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Abstract

This paper contributes to the ongoing debate about which spatial analysis functions should be coupled with a GIS
by identifying research problems that need to be solved before a richer toolbox of spatial statistical techniques can
be implemented in a GIS. Three general problem areas are addressed. The first replaces a sequential ordinary
least squares linear regression implementation with a single regression analysis. The second establishes the
effective sample size for a single variable in a georeferenced data set, a result useful when calculating confidence
intervals for means. The third establishes the effective sample size for pairs of variables in a georeferenced data
set, a result useful when calculating the significance of correlation coefficients. These three general problems
allow four more specific research problems to be identified that are in need of definitive solutions before a richer
toolbox of spatial statistical techniques can be relatively easily implemented in a GIS. Their complete solutions
will involve both empirical assessments and simulation experiments. These four problems are represented by
four principal equations posited in this paper, equations that offer considerable computational simplification for
the implementation of spatial statistical techniques within a GIS. Sufficient evidence in support of them is
presented here to allow their implementation at this time on an experimental basis. These equations remove the
need for eigenfunction and nonlinear optimization routines, and maintain the standard linear regression tech-
nique as the workhorse of a GIS statistical analysis. They also strengthen the inferential basis for a spatial

scientist.

I. INTRODUCTION

Zhang and Griffith (1997, 2000) contribute to the on-
going debate about which spatial analysis functions
should be coupled with a GIS. These researchers out-
line how user-friendly spatial statistical analysis mod-
ules can be developed, illustrating such developments
with ArcView scripts. In tandem they demonstrate
how to implement a spatial statistical/GLS module in
Access with component software technology. These
two articles reflect upon the issue of which spatial
statistical functions serve well as a bridge between
GISs and classical statistical analysis systems, espe-
cially spatial autocorrelation testing and spatial
autoregression modeling. This paper extends their
discussion by identifying research problems that need
to be solved before a richer toolbox of spatial statisti-
cal techniques can be implemented in a GIS. The main
focus is on algorithms and methods that can simplify
the spatial statistical computing in a GIS environ-
ment. This is critical for turning a basic desktop GIS
into an efficient spatial analytical system, and is be-
coming increasingly important as spatial statisticians
realize that simplifications seem to be the only choice
when the spatial dataset being analyzed is massive
in size.

Three general problem areas are addressed in this

paper. The first replaces the sequential ordinary least
squares linear regression implementation promoted
by Zhang and Griffith (2000) with a single regression
analysis. The second establishes the effective sample
size—the equivalent sample size for independent ob-
servations—for a single variable in a georeferenced
data set. This result is useful when calculating confi-
dence intervals for means. The third establishes the
effective sample size for pairs of variables in a
georeferenced data set. This result is useful when
calculating the significance of correlation coefficients.
Of note is that the geographic connectivity matrix is
assumed, as it can be extracted from spatial topology
data contained in a GIS using either boundary files
(for surface partitionings), Thiessen polygon arcs (for
point data), or inter-point distances.

II. ESTIMATING THE AUTOREGRESSIVE PA-
RAMETER p FROM A MORAN COEFFICIENT

A simple and precise way to circumvent the numeri-
cal intensity and computer memory requirements
associated with implementing a simultaneous
autoregressive model (SAR; see Griffith, 1988) involves
exploiting spatial dependency latent in a Moran Co-
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efficient (MC). The MC is relatively simple to calcu-
late, even for massively large georeferenced data sets
and can be calculated using a linear regression algo-
rithm (Griffith and Amrhein, 1997, pp. 44-45). The
SAR spatial autocorrelation parameter, p, requires
calculating the eigenvalues of a geographic contigu-
ity matrix as well as nonlinear regression involving
iterative nonlinear optimization. But the covariation
between MC and o for the SAR model displays a
strong and reasonably precise linear relationship for
normally distributed variables, which is portrayed in
Figure 1; the observed relationship is denoted by o’s
(0), whereas the predicted values are denoted by pluses
(+). This graph was constructed from empirical data
results associated with acceptable Shapiro-Wilk (S-
W) statistics (i.e., values close to 1), which indicate
conformity with a normal frequency distribution,
based upon a number of empirical data sets (see
Griffith and Layne, 1999).

The graph appearing in Figure 1 reveals a rather
smooth curve depicting the relationship between MC
and p . Fitting an equation to this curve yields a use-
ful approximation for the SAR autocorrelation param-
eter, namely

. 2 2
pe— - —————, &

4
MC MC o

1+ e max 1 + e(n‘—l)
where MC,,,,denotes the maximum positive MC value
that can be calculated with a given surface partition-
ing, and e is the base of the system of natural loga-
rithms (e~ 2.71828). This extreme MC value roughly

n
ﬁl A, , where 4, is the second eigenvalue
© the geographic weights matrix C used to calculate
MC, and n denotes the sample size. Here 1 is an n-by-
1 vector of ones, and T denotes the matrix transpose
operation. This equation was specified in such a " &y

equals

that 5 = 0 when MC = —11.
n—
cases used to construct Figure 1, pseudo-R2? = 0.878.
The predicted values align reasonably well with their
empirical counterparts. A 15-by-15 lattice simulation
experiment—for which MC,,,, = 1.05084—further con-
firmed this equational form, yielding pseudo-R? =
0.999. The graph for this result appears in Figure 2;
the simulated relationship is denoted by o’s (0),
whereas the predicted values are denoted by pluses

.

For the empiri,_,

Two assumptions underlie equation (1). The first is
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Figure 1. Predicting rho from a MC

that the frequency distribution for the georeferenced
data being analyzed conforms to a bell-shaped curve
(i.e., a normal frequency distribution). The second is

that 4, is easy to calculate.

Box-Cox Transformations

Griffith et al. (1998) discuss a quantile approach to
selecting a power transformation to convert a non-
normal variable to one that more closely mimics nor-
mally distributed data. Often georeferenced environ-
mental data reflect a log-normal rather than a nor-
mal distribution. In this case the transformation of
interest for some georeferenced variable Y is LN(Y +
), where LN denotes the natural logarithm and is
equivalent to a power transformation whose exponent
is zero. A quick way to estimate § is given by the fol-
lowing procedure:
Select a systematic sample of size m, say m =
50, from across the data range, [-Vmin , Yma J. Let
this set of values be the candidate set for pa-
rameter 8. Calculate the S-W statistic for each
of the m transformations, LN(Y + §.),j =1, 2,
..., m. Equate § to that 5j having the largest
S-W statistic.

This procedure tends to render a good estimate forg ,
but not necessarily the optimal estimate since it fails
to include the Jacobian term included in a Box-Cox
specification. Fortunately, this deviation seems to dis-
appear as n increases. An investigation of Haining’s
(1990, 1991) georeferenced Glasgow epidemiological
data yields, for three variables having significant S-
W statistics, those illustrative tabulations appearing
in Table 1.

Clearly this selection method works well for log-nor-
mal transformations, and requires that only the tra-
ditional S-W statistic be added to a GIS toolbox. The
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Figure 2. Predicting rho from a MC: 15-by-15 lattice
simulation results

plot of S-W versus S portrays a hyperbola curve, which
could be used for local interpolation in a way that
parallels the local quadratic interpolation procedure
outlined by Zhang and Griffith (2000).

The remaining problem pertains to the case of a non-
zero power transformation. A procedure could be de-
vised that systematically evaluates an exponent, say
v, across the interval [-2, 2] as well as 0 across the
data range [-Ymin , Ymax]. But future research is needed
to discover a more efficient approach.

Estimating MC,,,, for a Geographic Connectiv-
ity Matrix

In general MC,,,, approximately equals 1. Butin many
cases this quantity exceeds 1, whereas in some cases
it is less than 1. Precisely, MC,,,, is determined by
the maximum eigenvalue of  matrix
117 117 . . . .
I--—HCI- ), where I'is the identity matrix.
n
This matrix appears in the numerator of the MC for-
mula. This eigenvalue is approximately and asymp-
totically equivalent to the second largest eigenvalue
of matrix C.

The principal eigenvalue of binary matrix C can be
quickly calculated, even for very large n, using one of
the oldest and the well-known method of

limi 1"C*'1 = A, , where k is a positive integer,
ST e
for matrix C (Chatelin, 1993, p. 213). Of note is that
this ratio is very easy to program, especially since
matrix C contains mostly zeroes. In fact, the compu-
tation of this ratio can be greatly simplified in a GIS
environment by using a polygon neighbors list file
(Zhang and Griffith, 1997), with each row of this file
recording the identification numbers of all the spa-
tial neighbors of a specific polygon. An n-by-1 vector
A, when right-multiplied by matrix C, results in a new
n-by-1 vector whose i-th element is simply the sum of
the elements of vector A that are spatially connected
to polygon i. Since a polygon neighbors file can be
easily generated from the topologic information stored
in a GIS data set, the principal eigenvalue calcula-
tion algorithm illustrates just another advantage of
combining GIS and spatial statistical computing. This
advantage becomes even more pronounced in cases
when the numerical intensity involved in solving
eigensystems of a connectivity matrix based upon a
large sample size is so massive that even powerful
supercomputers cannot supply sufficient computing
resources. The following is an Avenue script that il-
lustrates how to implement this algorithm in ArcView.
“ Script: EigenValue.Principal
“* Description: Calculate the principal eigenvalue of
a given binary matrix C (expressed as a neigh
bor list)
“* Parameters: input — C (the neighbor list)

C = self.get(0)

‘verify the inputs

if (C.Is(List).Not) then
return nil

end

‘generate an n-by-1 vector of ones
templ = list.make
n = C.count
foreachiin 1..n
templ.add(1)
end
‘find the principal eigenvalue using the Chatelin formula

Table 1. Sample Box-Cox transformation results

Standardized mortality rates | original quantile selected $ S-W,., selected &

Aceidents 0.93773 | § = 89, S-W =0.9862 | & = 73; S-W =0.9864
Respimiony 0.95244 | § = 32, 5-W =0.9740 | § = 26, S-W = 0.9740
Cancer 0.96229 | § = 23, S-W =0.9787 | § =-31;S-W =0.9790
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precision = 10 ~ (-5)
diff =n

count =1

lamlag = -1

‘denominator in the first loop (total number of connections)
denom =0
foreachiin 1..n
denom = C.get(i-1).count + denom
end

temp = list.make

denom =0

for eachiin 1..n
denom = C.get(i-1).count + denom
temp.add(C.get(i-1).count)

end

while(true)
for eachiin 1..n
sum =0
for each j in 1..(C.get(i-1).count)
index = C.get(i-1).get(j-1)
sum = temp.get(index) + sum

end

templ.set( (i-1), sum )
end
numer = 0

for each min 1..n
numer = templ.get(m-1) + numer
end

lamda = numer / denom
diff = lamda - lamlag
if (diff > precision) then
lamlag = lamda
denom = numer
temp = temp1l.DeepClone
continue
else
break
end

end
return lamda

Expansion of the matrix expression

117 117

I- ;)C(I - T) suggests that the principal
eigenvalue of matrix C is being reduced by functions
of the maximum row sum for matrix C and the total
sum of the entries of matrix C, namely 1"C1. An em-
pirical analysis of twelve judiciously selected surface
partitionings, whose n values range from 75 to 513,
yields

3XChw  Tx17C1

2n 3n°

A = A : @)

where ¢, denotes the maximum row sum. Although
this result is based upon a rather small sample size,

it is bolstered by its accompanying conceptual expec-
tation as well as a very favorable performance in a
simulation experiment involving 10,000 randomly
selected regular square tessellations of pixels form-
ing rectangular regions ranging in size from 10-by-10
to 10,000-by-10,000. The accompanying R? value for
equation (2) is 0.978; the accompanying residuals ap-
pear to conform to a bell-shaped curve, but display
considerable heteroscedasticity. Again, future re-
search is needed in order to confirm, and possibly re-
fine, this formula.

III. THE EFFECTIVE SAMPLE SIZE FOR A
SINGLE GEOREFERENCED VARIABLE

Much of conventional statistical theory was developed
using the independent and identically distributed (iid)
assumption. This theory is replete with formulae in-
cluding sample size (n) and degrees of freedom (df)
terms. Accounting for the redundant information con-
tained in georeferenced data can involve calculating
the equivalent sample size and/or degrees of freedom
for an iid data set. These equivalencies may be de-
fined as effective sample size (n*) and effective de-
grees of freedom(df*); respectively they equal n and
df when spatial autocorrelation is zero, and n* equals
1 when spatial autocorrelation is 1.

One simple statistical test commonly employed to
zoom in on an average, namely the t-test performed
on single sample means, can be modified to properly
account for the presence of spatial autocorrelation in
georeferenced data. Complications emerging in this
statistical problem that lie dormant with iid data in-
clude: variance inflation/deflation factors (VIF/VDF),
effective sample size differing from n, and
autocorrelation estimation (denoted by ﬁ). Of note
is that the notion of a VIF frequently is encountered
when studying linear regression.

The most popular specification of the SAR model is
based upon a row-standardized geographic weights
matrix. This specification casts each locationally
tagged attributed value, y;, as a function of the
weighted average of its nearby, surrounding attribute

n n
values, namely pyztwijyj O<w <1 Zwij =1).
j=l Y j=1

This specification also conceptualizes spatial
autocorrelation as being contained in the regression
model error term. And, theoretically this specifica-
tion relates to the Bessell function semivariogram
model in geostatistics (Griffith and Layne, 1999, Ch.
3). The equational form of the SAR model is, using
matrix notation,
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Y=28+(@A-p W',

where Y is an n-by-1 vector for the dependent vari-
able (i.e., the regressand), Z is an n-by-(p+1) matrix of
predictor variables (i.e., the regressors), 3 is a (p+1)-
by-1 vector of regression parameters, € is an n-by-1
vector of iid N(O, GZ‘ ) error terms, W is an n-by-n row-
standardized geographic weights matrix—often con-
verted from a binary, 0-1 contiguity matrix C based
upon “rook’s” adjacencies (drawing an analogy with
chess moves)—and py is the spatial autoregressive
parameter for variable Y. In general, though, let the
spatial covariance matrix be denoted by Vo2, which
for this SAR model yields V1= (I — pyvV)T(I - pYVV).

Now, consider the sampling distribution of the mean,

y . Foriid data, the variance of this sampling distri-

bution is given by © > In contrast, for georeferenced

n
1'v'1

data this variance is given by 5 o’. Of noteis

that for iid data, V** = I and this latter expression

reduces to , whereas if spatial autocorrelation

n
equals 1, conceptually speaking this latter expression

2

(&}

reduces to Meanwhile, positive spatial

autocorrelation causes an inflation of the variance.
The accompanying variance inflation factor (VIF) is

.
given by @Vf ) , where TR denotes the matrix ;.4 ce

n
operator. Combining this result with the conventional

adjustment for variance, and taking into account the

Tx7-1

TR(\A/")—il ¥y

estimation of py, renders >
n —
VIF estimator.

Determining the effective sample size for this
univariate case requires the following algebraic ma-
nipulations:

TR(V™") 52
o, _ TR(V')s: n °
o 2 TRV’
n TROV1)_D R T( : )
1"v'1 1'v'1 1'vi
Hence the effective sample size is given by n* =
TR(V™) . . . :
n W . Of note is that if spatial autocorrelation

is zero, this expression reduces to n; if spatial
autocorrelation is 1, conceptually this expression re-
duces to 1.

Consequently, when computing the t-statistic for the
mean of a georeferenced variable, where the spatial
autoregressive parameter py has been estimated, the
effective degrees of freedom used should be df* =

TR(V™")
n =

1'v'1
sample standard deviation, s, and 1 df is lost for es-
timation of the autoregressive parameter, p -

-2, where 1 df is lost for estimation of the

Calculating the effective sample size for a univariate
georeferenced data analysis involves matrix inversion.
But the relationship between this quantity and the
SAR spatial autocorrelation parameter exhibits a very
strong and very precise nonlinear trend, which is por-
trayed in Figure 3. This graph was constructed from
both empirical data results and simulation experiment
results; in Figure 3 the empirical relationship is de-
noted by 0’s (0), the simulation relationship is denoted
by dots (.), and the predicted values are denoted by
pluses (+). The simulation results follow a smooth
curve, whereas the empirical data results slightly scat-
ter about this smooth curve.

Figure 3 implies the following equation:

0.0 — o

0.0 05 1.0

rho (SAR)

Figure 3. Predicting n* from n and rho
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n-1
4% =nx [1-2.67978 (1 - o 0-745550(1-037352) )]
n

©)

For the empirical cases used to construct Figure 3,
the pseudo-R?*=0.998. The specification of this equa-
tion has been formulated in order to insure that when
f) =0 then &% S0, and when ﬁ =1 then & =1.

An Example: Haining’s Georeferenced Glasgow
Data

Standard mortality rates for both “all deaths” and
“cerebro-vascular disease” appear to conform to a nor-
mal frequency distribution in the population; their
respective S-W statistics are 0.97771 (prob =0.46) and
0.97296 (prob = 0.26). Three of the remaining stan-
dardized rates require a power transformation:

LN(accidents + 89): S-W =0.98615 (prob = 0.85)
LN(respiratory + 32): S-W =0.97398 (prob = 0.30)
LN(cancer — 23): S-W =0.97869 (prob = 0.50)

Meanwhile, the standardized mortality rate for
“ischaemic heart disease” has one extremely high and
one extremely low rate, with these two outliers caus-
ing deviation from normality. Once these two anoma-
lies are accounted for, the frequency distribution con-
forms acceptably well to a bell-shaped curve [i.e., S-W
=0.98178 (prob = 0.66)].

To simplify comparisons here, all variables have been

converted to z-scores, resulting in s3 = 1. For Glasgow,

MChax= 1.07829; from equation (2), I\A/Ime =1.08247.

Univariate analysis results are summarized in Table
2.

Multiplying an error variance, s‘;‘ , by its correspond-
ing theoretical VIF results in a variance value for the
associated georeferenced variable of approximately 1
(e.g., 0.59889x 1.65020 =0.98829). Clearly, using the
values for j rendered by equation (1), which almost
equal their j counterparts, is far better than using

p=0. Similarly, using the values for & rendered by

equation (3), which also deviate little from their n*
counterparts, is far better than using n = 87.

IV.THE EFFECTIVE SAMPLE SIZE FOR A PAIR
OF GEOREFERENCED VARIABLES

An even more popular statistical test is the t-test per-
formed on bivariate correlation coefficients. Consider
the sampling distribution of the bivariate correlation
coefficient, r. For iid sample data, the variance of this

1
sampling distribution is given by P In contrast,
for georeferenced data this variance may be approxi-
mated with a simulation experiment.

As with the univariate case, the covariation for two

georeferenced variables also has a VIF associated with
it. In its simplest form, this VIF is given

. TR[(V)ZI/E )T (V;I/Z )]

b ;in its sample statistics form,

n
TR[(V;”Z )T V;l/z ]
this VIF is given by B -
n—2
T x7-12\T /X7-172

M . )1 , for which both the two means

n(n—2)

and the two spatial autoregressive parameters have
been estimated. But when this VIF is divided by the
VIFs for the variances of X and Y, it becomes a vari-
ance deflation faction (VDF). Inits simplest form, for

TR[(V;/Z )T V;1/2 ]
JTR(V)XTR(V;')

words, the covariation inflation for two georeferenced
variables tends to be more than compensated for by
the product of the individual VIFs, yielding a VDF,
which is sensible since a correlation coefficient can-
not exceed 1. In practice this VDF tends to be close to
1.

example, it becomes . In other

As often is the case, the major impact of spatial

Table 2. Univariate results for Haining’s Glasgow data

variable P MC Fﬁ) VIF Sz, n* n*
All deaths 0.70108 0.42670 0.68079 1.65020 0.59889 12.9 13.2
Accidents 0.51561 0.29308 0.51727 1.24176 0.79733 250 | 258
Respiratory 0.54626 0.30537 0.53427 1.28423 0.76515 22.7 23.2
Cancer 0.63716 0.39776 0.64935 1.45876 0.67531 16.6 17.0
Heart disease 0.50405 0.23218 0.42742 1.22733 0.81576 259 264
Cerebro-vascular 0.35573 0.17466 0.33465 1.09805 0.92260 39.1 39.7
Social class 0.70581 0.46609 0.72013 1.66780 0.56334 12.6 13.0
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autocorrelation with regard to a correlation coefficient
is on the variance of its sampling distribution. Sup-
pose the variance of the sampling distribution of r is

given by GS . Then given that cf = = L , the effec-

n—2
tive sample size, say n,, > may be defined as Ny, =

1
- i 2 = (5;3 + 2 This effective sample size can be

T
approximated by simulating the sampling distribu-

tion, such that ﬁ;, = 6;2 + 2. The steps of the nec-

essary simulation experiment used to calculate 63
may be summarized as follows:

Begin an experiment by generating two n-by-1
vectors of iid N(0,1) pseudo-random variables,
one for variable X and one for variable Y; re-
spectively denote these pseudo-random vari-
ables by, say, € and &,. Next, embed spatial
autocorrelation into both X and Y as follows:

X=(I-pxW)'ex and Y =(I-pyW)'ey,

where pxand pyrespectively denote prespecified
levels of spatial autocorrelation (ranging from
0 to 1 for positive spatial autocorrelation).
Third, calculate the correlation coefficient for
X and Y. Fourth, replicate this procedure sev-
eral thousand times, keeping px and py the
same across replications, and repeating these
sets of replications for a systematic sample of
p; values from (pi, 1). Fifth, calculate the vari-

ance of r, say sf . Finally, calculate the approxi-

mate effective sample sizeas n,, = 5 + 2=

S +2.

r

The resulting equation should reduce to | when

-2
px = py= 0, and should increase from this value as
both px andpyincrease.

Calculating the effective sample size for a bivariate
georeferenced data analysis involves matrix inversion
coupled with extensive simulation work. The rela-
tionship between this measure and each of the SAR
spatial autocorrelation parameters exhibits a very
strong and very precise nonlinear trend, which is por-

trayed in Figure 4. This graph was constructed from
a series of simulation experiments employing the geo-
graphic weights matrix for the Glasgow geographic
landscape; the simulated relationship with regard to
Py is denoted by o’s (0), whereas the simulated rela-

tionship with regard to Pyis denoted by pluses (+).
The simulation results follow the same scatterplot for
variables X and Y, which is sensible. The horizontal
alignment of points in the upper right-hand quadrant
of the graph are for cases where only one of the
autocorrelation parameters equals 0; the cluster of
points on the right-hand part of the graph are for cases
where Py py. Of note is that the range of negative
spatial autocorrelation is governed by the smallest
eigenvalue of the geographic weights matrix (i.e.,

|
-0.63602

tioning).

=-1.57228 for the Glasgow surface parti

Figure 4 implies the following equation:
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Figure 4. Predicting n*-xy from rho-x and rho-y



104

Griffith and Zhang: Computational Simplifications for Spatial Statistical Techniques

where the extreme eigenvalues are Amax for positive
spatial autocorrelation and Amin for negative spatial
autocorrelation, and are extracted from the row-stan-
dardized geographic weights matrix W. Because ma-
trix Wis row-standardized, Amax is theoretically known
to always equal 1; hence for the very common case of
both X and Y containing positive spatial

%
autocorrelation, the equation reduces to ﬁw =1+

(n-3) x L2PxPy

1+ poY

This equation is similar to that

known for time series (see Haining, 1990, p. 314), and
that reported by Richardson and Hémon (1982). Two
noteworthy differences are the appearance of Aminin
the case of negative spatial autocorrelation, and the
appearance of 6 in the denominator. This value of 6
may be specific to the Glasgow medical districts sur-
face partitioning; further research is need to confirm
or revise this finding. The simulation experiments
used to construct Figure 4 also were used to evaluate

the equation for ﬁy ; the accompanying scatterplot
XY

appears in Figure 5, for which pseudo-R2 = 0.996.
An Example: Haining’s Data Revisited

Again using the Glasgow geographic landscape, con-
sider the “cancer mortality rates” variable together
with the “percentage of households living in poor ac-
commodation lacking basic amenities” (a “social class”
surrogate). Let this first variable be Y and this sec-
ond variable be X. This first variable can be trans-
formed in order to obtain an acceptable S-W statistic
using LN(Y — 23). Unfortunately, a power transfor-
mation does not exist for variable X that yields an
acceptable S-W statistic. For purposes of analysis, the
logarithmic transformation LN(X + 0.01) has been
employed here.

30 — “
70 — Py
°
60 | 7
> : OO.‘
50 —
< o
40
c v °
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°
20 —
[ J
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°
0 i
1 T T T T T T 1 T
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n*-hat-XY

Figure 5. Relationship between n*-XY and n*-hat-

First, the correlation coefficient between the two se-
lected transformed georeferenced variables is 0. 206,
which is slightly less than the r = 0.245 value reported
by Haining for Y with LN(X + 1). The VDF here is
0.99722, which essentially is 1. A simulation experi-
ment for this case—for which py = 0.70581 andpy=
0.63716, and involving 5,000 replications—yieldsg, =
0.15391 for the autocorrelated data and 0.10814 for
the unautocorrelated data. This second value com-
pares very favorably with its theoretical counterpart

y 1
of 0.10847. Hence, ﬁz\ =

& >+2 =442,
0.15391°

Now the corresponding significance tests here may
be written as follows, with regard to spatial
autocorrelation acknowledgement:

1gnoring: = 1 99 = Ls ’
g g 0 108 7 85,0.975

accounting for:
=2.0178.

=1.33844 << t
0.15391 42.2,0.975

Therefore, taking spatial autocorrelation into account
strongly implies that there is no relationship between
Glasgow “cancer mortality rates” and “percentage of
households living in poor accommodation lacking ba-
sic amenities” in the population.

V.IMPLICATIONS FOR FUTURE RESEARCH

Therefore, four research problems are identified in this
paper that need to be definitively solved before a richer
toolbox of spatial statistical techniques can be rela-
tively easily implemented in a GIS. The complete so-
lutions will involve both empirical assessments and
simulation experiments. These four problems are rep-
resented by the four principal equations posited in
this paper.

Equation (1) describes the relationship between the
SAR spatial autocorrelation parameter computed us-
ing a row-standardized binary geographic weights
matrix, and the MC for a given georeferenced data
set that is normally distributed. But does this rela-
tionship persist when the geographic weights matrix
is based upon inter-point distance, or some other mea-
sure of nearness? Does this relationship persist when
the underlying frequency distribution is non-normal
(e.g., uniform, exponential, or sinusoidal)? Does this
relationship persist if the autoregressive response
(AR) model, a popular specification in spatial econo-
metrics, is employed? And, how does this relation-
ship change when the conditional autoregressive
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(CAR) model, a popular specification in image analy-
sis, is employed?

Equation (2) allows the maximum MC value to be
predicted. It needs to be more thoroughly evaluated
with regard to a much larger set of empirical surface
partitionings, including those associated with hexago-
nal tessellations. It also needs to be more thoroughly
evaluated through a wider range of simulation experi-
ments. Evidence reported here suggests equation (2)
holds considerable promise for implementation pur-
poses.

Equation (3) describes the effective sample size for a
single georeferenced variable. Considerable evidence
has been accumulated in support of its specification.
Additional assessment should be in terms of a wider
range of simulation experiments, including ones that
involve hexagonal tessellations. It also needs to be
related to equation (4).

Equation (4) describes the effective sample size for a
pair of georeferenced variables. This equation also
needs to be subjected to a more thorough assessment,
primarily using simulation experiments. Is the fac-
tor of 6 appearing in it universal? Or does this value
somehow relate to the minimum eigenvalue of the
associated matrix C, or to the number of areal units
involved? In addition, this result needs to be assessed
within the context of differing natures of spatial

autocorrelation (i.e., Px> 0 and py<0).

In conclusion, equations (1)-(4) offer considerable com-
putational simplification for the implementation of
spatial statistical techniques within a GIS. In fact,
sufficient evidence in support of them is presented in
this paper to allow their implementation at this time
on an experimental basis. These equations can be
easily implemented in a desktop GIS system like
ArcView, as is illustrated in this paper. The same
implementation also can be easily replicated in other
GIS systems, such as Arc/Info using AML or VBA
(which requires Arc/Info 8), or even in a desktop

DBMS, such as Access (which requires interoperability
with GIS components). They remove the need for
eigenfunction and nonlinear optimization routines,
and maintain the standard linear regression technique
as the workhorse of a GIS statistical analysis. Finally,
they strengthen the inferential basis for a spatial sci-
entist. These equations clearly are worthy of the sub-
sequent attention needed to confirm their respective
utilities.
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