGE-Cheby is 3.3%
lower than that of SEAL-AI which means that Cheby-GCN is infe-
rior to GCN.

Group *4: Both SEAL-CI and SEAL-AI outperform SAGE signifi-
cantly, which proves the effectiveness of our hierarchical graph
based perspective and the iterative algorithm for graph classifica-
tion. SEAL-AI outperforms SEAL-CI only slightly, by 1.2%. This
shows, although SEAL-CI can make use of more training samples,
it is still influenced by the misclassified cases of GCN.

4.2.5 Influence of the number of labeled training instances. We
examine how the number of labeled training instances affects the
performance of our methods. We train SAGE and SEAL-CI with
a label size of {140, 180, 220, 260, 300}. We train SEAL-AI with 140
labeled instances and then set the budget B for active learning at
{0, 40, 80, 120, 160}. Thus the three methods have the same number
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Table 4: Comparison of different methods on the synthetic
data set for semi-supervised graph classification

Algorithm Accuracy

. GK-SVM/GCN 77.8%/73.4%

WL-SVM/GCN 83.4%/75.5%
*2 graph2vec-GCN 85.2%
+, cautious-SAGE-Cheby 86.5%
active-SAGE-Cheby 89.1%
SAGE 85.7%
4 SEAL-CI 91.2%
SEAL-AI 92.4%

of labeled training instances. We set A = 40 in SEAL-CI and k = 10
in SEAL-AI We run all methods 5 times, and plot their average
accuracy in Figure 6. As we can see from Figure 6, when the number
of labeled training instances is 140, SEAL-CI performs best since
it can utilize more training samples. As the number of labeled
training instances increases, the performance of SEAL-AI improves
dramatically. SEAL-AI catches up with SEAL-CI at 260 labeled
training instances and outperforms SEAL-CI at 300 labeled training
instances. It validates that SEAL-AI can make use of the iterations to
find informative and accurate training samples. Meanwhile SEAL-
CI trusts the prediction of GCN conditionally on its confidence,
which may bring some noise to the learning process. SEAL-C/AI
outperform SAGE in all cases, which makes sense because SEAL-
C/AI make good use of the hierarchical graph setting and consider
the connections between the graph instances for classification.

4.3 SEAL-C/AI on Tencent QQ Group

In this section, we evaluate SEAL-C/AI on Tencent QQ group data.
We describe the characteristics of this data set and then present the
experimental results. Finally, we have some open discussions on
how to construct a hierarchical graph from real-world data.

4.3.1 Data Description. Tencent QQ is a social networking plat-
form in China with nearly 800 million monthly active users!. There

!https://www.tencent.com/en-us/articles/17000391523362601.pdf
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Figure 6: Accuracy with different number of labeled train-
ing instances on synthetic data for semi-supervised graph
classification.

Table 5: Statistics of collected Tencent QQ groups

Class label Number Nodes Edges Density

game 1,773 147 395  548%  1he
non-game 36,063 365 1586 3.28%
node and edge numbers and density are the average for each type
of QQ group.

are around 100 million active online QQ groups. In this experiment,
we select 37,836 QQ groups with 18,422,331 unique anonymized
users. For each user, we extract seven personal features:

e number of days ever since the registration day;

e most frequently active area code in the past 90 days;

e number of friends;

e number of active days in the past 30 days;

e number of logging in the past 30 days;

e number of messages sent in the past 30 days;

e number of messages sent within QQ groups in the past 30
days.

We have 298,837,578 friend relationships among these users.
1,773 groups are labeled as “game” and the remaining groups are
labeled as “non-game”.

We construct the hierarchical graph from this Tencent QQ group
data as follows. A user is treated as an object, and a QQ group as
a graph instance. The users in one group are connected by their
friendship. The attribute matrix X is filled with the attribute values
of the users. The statistics of the graph instances are listed in Table
5. We build the hierarchical graph from the graph instances via
common members across groups. That is, if groups A and B have
more than one common member, we connect them.

4.3.2  Baselines and Metrics. We use the same set of baselines as
in Section 4.2.3. 1000 graph instances are used as labeled training
instances for all methods except SEAL-AI and active-SAGE-Cheby,
for which only 500 are used as labeled training instances at hand
and then B is set to 500 for active learning. We use 10,000 instances
for testing for all methods. We run each method 3 times and report
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Figure 7: The false prediction rate of GCN with A in SEAL-CIL.

Table 6: Comparison of different methods on Tencent QQ
group data for semi-supervised graph classification

Algorithm Macro-F1
- GK-SVM 48.8%
WL-SVM 47.8%
*2 graph2vec-GCN 48.1%
., cautious-SAGE-Cheby 64.3%
active-SAGE-Cheby 66.7%
SAGE 54.7%
*4 SEAL-CI 70.8%
SEAL-AI 73.2%

its average accuracy. The hyperparameters of SAGE are the same
as the settings in Section 4.1.1. Since the class distribution is quite
imbalanced in this data set, we report the Macro-F1 instead of
accuracy.

4.3.3 Results. Table 6 shows the experimental results. SEAL-C/AI
outperform GK, WL and grah2vec by at least 12% in Macro-F1.
Within our framework, GCN is better than Cheby-GCN for about
6%. SEAL-AT outperforms SEAL-CI by 2.4%. Next we provide the
reason why SEAL-AI outperforms SEAL-CI on this data set. Figure
7 shows the false prediction rate (i.e., the percentage of misclassified
instances) within the A most confident predictions of GCN. As we
can see, the false prediction rate increases as A increases and it
reaches 2.4% when A = 2000. In the framework of SEAL-CI, as the
iteration goes on, we shall bring in more noise to the parameter
update of SAGE, while all the training samples in SEAL-AI are
informative and correct. This explains why SEAL-AI outperforms
SEAL-CI on this Tencent QQ group data.

4.3.4 Visualization. We provide visualization of a “game” group
and its neighborhood in Figure 8. The left part is the ego network
of the center “game” group. In the one-hop neighborhood of this
“game” group, there are 10 “game” groups and 19 “non-game” groups.
“Game” groups are densely interconnected with a density of 34.5%,
whereas “non-game” groups are sparsely connected with a density
of 8.8%. The much higher density among “game” groups validates
that common membership is an effective way to relate them in
a hierarchical graph for classification. The right part depicts the
internal structure of the ego “game” group with 22 users. A bigger
node indicates a larger importance, and a darker green color implies
a larger node degree. These 22 members are loosely connected
and there are no triangles. This makes sense because in reality
online “game” groups are not acquaintance networks. Regarding
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Figure 8: The ego network of a “game” group. The left side
is the ego network, in which “game” groups are in red and
“non-game” groups are in blue. The right side is the internal
structure of the ego “game” group, in which a bigger node
indicates a larger importance, and a darker color implies a
larger node degree.

the learned node importance, node 1 has the highest importance as
it is the second active member and has a large degree in this group.
Node 16 is also important since it has the highest degree in this
group. The “border” member 5 has a big attention weight since it
has the largest number of days ever since the registration day and
is quite active in this group.

4.3.5 Discussion. How to construct a hierarchical graph from raw
data is an open question. In the above experiment, we connect two
QQ groups if they have more than one common member (i.e., > 1).
When we change the threshold, it directly affects the edge density
in the hierarchical graph, and may influence the classification per-
formance. For example, if we connect two QQ groups when they
have one common member or more (i.e., > 1), the edge density is
2.8% compared with 0.27% in the first setting. A proper setting of
this threshold is data dependent, and can be determined through a
validation set.

5 RELATED WORK

This work is related to semi-supervised classification of networked
data, variable-sized graph embedding and active learning.

Most work on semi-supervised learning for networked data aims
to utilize the network structure to boost the learning performance.
The assumption is that network context can provide additional
information that is not covered by node attributes. Ever since the
pioneer work of Sen et al. [27], Iterative Classification Algorithm
(ICA) has become a paradigm for networked data with limited anno-
tations. In ICA, for each node a local classifier takes the estimated
labels of its neighborhood and its own features as input, and out-
puts a new estimated label. The iteration continues until adjacent
estimations stabilize. In ALFNET [1], the authors first cluster the
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network nodes into several groups, and design a content-only clas-
sifier CO and a collective classifier CC. Based on the disagreement
score of CO and CC in each iteration, a candidate instance set is
generated from different clusters and labeled. Then both CO and
CC are re-trained using the labeled set until convergence. One main
difference between ICA and ALFNET is that ICA does not require
human intervention while ALFNET needs human annotation in
case labels of the candidate set are not available.

Recent work has focused on using deep learning neural networks
to further improve the performance. [34] leverages both network
context and node features by jointly training node embedding to
predict the class label and the context of the network. Later Kipf
and Welling [16] simplify the loss design by only considering the
supervised loss while network context is exploited by the GCN
operator. Our problem setting is different from all of the above, as
the node is no longer a fixed-size feature vector but a variable-size
graph. It can be regarded as a generalization of the previous setting,
and cannot be handled by existing solutions effectively.

Representation learning on graphs has been proposed to trans-
form instances in topological space into fixed-size vectors in Eu-
clidean space in which geometric distance reflects their structural
similarity. There are two trends on this topic, one of which is a
shift from node embedding [10, 24] to whole graph embedding.
[33] uses CBOW and skip-gram model [21], previously proven
to be successful in natural language processing, to learn a new
graph kernel. Meanwhile, some other methods focus on generating
graph embeddings by integrating node embeddings. [23] proposes
a spatial-based graph CNN operator and then concatenates these
obtained node representations by imposing a problem-specific node
ordering. [6] defines a “graph coarsening” operation by first clus-
tering the node representations and then applying a max-pooling
operation. However, all these methods need some preprocessing
steps such as node ordering or clustering, which is not a necessity
from a data-driven perspective. Another trend is a shift from unsu-
pervised embedding [21] to supervised embedding [5, 18], which
provides better performance for downstream classification tasks.
In this sense, our embedding method SAGE performs whole graph
embedding in a supervised way.

Active learning has been integrated in many collective classifi-
cation methods [1, 28] to find the most informative samples to be
labeled. However, research that generalizes active learning with
deep semi-supervised learning is still lacking. The closest work is
[35] in which the authors utilize active learning to incrementally
fine-tune a CNN network for image classification. Our solution
SEAL-AI is different in the sense that the informative samples se-
lected by active learning are used to update the parameters of the
graph embedding network, whose output is then fed into HC in an
iterative framework.

6 CONCLUSION

In this paper, we study semi-supervised graph classification from a
hierarchical graph perspective. The hierarchical graph is a much
too complicated input for classification, thus we first design a su-
pervised, self-attentive graph embedding method SAGE to embed
graph instances into fixed-length vectors, which are a common in-
put form for classification. We build two classifiers IC and HC at the



graph instance level and the hierarchical graph level respectively
to fully exploit the available information. Our semi-supervised
solutions SEAL-C/AI adopt an iterative framework to update IC
and HC alternately with an enlarged training set. Experimental
results on synthetic graphs and Tencent QQ group data show that
SEAL-C/AI outperform other competitors by a significant margin
in accuracy/Macro-F1, and they also generate meaningful interpre-
tations of the learned representations for graph instances.
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