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ABSTRACT

This paper focuses on using Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN) and Connection-
ist Temporal Classification (CTC) to build an end-to-end
speech recognition for Mispronunciation Detection and Di-
agnosis (MDD) task. Our approach is end-to-end models,
while phonemic or graphemic information, or forced align-
ment between different linguistic units, are not required. We
conduct experiments that compare the proposed CNN-RNN-
CTC approach with alternative mispronunciation detection
and diagnoses (MDD) approaches. The F-measure of our
approach is 74.65%, which significantly outperforms the
Extended Recognition Network (ERN) (S-AM) by 44.75%
and State-level Acoustic Model (S-AM) by 32.28% rela-
tively. The relative improvement in F-measure when over
Acoustic-Phonemic Model (APM), Acoustic-Graphemic
Model (AGM) and Acoustic-Phonemic-Graphemic Model
(APGM) are 9.57%, 5.04% and 2.77% respectively.

Index Terms— Computer Assisted Pronunciation Train-
ing (CAPT), Mispronunciation Detection and Diagnosis
(MDD), Connectionist Temporal Classification (CTC), Con-
volutional Neural Network (CNN), e-learning

1. INTRODUCTION

Computer-assisted Pronunciation Training (CAPT) offers
new opportunities for the language learning since the auto-
mated system is easily make available 24x7 for immersive
learning, and can also solve the problem of teacher short-
age. One of the key technologies of CAPT is the phone-level
mispronunciation detection and diagnosis (MDD). MDD is
more difficult than automatic speech recognition (ASR) since
ASR can use the language model to outweigh the effect of
inaccurate acoustics to output the legitimate character se-
quence. However, for MDD, the constraints offered by the
language model is not helpful as it will lead to missed detec-
tion of mispronunciations. Hence, strong acoustic modelling

is important in order to enable discriminate between native
productions with canonical phonetic pronunciations and the
deviant non-native pronunciations. This attracted wide re-
search interest in recent years [1–7].

Mispronunciations in non-native productions may be at-
tributed to language transfer of features from the primary lan-
guage [3]. Phonological rules [3] are derived to model the
mispronunciation patterns produced by learners. The phono-
logical rules are applied to Extended Recognition Network
(ERN) in traditional speech recognizer to enable the capa-
bility of MDD [7]. A CAPT online system [4, 5] had been
developed with ERN to serve university students. However,
ERN cannot guarantee that all mispronunciation possibilities
from all language learners are covered. When the recogni-
tion network becomes overly bushy and covers too many mis-
pronunciations, the acoustic model may not provide sufficient
discrimination among the many alternative and the detection
performance may drop.

In order to overcome the limitation of ERN, free-phone
recognition was introduced. The state-level acoustic model
was developed as the baseline approach for MDD [6]. Fur-
thermore, the Acoustic-Phonemic Model (APM), Acoustic-
Graphemic Model (AGM) and Acoustic-Phonemic-Graphemic
Model (APGM) were also introduced for enhanced perfor-
mances over the baseline. With the assistance of phoneme
and grapheme information, the F-measure for MDD is in-
creased from 51.55% (ERN (S-AM)) to 72.61% (APGM).
However, forced-alignment is involved in these approaches.
The accuracy of force-alignment would be the key factor of
the performance of MDD. This leads us to investigate the
approach without requirement of force-alignment for free-
phone recognition in MDD.

Connectionist temporal classification (CTC) [8] was in-
troduced to train the Recurrent Neural Network (RNN) for
labelling unsegmented sequences directly. CTC has already
been used in end-to-end speech recognition with acoustics-to-
letter model [9] and acoustics-to-word model [10, 11]. Con-
volutional Neural Network (CNN) is also widely used in im-
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age recognition tasks and have been applied effectively to
many ASR tasks [12, 13]. Applying CNN to speech recog-
nition model can reduce the phone error rate [14] and even
make the model works better under mismatched (noisy) con-
ditions [15].

In this paper, we propose to build the CNN-RNN-CTC
model for MDD problem. Our model architecture is pre-
sented in Section 2. In Section 3, two experiments are con-
ducted to evaluate the performance of the model. The perfor-
mance of different hidden unit sizes will be discussed. The
experimental results are also compared with other MDD ap-
proaches which are reported in [6]. Finally, the conclusion is
presented in Section 4.

2. CNN-RNN-CTC MODEL FOR MDD

Our proposed CNN-RNN-CTC model consists of 5 parts and
the architecture is shown in Figure 1. The first part is the
input layer, it accepts the framewise acoustic features. This
followed by a batch normalization layer and zero padding
layer. The reason of adding zero padding layer is to ensure
all utterances in a batch having the same length. The second
part is convolution, it contains total 4 CNN layers, 2 Max-
pool layers and followed by the batch normalization layer.
The layer should capture the high level acoustic features from
input layer. The third part is bi-directional RNN which is
used to capture the temporal acoustic features. We use Gated
Recurrent Unit (GRU) instead of Long Short-Term Memory
(LSTM) since GRU is simpler than LSTM and it can speed
up the training process. The fourth part is MLP layers (Time
Distributed Dense layers), it ends with a softmax layer for the
classification output. The last part is CTC output layer which
is used to generate the predicted phoneme sequence.

Fig. 1. The proposed CNN-RNN-CTC model

Table 1. Performance of phone recognition with different
number of hidden units.

Hidden Size Correct Insertion Deletion Substitution

128
82.13%
(85886)

2.67%
(2791)

4.49%
(4698)

10.71%
(11199)

256
84.28%
(88409)

2.98%
(3129)

3.46%
(3630)

9.28%
(9733)

512
86.12%
(90081)

2.72%
(2850)

3.08%
(3219)

8.08%
(9449)

1024
87.93%
(91877)

2.15%
(2251)

2.90%
(3033)

7.01%
(7330)

3. EXPERIMENTS

3.1. Setup

3.1.1. Speech Corpus

We use TIMIT and CU-CHLOE (Chinese University CHinese
Learners of English) corpora [16] to evaluate the performance
of the our model. Both corpora are sampled with 16KHz,
mono channels and recorded in sound proof room with close
talking microphone. CU-CHLOE corpus includes 100 Can-
tonese speakers (50 males and 50 females) and 110 Mandarin
speakers (60 males and 50 females). The content of the corpus
includes: 1) the Aesops Fable The North Wind and the Sun,
which has 6 sentences and covers all the English phonemes.
2) a set of 20 phonemic sentences designed by English teach-
ers to cover common English mispronunciations. 3) a set of
10 pairs of confusing words from the TIMIT. 4) a set of 50
pairs of minimal pairs from the TIMIT. Every utterance is
phonetically labeled by trained linguists.

All TIMIT data are grouped as training set. For CU-
CHLOE, we split the corpus into training set, development
set and test set following [6].

In this paper, two experiments are conducted to evaluate
the model performance of phone recognition and MDD.

3.1.2. Model Training

The spectrogram is used as the input feature of the model. The
FFT window size, step time, maximum frequency and hop
size of spectrogram generation are set to 20ms,10ms, 8KHz
and 160 respectively. Tensorflow and Keras are used to im-
plement the model since it includes the CTC loss function.
The input labels (annotated label sequence), the label length,
input length and the softmax output from model are passed
to CTC loss function to compute the loss. Experiments are
conducted to investigate how the hidden unit size affects the
performance with same number of layers. Each set of pa-
rameters are run for 30 epochs. The results with the highest
F-measure are selected as the final result of the model.
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Table 2. Performance of phone recognition with different ap-
proaches.

Correct Accuracy

CNN-RNN-CTC 90.08% (N.A.) 87.93% (N.A.)
S-AM [6] 81.15% (11.00%) 74.37% (18.23%)
ERN (S-AM) [6] 87.02% (3.52%) 83.17% (5.72%)
APM [6] 90.86% (-0.86%) 87.96% (-0.03%)
AGM [6] 91.14% (-1.16%) 88.74% (-0.91%)
APGM [6] 91.47% (-1.52%) 88.23% (-0.34%)

Note: Percentage in brackets indicate the relative percentage dif-
ferent when comparing to our CNN-RNN-CTC approach. Positive
number means our model perform better.

Table 3. Confusion matrices of most frequency mis-
recognized vowels

Annotation
aa ah ae eh ih iy

CNN- aa 4874 286 43 3 3 0
RNN- ah 215 5321 86 48 138 28
CTC ae 73 147 2155 228 16 3

eh 6 52 129 1260 31 5
ih 0 141 10 61 3970 232
iy 1 25 2 19 216 2133

S-AM [6] aa 4612 584 91 2 5 0
ah 299 4280 208 104 476 33
ae 68 258 1776 476 58 4
eh 10 84 288 817 84 10
ih 0 129 25 60 2637 382
iy 0 29 7 19 613 1772

AGPM [6] aa 4929 262 64 5 1 0
ah 176 5113 73 21 194 54
ae 65 160 2304 98 3 0
eh 6 32 81 1324 31 5
ih 1 51 6 28 3870 166
iy 0 18 0 13 196 2160

Table 4. Confusion matrices of most frequency mis-
recognized consonants

Annotation
d dh t sh s z

CNN- d 2420 72 92 0 2 10
RNN- dh 137 1448 9 0 5 38
CTC t 160 12 7833 2 30 12

sh 1 1 1 844 50 2
s 2 18 27 68 4822 146
z 15 27 14 7 91 1160

S-AM [6] d 1790 308 199 0 1 14
dh 151 1142 59 1 11 68
t 317 138 7082 2 31 38

sh 0 1 12 814 89 2
s 4 75 71 84 4336 542
z 2 66 31 4 195 622

AGPM [6] d 2332 28 86 0 2 4
dh 204 1917 4 0 2 16
t 93 9 7725 0 17 7

sh 0 0 1 850 34 0
s 0 7 35 59 4622 65
z 1 2 5 2 113 1303

3.2. Evaluation

The recognized phone sequence are aligned with the anno-
tated phone sequences (labelled by trained linguists) by using
Needleman-Wunsch Algorithm [17]. The aligned phone se-
quences are used to count the correctness, insertion, deletion
and substitution of the model. The results are presented in the
following subsections.

3.2.1. Performance of Phone Recognition

The phone recognition performance is evaluated by align-
ing the annotated phone sequence and recognized phone
sequence by the model. The experimental results of phone
recognition are shown in Table 1. The best recognition re-
sult occurs when the size of hidden unit is 1024 and the
correct phone recognition rate, insertion rate, deletion rate
and substitution rate are 87.93%, 2.15%, 2.90% and 7.01%
respectively.

The result is further compared with those reported in [6].
Table 2 shows the comparison result. The formulae for eval-
uation are as follows [18]:

Correct rate =
N − S −D

N
(1a)

Accuracy =
N − S −D − I

N
(1b)

where N is total number of labelled phones, and S, D and I
represent for the count of substitution, deletion and insertion
errors.

When only comparing the baseline model such as S-AM
and ERN (S-AM) reported in [6], our model obtains the best
phone correctness and accuracies (90.08% and 87.93% re-
spectively), which are 11.00% and 18.23% relative better
than S-AM and 3.52% and 5.72% relative better than ERN
(S-AM). The results are further compared with APM, AGM
and APGM and shown in Table 2. In the above three ap-
proaches, canonical phonetic information is present and it
leads to higher recognition rate for correct pronunciation. As
our proposed model lacks of phonemic and graphemic infor-
mation, the correctness and accuracy slightly underperform
these three approaches.

The confusion matrices of most frequently misrecognized
vowels and consonants by S-AM and AGPM are shown in
Table 3 and Table 4. Same experiment is conducted with
our CNN-RNN-CTC model and shown in the same table.
Our model significantly obtains better results than S-AM for
all confusable consonants and vowels. The proposed CNN-
RNN-CTC model has fewer confusions overall when com-
pared with S-AM, but slightly underperforms when compared
with AGPM, except for the vowels /ah/, /ih/ and consonants
consonants /d/, /t/ and /s/.
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Table 5. Performance of MDD with different hidden unit
Hidden
Unit

FRR FAR DER Precision Recall F-measure
Detection
Accuracy

Diagnosis
Accuracy

128 16.00% 15.76% 23.49% 55.46% 84.24% 66.89% 84.05% 76.51%
256 13.80% 17.15% 21.70% 58.64% 82.85% 68.68% 85.56% 78.30%
512 10.75% 18.75% 19.40% 64.25% 81.25% 71.75% 87.71% 80.60%
1024 8.66% 18.85% 16.76% 69.06% 81.15% 74.62% 89.38% 83.24%

Table 6. Performance of MDD with different approach

FRR FAR DER Precision Recall F-measure
Detection
Accuracy

Diagnosis
Accuracy

CNN-RNN-CTC(AM) 8.66% 18.85% 16.76% 69.06% 81.15% 74.62% 89.38% 83.24%
ERN (S-AM) [6] 11.04% 43.59% 32.26% 42.39% 56.41% 51.55% 84.07% 67.74%
S-AM [6] 22.44% 15.70% 23.33% 42.39% 84.30% 56.41% 78.66% 76.67%
APM [6] 4.75% 36.61% 15.26% 73.57% 63.39% 68.10% 89.75% 84.74%
AGM [6] 5.25% 31.31% 13.49% 73.55% 68.69% 71.04% 90.18% 85.35%
APGM [6] 4.57% 30.53% 13.49% 76.05% 69.47% 72.61% 90.94% 86.51%

3.2.2. Performance of MDD

To evaluate the performance of MDD, we follow the hier-
archical evaluation structure proposed in [19]. The true ac-
ceptance (TA) and true rejection (TR) rates indicate correct
pronunciation detection, while False Reject (FR) and False
Acceptance (FA) indicate incorrect detection. For the mis-
pronunciation diagnosis, TR is further divided into Correct
Diagnosis (CD) and Diagnosis Error (DE). The False Rejec-
tion Rate (FRR), False Acceptance Rate (FAR) and Diagnosis
Error Rate (DER) are calculated by Equation 2:

FRR =
FR

TA+ FR
(2a)

FAR =
FA

FA+ TR
(2b)

DER =
DE

CD +DE
(2c)

The evaluation measures of Precision, Recall and F-
measure are widely used for measuring performance of MDD.
The equations are defined as Equation 3.

Precision =
TR

TR+ FR
(3a)

Recall =
TR

TR+ FA
= 1− FAR (3b)

F −measure = 2
Precision ∗Recall

Precision+Recall
(3c)

For the accuracies of mispronunciation detection and mis-
pronunciation diagnosis, the formulae are shown in Equations
(4a) and (4b).

Detection Accuracy =
TA+ TR

TA+ FR+ FA+ TR
(4a)

Diagnosis Accuracy =
CD

CD +DE
= 1−DER (4b)

Table 5 shows the performance of our model with differ-
ent hidden unit sizes of MDD. The best F-Measure (74.62%)
occurs when the size of hidden unit is 1024, we select this

result and further compare with other approaches reported
in [6].

Table 6 shows the performance of the MDD task of us-
ing our approach and the approaches reported in [6]. If we
compare with the performance of ERN (S-AM), the rela-
tive improvements in F-measure, mispronunciation detec-
tion accuracy and mispronunciation diagnosis accuracy are
32.28%, 13.63% and 8.57% respectively. Also as shown in
Table 6, although the proposed model did not use any phone-
mic and graphemic information, the relative improvement in
F-measure when over APM, AGM and APGM are 9.57%,
5.04% and 2.77% respectively .

4. CONCLUSION

This paper presents the CNN-RNN-CTC approach to develop
an end-to-end speech recognition approach for the task of
MDD, such that it does not require any explicit phonemic
and graphemic information input and hence no forced align-
ment is required. Our approach do not need the presence
of any phonemic and graphemic information and no force-
alignment is required. The experiment results show that our
approach significantly outperform previously approaches, in-
cluding those that utilize phonemic and graphemic informa-
tion input, by a relative improvement of 9.57% over APM,
5.04% over AGM and 2.77% over APGM. This work can be
used as the baseline of end-to-end approach for the task of
MDD. In the future, we will work on adding the linguistic
information to further improve the performance.
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