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Abstract

This paper reviews four different approaches for estimating the block-averaged value of an environmental at-
tribute from point data: 1) the sample arithmetic average, 2) the declustered mean, 3) block kriging, and 4) sto-
chastic simulation. The first approach is straightforward and well suited for estimation over large blocks that
contain many randomly located observations. Declustering techniques can be used to correct for preferential sam-
pling of specific subareas of such large blocks. The last two techniques, kriging and simulation, account for the
pattern of spatial dependence of observations and allow one to compensate for the shortage of data inside small
blocks by incorporating observations outside the block. The major advantage of stochastic simulation is that it
provides a non-parametric measure of the uncertainty attached to the prediction of a single block or multiple
spatially dependent blocks.Stochastic simulation can also be used to upscale properties like permeability that do
not average linearly in space, whereas the first 3 techniques are only valid for linear averaging parameters. The
different techniques are illustrated using a soil data set related to heavy metal contamination over a 14.5km?2 area

in the Swiss Jura.

L. INTRODUCTION

Over the last fifteen years, kriging has been increas-
ingly preferred to traditional interpolation methods,
such as moving averages or inverse distance meth-
ods, for predicting environmental attribute values, and
in particular soil properties, at unsampled locations
[9,14,19]. The main advantage of geostatistical inter-
polation is that it accounts for the pattern of spatial
variability of observations modeled through the
semivariogram, while providing a measure of estima-
tion variance. Soil properties are typically measured
on small cores, whereas land managers or decision
makers are interested in the average attribute value
over larger surfaces such as 1 ha plots, hereafter called
“blocks”. Determination of average values over sup-
ports larger than the measurement or data support is
generally referred to as “upscaling”,particularly when
the attribute considered does not average linearly in
space. Other terms like coarse-graining or aggrega-
tion are also used in soil science [18].

A particular feature of kriging is that it allows esti-
mation of the target attribute on a support that is
different from the data support, and so upscaling of
soil properties has been naturally performed using
block kriging [4]. A recent paper by Brus and de
Gruijter [3] has, however, recalled that the simple
arithmetic (equal-weighted) average of observations
is a valuable alternative to kriging when the block
contains many observations collected according to a
random sampling design. A preferential sampling of
low- or high-valued parts of the block can be corrected

using weighted averages provided by declustering al-
gorithms [9,11].

Upscaling issues are not specific to soil science. Hy-
drologists, mining and petroleum engineers have faced
the problem of change of support for a long time [15
p.511—515], [5,23].The characterization of petroleum
reservoirs requires the building of numerical models
with grid cells of size several orders of magnitude
greater than the volume support of the available core
data. An additional constraint is that the block val-
ues must reproduce the pattern of spatial variability
of petrophysical properties (e.g. porosity, permeabil-
ity) in order to achieve realistic predictions of flow
responses. In petroleum engineering as in soil science,
the upscaling issue has been addressed using
geostatistics, but simulation algorithms are typically
preferred to block kriging [10]. The basic idea con-
sists of generating realizations of the spatial distri-
bution of the target attribute which reproduce the
pattern of spatial variability of point measurements.
Block simulated values are then computed using lin-
ear or non-linear averages of the point simulated val-
ues inside each block [6,7,13,17,19].

The objective of this paper is to present a practical
overview of the geostatistical techniques currently
available for determining block-averaged values of
environmental attributes, and to emphasize the mer-
its of the lesser known stochastic simulation approach
over block kriging.
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II. SETTING THE PROBLEM

Consider the problem of estimating the average value
of a soil attribute z, say Cd concentration, over a block
of 2km? located within a larger 14.5km? area, see Fig-
urel. The information available consists of 259 point
Cd concentrations z(u,), 38 of those being located in-
side the 2km? bloc.A detailed description of the sam-
pling, field, and laboratory procedures is given in
[1,22]. Each observation z(u,) refers to a single soil
core which can be assimilated to a point of coordinate
u,, with respect to the size of the block.
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Figure 1. Location map of the 259 point Cd concen-
trations available for estimating the average concen-
tration over the 2km? block delineated by the dashed
line. The bottom graph shows the sample histogram.

Provided the averaging process is linear, the most di-
rect estimate is the equal-weighted arithmetic aver-
age of the n=38 observations that fall inside the block
B:

m :lzz(ua)zl.SSmg/kg (1)
n =

Because the block estimate is based on a limited num-
ber of observations,one would not expect it to identify
exactly the true block value.Thus, it is often more in-
formative to state an interval within which the un-
known block value would be expected to lie with a
specified level of certainty or confidence.For example,

the classical 95% confidence interval (e.g., see[2p.18])
is defined as:

=ty Sty | 2] =[1.30,1.80] @)
n n

where the value of the Student’s ¢ statistics, t;.,/5, 18
2.02 for n=37 and a probability =0.05, and the vari-
ance is computed as:

. I
Gr=

n—14-

The derivation of the confidence interval (2) is based
on the critical assumption that the n observations are
independent and that the sample mean follows a nor-
mal distribution. In a recent discussion paper, Brus
and de Gruijter [3] stated that independence can be
created through randomization of sampling locations,
regardless of the pattern of spatial correlation of soil
attributes. According to the Central Limit Theorem,
the second requirement is satisfied even if the histo-
gram of point data is asymmetric, provided a large
number of randomly selected observations are
available.Thus, the suitability of this approach relies
mainly on the number and layout of observations in-
side the block.

[z(u,)—]? = 0.585(mg/kg)> 3)
1

In many situations, only a limited number of labora-
tory measurements can be afforded and so each block
contains only a few observations making the infer-
ence of the sample variance &2 unreliable. Also, these
observations are rarely randomly distributed in space.
Typically, specific subareas of low or high values are
preferentially sampled, e.g., areas around sources of
pollution receive more attention than remote locations
where exceedence of the regulatory threshold is less
likely. This purposive sampling is indeed more cost-
effective than random sampling for small sample sizes.
Whenever data locations are not randomly spread
inside the block, the representativity of the sample
statistics should be questioned, and the data configu-
ration must be accounted for in the analysis.

III. HISTOGRAM DECLUSTERING

A second approach, which allows one to account for
data locations in the prediction of block values, is based
on the concept of “data declustering”[8p.77-82], [12].
The idea consists of replacing the equal-weighted av-
erage of observations by a weighted average such that
data in densely sampled areas receive less weight than
isolated observations:

m, = Z%Z(“a) with: Zwa =1 (4)
a=1 a=1

Several algorithms can be used to compute the
declustering weights @,
1. The polygonal method (or Thiessen polygons) first
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delineates the polygon of influence of each datum
location u,, that is, the area constituted by all lo-
cations ue B closer to u, than to any other da-
tum location.The relative area of the polygon cen-
tered at location u, is then used as a declustering
weight for datum value z(u,).

2. The cell-declustering approach calls for dividing
the block B into rectangular cells, and counting
the number K of cells that contains at least one
datum and the number n,, of data falling within
each cell k. Each datum location u, then receives
a weight w,=1/(K-n,), which gives more impor-
tance to isolated locations.

The weights o, can be used to “decluster” the sample

histogram. This “declustered” marginal distribution

has for mean the weighted mean ﬁlD and its variance
is computed as:

63 =Y w, [z(u,) -7, (5)
o=l

Because preferential sampling is usually performed
empirically, that is outside any statistical framework,
its properties cannot be properly defined. The
declustering approach should thus be viewed as an
heuristic estimation method, and one cannot ensure
that the negative effect of preferential sampling is
fully corrected. Moreover, confidence intervals of type
(2) cannot be computed since they require the assump-
tion that the n observations are a simple random
sample, which is not the case here.

The 38 Cd data of Figure 1 were declustered using
square cells of 250 m which corresponds to the spac-
ing of the sampling grid. The declustered mean is 1.63
mg/kg, which is slightly larger than the arithmetic
mean because of the preferential location of data clus-
ters in low-valued areas. The declustered variance is

also larger,6} =0.933>62=0.585 because of the

smaller weight given to clusters of similar concentra-
tions. This approach still suffers from the shortcom-
ings of the previous approach, that is, the pattern of
spatial dependence of Cd concentrations as well as
observations outside the block are not accounted for.

IV. BLOCK KRIGING

Kriging is a generic name adopted by geostatisticians
for a family of generalized least-squares regression
algorithms [21]. The basic idea is to estimate the av-
erage value of a continuous soil attribute z over the
block B centered at u as a linear combination of neigh-
boring point observations:

n(u)

W)=Y 2, (z(u,) ®6)
a=l
where the weights are chosen so as to minimize the

estimation or error variance o (u) =VaiZ,u)— Z,(u)}
under the constraint of unbiasedness of the estima-
tor. These weights are obtained by solving a system of
linear equations, known as “block ordinary kriging
system” [8, p.154]:

n(u)

n(u)

D Aw=1 (7)
B=1

where u(u) is a Lagrange parameter. It is worth re-
calling that,like the two previous approaches, block
kriging is valid only for linear averaging processes.

Using matrix notation, the vector of kriging weights
is computed as:

[[/’Lﬂ(u)]r}: [y, —up] [ _l[[y(ua,B(u))]T:I
() (1] 0 1

Like the declustering weights in expression(4), the
kriging weights account for data clustering through
the data semivariogram matrix [Y(u,-up]which in-
forms the system on the redundancy of neighboring
observations.Major differences are that:

1. The measure of redundancy depends on the pat-
tern of spatial variability of observations instead of
the mere Euclidian distance between observations.
2. The kriging weights also account for the proximity
of observations to the center of the block through the
point-to-block semivariogram valuesy = (u,, B(u)).
Observations outside the block can thus be accounted
for, although their influence will tend to be screened
by those located inside the block.

3. The kriging weights are chosen so as to minimize
the estimation variance; that minimum error variance
is called the kriging variance and is computed as:

n(u)

o3 =Y A, (Wy(u,,Bw)-puw)-y(Bw),Bw) (8)
a=1

Semivariogram Inference

The only information required by the kriging system
and equation (8) is the point-to-point, point-to-block,
and within-block semivariogram values: y(u, —up),
y(u,,B(u)),and y(B(u),B(u)) ,respectively. Point-to-
point semivariogram values are readily retrieved from
the model fitted to the experimental semivariogram
of point observations computed as:
N(h)

P(h) = V) ;[Z(ua)— z(u, +h)P2 )

where N(h) is the number of data pairs for a given
separation vector h. The semivariogram is but a mea-
sure of the average dissimilarity between data sepa-
rated by a vector h; as intuitively expected,the dis-
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Figure 2. Experimental semivariogram of Cd concen-
trations (dots) and the model fitted (solid line).

similarity increases with the distance |h| between
observations, see Figure 2.

The point-to-block semivariogram values are approxi-
mated by the arithmetic average of the point support
semivariogram values y(u, —u';) defined between lo-

cation u,and N points u'; discretizing the block B(u):
N

_ 1
7(,,Bw)=—> y, -u’)
N i=1

Similarly, the within-block semivariogram value is
approximated as the arithmetic average of the point
semivariogram values y(u',—u';) defined between
any two discretizing points u', and u'; inside the block:

(10)

N N

7(B(u), Bw) = %ZZﬂu;—u{, ) o~
i=l j=I

A rule of thumb is to select N=(4)X discretizing points,
where K is the number of dimensions, 2 or 3, of the
block [11,15].The level of discretization should also
depend on the size of the block relative to the range of
the semivariogram model. A good practice consists of
computing quantities (10) and (11) for increasing num-
bers of N discretizing points: at some stage increas-
ing the density of points will not significantly modify
the results of the approximation.

Figure 3 illustrates the impact of the level of
discretization (JN) on the block kriging results. Us-
ing only N=9 discretizing points leads to a severe
overestimation of the kriging variance; the kriging
estimate is much less sensitive to block discretization.
In this example, a 8§x8 grid yields good approxima-
tions at reasonable computational cost.

In theory, the block B(u) can be any shape as long as
the discretizing points are uniformly distributed
within that block.However, for reasons of computa-
tional efficiency, most available programs of block
kriging can handle only rectangular blocks.A
straigthforward approach for estimating the average
value of an irregularly shaped block consists of tak-
ing the linear average of point kriging estimates

o Kriging variance
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Figure 3. Impact of the level of discretization (square
root of the number of gridded discretizing points) on
the computation of the block kriging variance and es-
timate.

z"(u,;) at Ngrid nodes u'; discretizing the block. Pro-

vided the same data are used for the N point kriging
systems, the so-called combination of kriged estimates
[15 p.321) will provide the same estimate as block
kriging using the same data and discretizing points.
The main difficulty lies in the computation of the vari-
ance of the global estimator because it cannot be de-
rived as a mere combination of the kriging variances
at each discretizing point, see [15] p.410-412.

Confidence Interval

Assuming that the kriging prediction error is normally
distributed, the block kriging estimate and variance
can be combined to derive a confidence interval of type
(2). For example,the 95% probability interval is typi-
cally computed as [16 p.68]:

[ZZ(U)—Q\/O‘é(H),Z}}(U)'FZ o] (12)

The main difference with the two previous approaches
is that the estimation variance G2/, based on the
sample variance (3) or (5) has been replaced by the
model-based kriging variance (8) which is indepen-
dent of the data values but account for the specific
data configuration through the semivariogram model
itself inferred from the data. So, besides the assump-
tion of normality, the assumption of homoscedasticity
must hold in order to compute the confidence inter-
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val (12) [11], p.517-519.

If observations are spatially independent, the
semivariogram value y(h) is constant and equal to the
stationary variance C(0)=Var{Z(u)} whatever the
separation vector h (pure nugget effect). All kriging
weights are then equal to 1/n(u), and the block kriging
estimate is but the arithmetic average of these n(u)
neighboring observations:

n(u)

; 1
BW= ;Zmn 13)
The kriging variance (8) becomes:
oy =| ¥ O yw-co)
£ o= n(u)
=y = €O
=—p(u)= n(u) (14)

an expression similar to that used to compute the es-
timation variance of the arithmetic or declustered
mean.Once again, the main difference is that the
sample variance §2 = ().585, or better the declustered
variance 6} =0.933 , has been replaced by the model-
based variance C(0)=0.86, which corresponds to the
sill of the bounded semivariogram of Figure 2.

For the example of Figure 1, block kriging using only
the observations inside the block (n(u)=38) and N=64
discretizing points yields a block estimate of 1.62
mg/kg , which is very close to the declustered mean
i, =1.63 mg/kg .The block kriging variance is 0.026
(mg/kg)?, incidentally very close to the estimation vari-
ance for the declustered mean, 0.025=0.933/38.

An advantage of kriging over previous techniques is
that observations outside the block can be accounted
for in the prediction, which is particularly important
for small blocks which usually contain too few obser-
vations for reliable estimation of the local (within-
block) variance. In this case, it is more appropriate to
rely on a global variance modeled from the entire data
set, that is the sill of the bounded semivariogram
model. The trade-off cost is the assumptionof
stationarity of the variance across the study area.As
the size of the block and the number of data increase,
block kriging requires the solving of a large kriging
system and knowledge of the semivariogram model
for large distances. Moreover, the many observations
within large blocks tend to screen the influence of
outside data, in which case the additional complexity
of the kriging approach might not be worth.

V.STOCHASTIC SIMULATION

In the last approach, the spatial distribution of the
soil attribute across the region is first simulated, i.e.

a simulated value is derived at each node of a grid
that discretizes the region.The block simulated value
is then computed as the arithmetic average of point
simulated values within that block.

Many different simulation algorithms are available,
and most of them are reviewed in [6,8].This paper
considers only sequential indicator simulation because
this algorithm does not require any multiGaussian
assumption and allows one to account for class-spe-
cific patterns of spatial continuity (see hereafter). The
algorithm proceeds as follows:

e Discretize the range of variation of the attribute z
into (K+1) classes using K threshold values z,. Then,
transform each datum z(u )into a vector of indica-
tor data defined as:

I ifz(u,) <z

; k=1,..K
0  otherwise

i(ua;zk)={ (15)
e For each threshold z,, compute the semivariogram
of the correspondingindicator data and model it.

e Define a random path visiting only once each node
to be simulated.

e At each node u':

1.Determine the K conditional probabilities
[F(u';z, (n))] =Prob{z(u’) <z, (n)} using ordinary
indicator kriging. The conditioning information (n)
consists of indicator transforms of neighboring
original z-data and previously simulated z-values.

2.Correct for any order relation deviations, then
build a complete (for all z) conditional cumulative
distribution function (ccdf) F(u'’;z (n)) by interpo-
lation/ extrapolation of the previously calculated
K probability values.

3.Draw a simulated value ;" (u’) from that ccdf.

4.Add the simulated value to the conditioning data
set.

5.Proceed to the next node along the random path,
and repeat steps 1 to 4.

Other realizations{z”"(u'].), J=1...,N}, I #[ ,are gen-

erated by repeating the entire sequential process with
a different random path.

One hundred realizations of the spatial distribution
of Cd values over the study area were generated us-
ing sequential indicator simulation and five thresh-
old values corresponding to the 1st, 3rd, 5th, 7th and
9th deciles of the sample distribution of 259 cadmium
data. The corresponding indicator semivariograms are
displayed in Figure 4. The resolution of the discrete
cedf was increased by performing a linear interpola-
tion between tabulated bounds provided by the sample
histogram [6 p.134-137]. Figure 5 shows the first four
realizations. Each realization is a plausible represen-
tation of the unique and unknown distribution of Cd
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Figure 4. Standardized experimental indicator semivariograms computed for five deciles of the histogram
of Figure 1.
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Figure 5. Four realizations of the spatial distribution of Cd values over the study area which were generated
using sequential indicator simulation.
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values across the region in that each simulated map
honors the 259 data and reproduces approximately
the sample histogram of Figure 1 and the indicator
semivariogram models of Figure 4. Differences be-
tween the four realizations thus provide a measure of
spatial uncertainty.

The simulated average Cd concentration within the
2km? block is computed as the arithmetic average of
the J=225 simulated point values falling into it:

1 A
W =gy ow) (16)

Figure 6 shows the histogram of the 100 simulated
block values computed from the set of 100 simulated
maps. This histogram depicts the uncertainty about
the unknown average Cd concentration over the block.
Such an uncertainty assessment is non-parametric:
no prior assumption is made about the shape of the
distribution of possible values. Note that, although
each block value is computed as the linear average of
many (J=225) simulated point values, the histogram
is not symmetric.The uncertainty assessment is also
independent of any particular‘best” estimate retained
for the unknown block value. Instead of a 95% confi-
dence interval centered on the block Cd estimate, 95%
probability intervals can be built by identifying the
lower and upper bounds to the 2.5 and 97.5 percen-
tiles of the distribution of simulated block values, re-
spectively. For block Cd concentrations, that probabil-
ity interval is [1.28, 1.76].

Simulation versus Block Kriging

Under the multiGaussian assumption, the distribu-
tion of simulated block values should be Gaussian with
for mean and variance the block kriging estimate and
variance. Thus, there would be no benefit in using sto-
chastic simulation for deriving a block estimate and

Simulated block values

’T mean 1.49

std. dev. 0.12
coef. of var 0.08
maximum 1.86
upper quartile 1.56
median 1.48
lower quartile 1.41
minimum 1.16
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Figure 6. Histogram of block Cd concentrations com-
puted from the set of 100 simulated maps.

the attached uncertainty. However, whenever the
multiGaussian assumption is inappropriate, as in the
case of Cd concentrations, a non-parametric (i.e. indi-
cator) approach must be adopted. Indicator block
kriging cannot be used to model the uncertainty about
the unknown block value since the indicator variable
of type (15) is a non-linear transform of the original
variable z(u,)[8 p.305]. The only option is thus the
use of non-parametric simulation algorithms, such as
sequential indicator simulation.

Even under the multiGaussian assumption, the simu-
lation approach is often a better alternative than block
kriging for several reasons:

1. the shape of the block may be irregular, which re-
quires either the modification of common block
kriging programs or the discretization of the block
and solving of punctual kriging systems at each
discretizing point, recall previous discussion. In the
latter case, the problem is the computation of the
block kriging variance from the set of point kriging
variances. Stochastic simulation allows one to com-
pute this variance numerically from the distribu-
tion of block values.

2. some attributes such as permeability do not aver-
age linearly in space, making block kriging irrel-
evant. Non-linear upscaling is straightforward in
a stochastic simulation approach since the averag-
ing functions (e.g., geometric or harmonic mean)
can be applied directly to the simulated point val-
ues inside the block.

3. certain applications require the determination of
attribute values over many small blocks; the re-
sulting map is then fed into transfer functions, such
as flow simulator or runoff model, which heavily
rely on the reproduction of the pattern of spatial
dependence of block values. Since the simulated
point values are spatially correlated, so are their
local arithmetic averages.

4. risk assessment may involve the computation of
the joint frequency of occurrence of events related
to different blocks. For example, the probability that
a regulatory threshold in soil pollution is simulta-
neously exceeded in two neighboring blocks B and
B’ is readily retrieved from L equiprobable real-
izations as the linear average of a product of indi-
cator values:

Prob{Z, (w) > 7., Z, (') > z,}

1 &, ) .
= Zz;”(u;ztﬂ)-zg’.’(u 32,) an
=1

+(1) (1)

where iy’ (u;z,) =0 if iy’ (u) < z_, and 1 otherwise.

The probability (17) cannot be easily inferred us-
ing non-simulation approaches, except if the two
block values were deemed independent one from
the other. In this particular case, the joint prob-
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ability is but the product of the two block probabil-
ity of exceeding the regulatory threshold.

VI. CONCLUSIONS

Prediction of environmental attributes over supports
larger than the measurement support can be per-
formed using a variety of approaches, ranging from
the straightforward arithmetic average to the more
demanding stochastic simulation. There is no such a
thing as a “best” approach for all situations. Rather,the
user should select the upscaling algorithm according
to the objective of the study, the size of the block to be
estimated, the sampling design, the type of averaging
process involved, and the computational resources
available.

Computation of the arithmetic mean offers a straight-
forward way to estimate a linear average attribute
value over a large block provided the sampling scheme
has been carefully designed to avoid any bias. In the
common situation where specific subareas have been
preferentially sampled, declustering techniques could
be used to correct for the bias in the estimation of
both mean and variance, keeping in mind that these
techniques lack a firm statistical basis .

As the block gets smaller, observations inside the block
usually do not suffice for a reliable estimation of the
mean and variance,and it becomes critical to account
for data outside the block.Provided the averaging pro-
cess is linear, block kriging allows one to capitalize on
the spatial correlation between attribute values to
compensate for the lack of data inside the block. Block
kriging does not require any specific sampling design
since the kriging weights naturally correct for any
redundancy of clustered observations.

For decision making, block estimates must be supple-
mented with a measure of the uncertainty attached
to their prediction. Unlike the previous approaches,
stochastic simulation provides a non-parametric as-
sessment of that uncertainty, hence does not rely on
any prior assumption about the shape of the distribu-
tion of block values. The trade-off cost is the computa-
tional demand for generating many realizations of the
spatial distribution of point attribute values within
the block(s). Also, stochastic simulation allows one to
consider non-linear averaging processes.

An additional advantage of stochastic simulation is
that it yields a set of maps of spatially correlated block
values, thereby allowing statistical inference and de-
_ cision making involving several blocks simultaneously.
Information such as the joint probability of exceedence
of a regulatory threshold in several blocks cannot be

obtained from non-simulation approaches, except in
the very particular case of independent block values
or under stringent multiGaussian assumptions. An-
other application of stochastic simulation is the
upscaling of soil infiltration properties in order to
model solute transport in the vadoze zone. In such
application, it is critical that the set of block values
fed into the flow simulator reproduce the spatial vari-
ability actually prevailing in the field and modeled
from field observations.
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