Geographic Information Sciences

Vol. 5, No. 2, December 1999

77

Spatial Statistics When Locations Are Uncertain

Geoffrey M. Jacquez

BioMedware, Inc.
516 North State Street,
Ann Arbor, MI 48104-1236 USA.

Abstract

Spatial statistics quantify spatial pattern and identify local and global departures from null spatial models. As
part of Exploratory Spatial Data Analysis they play a critical role in the evaluation of spatial pattern, and in the
formulation of hypotheses to explain spatial pattern. While all spatial data have imprecise locations, the magni-
tude of this imprecision can vary dramatically from one measuring instrument to another and from one study to
another. When does location uncertainty impede our ability to quantify spatial pattern? This paper describes
credibility-based spatial randomization tests that propagate location uncertainty through proximity metrics and
into spatial statistics. Credibility is a flexible new approach to spatial randomization tests, but is not a panacea. It
applies to spatial statistics that incorporate measures of geographic proximity (e.g. spatial adjacency, weight, near-
est neighbor relationship, distance etc.). It uses Monte Carlo sampling to generate the null distribution, and not
distribution theory, as classical statistics do. It is a technique for testing hypotheses regarding spatial pattern, and
is best described as a method for Exploratory Spatial Data Analysis. It is meant to complement, not replace, tradi-
tional spatial statistics that use P-values and alpha levels. In conjunction with these techniques it forms a quan-
titative basis for evaluating the likely impact of location uncertainty on one’s ability to make statistical decisions

with spatial data.

L. INTRODUCTION

Webster’s dictionary defines uncertainty as ‘lack of
certainty, doubt’. Uncertainty ranges from a simple
lack of sureness regarding a precise value (e.g.
uncertainty about the location of a place of residence)
toinherent vagueness (e.g. who knows what the future
may bring). Uncertainty can occur both in locations
(location uncertainty) and in observations (attribute
uncertainty). Research to date has dealt primarily
with uncertain attributes (Goodchild and Gopal 1989,
Heuvelink, Burrough et al. 1989) and error
propagation through map operations (Haining and
Arbia 1993). Techniques for dealing with attribute
uncertainty in statistical analyses are well developed
(e.g. Viertl 1996). In contrast, methods for assessing
location uncertainty and its impact on outcomes such
as spatial statistics have received little attention.
Some research has dealt with location uncertainty and
the calculation of lengths and areas (Keefer, Smith et
al. 1991). Altman (1994) presents a fuzzy theoretic
approach for representing location uncertainty, and
Jacquez (1996) used fuzzy set theory to develop disease
cluster tests for imprecise locations. Using a
probabilistic approach, Kiiveri (1997) presents a
technique for assessing uncertainty in the locations
of points and lines. Such probabilistic approaches can
result in many potential realizations of a spatial data
surface (see Goodchild, Sun et al. 1992, Ehlschlaeger
and Shortridge 1996, and references therein). This
has motivated research on techniques for visualizing
uncertainty, including animation (Ehlschlaeger,
Shortridge et al. 1997). To date little, if any, research

has dealt with the issue of propagating location
uncertainty through spatial statistical analyses, and
the consequences of location uncertainty on statistical
inference. Jacquez (2000) addresses this issue in
detail, and portions of his work are presented here to
give an overview of this new approach. In a related
paper, Jacquez and Jacquez (1999) detail the
mathematical forms of several location models, and
how they may be used to propagate location
uncertainty in tests of disease clustering. Jacquez and
Jacquez (1999) also describe how location models are
sampled within Monte Carlo algorithms.

Statistical inference for uncertain locations is the topic
of this paper. It introduces spatial data and issues of
statistical inference. It describes the components of
statistical inference from spatial data—the test
statistic, null spatial model, reference distribution, and
alternative spatial model. These are placed in the
context of traditional statistics, the sampling space,
and randomization tests. The use of a general form,
called the gamma product, for representing spatial
statistics is presented, along with the concept of
location uncertainty. Finally, the notion of credibility-
based statistics is introduced.

II. SPATIAL DATA

Spatial data may be represented for convenience as
the matrix
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Here x;,y; is the coordinate of location i, and zy,...,z,;
are observations p variables at that location. There
are n locations and p variables.

Example 1: Childhood leukemia in North
Humberside

62 cases of childhood leukemia were observed in North
Humberside, England, between 1974 and 1986. 141
matched controls were sampled from a population
registry for the corresponding period (Cuzick and
Edwards 1990). The first four rows of the Z matrix
are:

Easting Northing Case/control
identity
4882 4420 1
5153 4300 1
5088 4318 1
5147 4654 |

The x, y coordinates are decimeters east (Fasting) and
north (Northing) of an artificial origin in the south of
England. Case/control identity is coded as a ‘1’ if the
observation is a case, and as a ‘0’ if it is a control. There
are n=203 locations, and p=1 variables.

Characteristics of Spatial Data

By their very nature spatial systems are usually large
and the phenomena being investigated often take
place on relatively long time scales. For example,
changes in forest composition can take decades or even
centuries to evolve. In addition, spatial systems are
often difficult to manipulate. For these reasons
designed experiments on spatial systems are often
difficult to accomplish, and spatial data from these
systems tend to be observational, uncertain, taken
from a limited sampling space, and autocorrelated.
What do these characteristics imply?

The scientist’s control over a system varies, from
laboratory settings that are carefully controlled, to
natural systems that are not. Experimental data are
collected from a system that is manipulated in order
to control covariates and/or to perturb the system by
introducing materials or energy into the system.
Observational data are collected by passive
observation rather than by designed experiments. In
general, spatial data are observational because they
are collected from natural systems that are not
manipulated or controlled by the observer.

Uncertainty implies partial ignorance of a
measurement’s true value. This contrasts with
variability, which represents a system’s inherent
heterogeneity. While uncertainty may be reduced by
more careful measurement, variability is
characteristic of the system under study and is not
reducible. Spatial data are uncertain in two ways:
locations may be uncertain (location uncertainty), and
the values observed at those locations may be
uncertain (attribute uncertainty). Although
uncertainty may be reduced by refined measurement
techniques, it is always present because our
measurement instruments are imprecise.

Sampling space refers to the population or
hypothetical universe from which samples are drawn,
and is a critical concept for two reasons. First, it
influences how one designs a scheme to sample the
population of interest. Second, inferences drawn from
statistical analyses apply to this sampling space. An
overly restricted spatial sampling space will cause us
to unnecessarily limit the scope of our statistical
inferences. The spatial sampling space for geographic
systems is over-restricted whenever information
describing the spatial distribution of the study
population is limited or is not incorporated into
statistical tests.

Spatially autocorrelated means the observed values
are not independent of one another, and that this lack
of independence is a function of geographic proximity
between sample locations. Positive spatial
autocorrelation occurs when nearby locations tend to
have similar values, and may be caused by common
history, causal relationships with other variables that
are themselves autocorrelated, and interaction (e.g.
exchange of material) among adjacent locations. When
not accounted for spatial autocorrelation can bias
statistical tests that assume independent
observations. It also can provide clues to the
underlying space-time processes that produced the
observed spatial pattern.

As with most generalizations, these characteristics
apply to a greater or lesser extent depending on the
application. Controlled agricultural field trials can be
replicated and are more experimental than
observational. Studies of short-lived phenomena in
small spatial systems are more easily replicated.
Uncertainty is always present but is decreased by
more accurate and precise measuring instruments.
The underlying population in some studies may be
rigorously defined and carefully sampled. Spatial
autocorrelation is almost always present, but its
strength varies considerably from one kind of variable
to another. The key lesson is that these characteristics
influence our ability to conduct statistical inference
with spatial data.
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Space-time Processes

Almost all spatial data are the result of space-time
processes. Examples include forest composition, which
is the result of succession; spatial disease patterns,
which are the result of epidemics; and pollutant
plumes, which are the result of geochemistry, sub-
surface flow and diffusion. For many systems change
in a variable’s spatial pattern occurs on a longer time
frame than our ability to observe, and spatial data
often represent ‘snap shots’ in time of a single
realization of a space-time process. A realization is
defined as a specific instance of a process. This
recognizes the role of natural variability in the
evolution of spatial pattern. For example, take two
identical patches of barren ground and record
vegetation composition through time. Although both
initial conditions and successional sequences are
essentially the same, the observed spatial patterns in
the two plots will differ because of natural variability
in intra- and inter-specific interactions (competition,
predation, symbiosis), deposition of wind-borne seeds
and so on. Species composition in the two plots is
said to be two realizations of a common successional
process. The key concepts are first, that spatial data
are realizations of space-time processes, and second,
that spatial patterns can provide clues to their
generating processes.

ITI. STATISTICAL INFERENCE FOR SPATIAL
DATA

Models of process, models of data, and ESDA

Models of process, models of data, and Exploratory
Spatial Data Analysis (ESDA) require different
amounts of knowledge and have different goals.

Models of process describe systems in terms of their
basic processes or mechanisms. Parameters of models
of process quantify biological and/or physical
attributes of the system and are readily interpretable
in terms of the underlying generating process. One
example is compartmental models (Jacquez 1996).
These models require a detailed understanding of the
space-time processes giving rise to the observed
spatial pattern.

Models of data are constructed to fit a particular data
set without explicit reference to the system’s basic
mechanisms. They usually are fitted directly to an
observed spatial pattern. Econometrics, kriging and
regression models are examples of this genre. Models
of data are useful for prediction, but have limited
application beyond the particular data set. In addition,
their parameters often are not directly interpretable
in terms of the underlying generating process. Of

course models of process and models of data are not
exclusive, and a given model may blend them.

ESDA seeks to identify spatial pattern with the
objectives of (1) quantifying spatial pattern, and (2)
suggesting hypotheses regarding the underlying
processes. Our knowledge of the system under study
is often limited, and sample sizes may be too small to
support construction of models of data. Examples
include spatial autocorrelation analysis, and methods
of spatial point pattern analysis. ESDA may be a first
step in constructing a model of data, and the
hypotheses generated may eventually form the basis
of a model of process. This paper is concerned with
statistical inference to support ESDA. Its contribution
isin testing hypotheses regarding spatial pattern, with
two principle goals. First, to quantify spatial pattern,
and second to infer past generating processes that
gave rise to the pattern.

A distinction is made between statistical hypotheses
(e.g. the null hypothesis, the alternative hypothesis),
that are statements regarding a variable’s sampling
distribution, and scientific hypotheses, that have to
do with the fundamental questions we wish to answer.
When formulating a statistical test it is essential to
begin with the scientific hypotheses, and to then
specify the corresponding statistical hypotheses. This
assures an investigation is driven by questions related
to our conceptualization of the world around us, rather
than by a method’s statistical hypothesis. In general,
our scientific hypotheses have to do with the
underlying space-time processes, while statistical
hypotheses are concerned with spatial patterns. Thus
there is not a direct correspondence between scientific
and statistical null hypotheses, and careful attention
is required to assure a statistical test is appropriate
to the scientific query.

Components of spatial statistical inference

Spatial data usually represent partial knowledge of a

spatial system at one or a few points in time. Because

of this it is difficult or impossible to directly evaluate

hypotheses regarding space-time processes. Instead,

we explore spatial pattern in the hopes of gaining

insights into the processes that produced the pattern.

How does one construct a test to quantify spatial

pattern? Six components were given by Waller and

Jacquez (1995).

1.The null spatial model, describing the spatial
distribution of the variables expected in the absence
of the alternative spatial model (see below). The
null model defines the null distribution of any
proposed test statistic.

2.The null hypothesis, usually expressed in terms of
parameters of the null spatial model.

3.The test statistic, a data summary whose
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distribution under the null spatial model can be
computed or found from tables (such as chi-squared
tables).

4.The null distribution of the test statistic. This
distribution is obtained either theoretically or
empirically through Monte Carlo simulation. Both
the theoretical derivation and the simulation
procedure must be consistent with the null spatial
model. Probability values (P-values) under the null
hypothesis are obtained by comparing the value of
the test statistic with that of the null distribution.

5.The alternative hypothesis, stated in terms of
parameters of the null spatial model or in terms of
additional parameters used to model the alternative
spatial pattern. The distribution of the test statistic
under the alternative hypothesis is different than
its distribution under the null hypothesis, which
enables probabilistic assessments.

6.The alternative spatial model, which may be an
omnibus “not the null spatial model” or a more
specific model describing the alternative spatial
pattern. An example of the latter would be a model
where persons near a hazardous waste site
experience an elevated disease rate.

These components constitute an explicit framework
for specifying a test for spatial pattern. The
alternative spatial model may be poorly specified (e.g.
‘not the null hypothesis’) or it may be chosen to
correspond to a more specific spatial pattern (e.g. high
values near a specific location). I emphasize that it
describes an alternative spatial pattern, and is neither
a model of data nor a model of process. By evaluating
alternatives describing spatial pattern, it may be
possible to refine one’s thinking and generate plausible
hypotheses regarding underlying space-time
processes.

Classical statistical inference

Spatial data analysis and classical statistical inference
differ to some extent in their theoretical backgrounds.
Haining (1990) observed that classical statistics
assume data from designed experiments that can be
replicated, and samples drawn from a hypothetical
universe defined by a sampling space. The inference
framework is based on comparison of a test statistic
calculated for a sample to the distribution of the
statistic under the null hypothesis for this sample
space (the reference distribution). A distribution of the
test statistic can be obtained by replicating the
experiment. Within this framework type I error (o) is
the probability of rejecting the null hypothesis when
it actually is true, and type IT error (f) is the probability
of accepting the null hypothesis when it actually is
false. Statistical power—the probability of correctly
rejecting the null hypothesis—is 1-.

Randomization tests and statistical inference

Methods of classical statistical inference assume
experimental data and are not strictly appropriate for
observational spatial data. As a result, randomization
tests have gained currency, but at a substantial lost of
robustness: inference applies only to the sample, as
now described.

Manly (1991) provides a succinct description of
randomization tests and their relationship to classical
statistical theory. The data are from only one sample,
the concept of a ‘designed experiment that can be
replicated’ does not apply, and classical statistical
inference therefore is inappropriate. A commonly used
alternative is randomization tests, which determines
whether pattern exists in a sample. The null
hypothesis is that any pattern is a chance occurrence,
and the alternative hypothesis is that ‘true’ pattern
exists. Some statistic, T, is selected that quantifies
the pattern of interest. The value, %, from the
observed data is then compared to a reference
distribution obtained by repeatedly reordering the
data at random, and by calculating T~ for each
repetition. The significance level of [ is the
proportion of the reference distribution that is as large
or larger than . Interpretation of this significance
level is similar to conventional tests based on the
classical model: if less than or equal to the o level
(usually 5%) the null hypothesis of ‘no pattern’ is
rejected. Manly further observed that randomization
tests have two principle strengths: They are valid even
without random samples, and non-standard test
statistics may be used. These advantages have led to
the wide use of randomization tests for the analysis
of spatial data. However, results pertain only to the
sample, and this single sample is the sampling space
upon which the reference distribution is based.

Spatial statistics in randomization tests

The gamma product of two nxn matrices, A and B is:

n n

F=A®B=3>ab,, @)
=1 j=I

For spatial data we rewrite the gamma product as

F=mA®D=CY,Y 5d, 3)

=l j=1
Here m is a constanjt (scalar), n is the number of
locations, § is a measure of geographic proximity
measure (e.g. adjacency, nearest neighbor measure,
distance or weight) and d is calculated from the
observations on z (as defined in Eqn. 1). Several
authors have shown that many commonly used spatial

statistics are special cases of the |~ product (Haining

1990 pg 230, Marshall 1991, Wartenberg and
Greenberg 1990, Getis 1992, Jacquez 1996, Jacquez
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and Jacquez 1999). Mantel’s test (1967) for space-
time interaction results when §;; and d;; are elements
of distance matrices. Cuzick & Edwards test (1990)
results when §;;= 1 if location j is a nearest neighbor
of location i (otherwise it is 0), and dij =1 when both
observations i and j are disease cases (if 1 or both of
them is a control d;;=0). Moran’s I (1950) results
when dij. =(z;, - E)(zj —Z7) and 6,',' corresponds to
elements of a weight matrix. The join-count statistic
(Cliff and Ord 1981) obtains when d;;= (ziz]-) and &;; is
the adjacency between areas ¢ and j. Here variable z
is binary, with a ‘1’ indicating a labeled area. Pearson
product-moment correlation and multiple regression
may be written in T~ form (Smouse, Long et al. 1986),
as can local autocorrelation statistics (Anselin 1995,
Getis and Ord 1996). These examples illustrate the
flexibility of the gamma product in quantifying a broad
spectrum of statistical tests.

One can use a normal approximation for the
randomization distribution of gamma (see Mantel
1967 and Haining 1990 for moments of this
distribution) to assess statistical significance of an
observed value. This approach has been criticized
(Mielke 1978, Faust and Romney 1985) and it is better
to calculate the distribution under randomization, and
then compare the observed value to this distribution
(Manly 1991). This is accomplished under a statistical
null hypothesis of independence (Cressie 1991 terms
this Complete Spatial Randomness or CSR) between
the d;; and the §;; using a randomization equivalent
to a relabeling so the zi are sprinkled at random across
the locations. Given 2=(2,....2,) Values on a map,
spatial randomization tests permute the z values over
the sample locations. There are two limitations of
randomization tests conducted in this fashion. First,
the spatial sampling space is defined to consist solely
and entirely of the sample locations, and second,
inference applies only to the sample.

The spatial sampling space and statistical
inference

To summarize, when spatial data are observational
inference is often undertaken within the framework
of an exploratory data analysis whose purpose is to
detect structure and pattern. In these instances
randomization tests are frequently used because the
assumptions of classical statistical inference no longer
apply.

While randomization tests may be appropriate when
the experimental design justifies randomization
testing, they can be problematic for spatial data
because they take the sampling space to be the
locations at which the observations were made. That
is, spatial randomization tests erroneously assume the
universe of locations to consist entirely and solely of

the sample locations. In most situations we could have
sampled other locations in the study area, but spatial
randomization tests based only on the sample
locations ignore this fact. This means the sampling
space is incorrectly specified, and the reference
distribution pertains only to the sample, and not to
the population extant within the study area.

Example 2: The spatial sampling space and
Mantel’s test

Imagine we conduct two replicates of an experiment
that introduces an infectious disease into a population,
and we record case locations and times as the epidemic
evolves. Figure 1 shows two realizations of this disease
process. Locations of place of residence of the at-risk
population are shown as filled circles, squares around
circles indicate case locations. The locations of the at-
risk population is the same in both realizations, but
case locations change because of inherent variability
in the contagious process.

Now consider how Mantel’s test is typically applied
to each realization. Mantel’s test is sensitive to space-
time interaction that arises when nearby cases occur
at about the same time, a pattern that may be caused
by a contagious agent or common exposure. The test
regresses the waiting times on the corresponding
spatial distances between pairs of cases, and the
standardized test statistic is the correlation between
spatial distance and waiting time. The reference
distribution is generated under randomization by
sprinkling the times of case occurrence over the case
locations, and by then calculating the test statistic for
each randomization. Notice this randomization test
uses only the cases in each realization—the locations
indicated by squares—as the sampling space for the
reference distribution. Because of this any statistical
inference applies only to the sample, and not to the
population.

How would the statistic have been implemented under
the classical statistical paradigm? The reference
distribution under the null hypothesis would be
generated by repeating the experiment many times
under the corresponding null model, calculating the
test statistic for each realization, with each realization

... o IELI';] ° °
° e - [« ,
" = [e] .. R e IE‘.
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Figure 1. Two realizations of a spatial epidemic.
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taken from the at-risk population. The classical
approach treats all of the at-risk population as
potential cases, and because of this any statistical
inference applies to the entire population, and not just
the cases in one realization.

Example 2 illustrates how spatial randomization tests
can overly restrict the spatial sampling space, leading
to unnecessarily weak inference structures. In
epidemiology, spatial randomization tests, when
structured as illustrated in the example, make little
sense because they assume the at-risk population
consists only of the sample. Until recently this issue
has largely been ignored because of difficulties in
specifying the underlying populations spatial
distribution, and, in incorporating such information
into the null spatial model and reference distribution.
Recent advances in spatial knowledge (such as GIS)
and computing power have eased these difficulties.
The approach described later in this paper makes use
of these advances to specify the spatial sampling space
so that it corresponds more closely to the at-risk
population, rather than to just the sample.

Consider the at-risk population in example 2. Until
recently data describing the geographic distribution
of human populations have not been available,
precluding specification of the universe of possible
sample locations. This is no longer the case. Spatially
referenced data are now available describing the
global population density distribution within 5’
quadrilaterals (Tobler, Deichmann et al. 1995), and
census data coupled with address matching software
can locate street addresses within an accuracy of 100m
(Rushton and Lolonis 1996). Our approach uses
location models and such spatial population data to
specify the spatial sampling space. This can be viewed
as a step towards the stronger inference model of
classical statistics because it recognizes that samples
could have been taken at other locations in the study
area (a sampling experiment). This effectively
specifies the study’s spatial sampling space and, not
surprisingly, improves our ability to correctly detect
spatial pattern.

Location uncertainty and statistical inference

The previous sections described some of the
implications of the observational characteristic of
spatial data, and how this can result in a restricted
sampling space in spatial randomization tests. Recall
the third characteristic of spatial data is uncertainty.
Here we concern ourselves with the notion of location
uncertainty. For our present discussion it is sufficient
to distinguish between uncertain locations, which are
the uncertain coordinates (denoted xy, yy obtained
using an imperfect measurement instrument, and
precise locations, which are the precise coordinates

(denoted xp, yp) that would have been obtained using a
perfect measurement instrument. We can only observe
uncertain locations, precise locations exist in theory
only. Of course, the amount and importance of location
uncertainty varies depending on our measurement
instrument and the spatial scale of the study. The key
lesson is that in practice our point locations are always
uncertain to some degree. We wish to account for
location uncertainty in spatial statistical tests.

How does statistical inference work when locations
are precise? Consider some test statistic (F) and
suppose we have access to a perfect measurement
instrument. The test statistic is denoted | and is
the test statistic based on precise locations. The
reference distribution under the null hypothesis, g5, is
obtained by sprinkling observations over the sample
locations in a manner consistent with the null
hypothesis. A P-value for the test is the probability,
under the null hypothesis, of obtaining a value of the
statistic as large or larger than the observed, written
P(T, > FP) (Figure 2). Here 1"P denotes the observed
value of the test statistic, while I's is the test statistic
under the null hypothesis. A decision criteria based
on a type I error level (usually o= 0.05, so there is a
5% chance of rejecting the null hypothesis when it
actually is true) is used to evaluate the test. When
P, 2 FP) < ¢ the null hypothesis is rejected and the
alternative is accepted, otherwise the null hypothesis
is accepted. In practice all measurement instruments
are imprecise, locations are uncertain, and the
inference mechanism for precise locations shown in
Figure 2 does not apply. In particular, it fails to account
for location uncertainty within the statistical inference
structure.

What happens when this approach is applied to
uncertain locations? As noted by Jacquez and Jacquez
(1999), location uncertainty has several sources.
Errors in georeferencing may be represented as
x,=xp+m,. Here m, represents measurement error in
the x ordinate. In GIS a common source of location
uncertainty is the use of centroids locations. Centroid
locations arbitrarily assign values associated with an

"\

g

P(rp2 1“;*:)

"
Ip

Ip

Figure 2. Statistical inference for precise locations
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Figure 3. Statistical inference for centroid loca-
tions using the classical model

area to that area centroid. An example in
epidemiology is the use of census tract centroids
instead of actual place of residence. A common
approach when working with such data is to ignore
the uncertainty terms and to analyze the data as
though they were precise. In these instances the test
statistic is denoted T, and is called the test statistic
based on centroid locations. The reference distribution
under the null hypothesis, g, is obtained by sprinkling
the observations over the centroid locations in a
manner consistent with the null hypothesis. A P-value
for the test is the probability, under the null
hypothesis, of obtaining a value of the statistic as large

or larger than the observed, written P(rc > FC)
(Figure 3). Here FC is the test statistic based on the

observed data at the centroid locations, while T - 18
the test statistic under the null hypothesis. Statistical
inference is evaluated in a manner similar to that used
for precise locations: When P(T" - 2 1"&) < ¢ thenull
hypothesis is rejected and the alternative is accepted,
otherwise the null hypothesis is accepted.
Unfortunately this approach is often used with spatial
data; location uncertainty is ignored, and statistical
inference is conducted in the same manner as if the
locations had been precise.

So what is wrong with this approach to the spatial
statistical analysis of uncertain locations? First,
location uncertainty is not represented in the
statistical results; it should be propagated through
the proximity metric and represented in the test
statistic. The inference mechanism illustrated in
Figure 3 doesn’t do this.

Second, P-values for uncertain locations can differ
markedly from those based on precise locations
(Jacquez and Waller, 2000). In general, uncertain
locations tend to be hyperdispersed, so they are more
uniform than expected under a random spatial point
process. This is attributable to the resolution of the
measuring instrument, which results in a ‘graininess’
beyond which locations cannot be resolved.
Hyperdispersed spatial point distributions are not
consistent with statistics that assume a random

(Poisson) spatial null model. In a simulation study,
Jacquez and Waller (2000) demonstrated that P-values
calculated from centroids can differ markedly from
those calculated from precise locations.

Third, as demonstrated earlier, sample-based
randomization tests overly restrict the spatial
sampling space. This means inference pertains only
to sample, and, because the reference distribution is
based only on the sample, statistical power may be
reduced.

IV. CREDIBILITY AND STATISTICAL
INFERENCE

Figures 2, 3 and their discussion illustrate the
weakness of spatial randomization tests as they are
commonly implemented. What is needed is an
inference mechanism that:
1. Accounts for location uncertainty.
2. Specifies the spatial sampling space to
correspond to the underlying population.
3. Incorporates spatial autocorrelation under the
null hypothesis.
4. Makes a statistical inference about the
underlying population, rather than just the
sample.

Credibility-based statistics accomplish this using
location models, spatial Monte Carlo methods, and
spatially restricted randomization to maintain spatial
autocorrelation under the null hypothesis. For now,
consider the advantages conveyed (Figure 4).

Location models used in conjunction with spatial
Monte Carlo techniques builds up the reference
distribution, g by repeatedly sampling from the
underlying population, whose geographic distribution
is specified using an appropriate location model.
Unlike the examples in Figures 2 and 3, this reference
distribution is thus population-based, rather than
sample-based. Location models are also used to model
uncertainty in the observed locations, resulting in a
distribution of the test statistic g;. This distribution
quantifies how location uncertainty impacts the test
statistic. It represents possible values of the test
statistic, premised on a model of location uncertainty
(See Jacquez and Jacquez, 1999, for a detailed
presentation of location models). Inference is
conducted based on credibility, which is the proportion
of g greater than or equal to the « critical value of
the reference distribution C = P(I';, 2T,). When
the distribution of the test statistic is far to the right
of the distribution under the null hypothesis,
credibility is large, and the null hypothesis is rejected.
When these distributions are similar, credibility is
small and the null hypothesis is accepted. One can
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Figure 4. Statistical inference using credibility

define a critical credibility, C’, to use as a trigger
point in decision making. When ~ C the null
hypothesis is rejected, otherwise it 1s accepted. For
now, consider the advantages of the credibility
approach. Credibility

(a) Useslocation models to account for location
uncertainty, and propagates this uncertainty
into the distribution of the test statistic.
Specifies the spatial sampling space to
correspond to the underlying population
through spatial Monte Carlo techniques and
location models.
Incorporates spatial autocorrelation under
the null hypothesis by spatially restricting

(b)

(©

- Gamma-
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the randomization procedure.

(d) Makes a statistical inference about the
underlying population, rather than just the
sample.

V. EXAMPLES

Consider an example to illustrate some of these
concepts. All calculations were accomplished using
the Gamma software (http://www.biomedware.com).
The data are real, but are georeferenced to
hypothetical management units in order to illustrate
statistical inference using credibility. The locations
and years of occurrence of 299 fires in a Northern
Quebec forest were recorded from 1920 to 1983, It is
hypothesized that insect infestations impose a space-
time pattern in fire occurrence caused by a cycle of
forest growth, infestation, accumulation of dead wood,
and combustion. If true, this hypothesis would result
in positive spatial autocorrelation in times of fire
occurrence, such that nearby fires tend to occur in the
same or temporally adjacent years. The locations of
the fires were recorded within 20 management
districts, whose centroids are shown in Figure 5 (Top
Left). The management districts partition the forest

!Data kindly provided by M. J. Fortin.
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into 20 areas of equal size (Figure 5 bottom left).
Mantel’s test was used to determine whether there is
association between fire locations and times of
occurrence. Hence the geographic proximity metric
(6;jin equation 3) was distance between pairs of fires,
while the data metric (d;; in equation 3) was the
waiting time between pairs of fires. As noted earlier,
fire location is georeferenced to the centroids of the
20 management districts, and a statistical analysis
does not find a significant spatial association (Figure
5, top). The test statistic is well within the reference
distribution, as shown by the upper histogram in
Figure 5. This analysis ignores location uncertainty
introduced by georeferencing to centroids, and a
second analysis is conducted that represents location
uncertainty and propagates it through the proximity
metric to generate a distribution of the test statistic,
shown by the histogram in light gray (Figure 5,
bottom). The distribution under location uncertainty
is shifted to the right of its reference distribution
(shown in black). Credibility is 0.1022, meaning there
is a greater than 10% chance of a statistically
significant association, once our lack of knowledge of
actual fire location is taken into account. Perhaps of
greater import, the analysis clearly demonstrates that
the impact of location uncertainty is large — the
distribution of the test statistic accounting for
uncertainty is as broad as its distribution under the

null hypothesis! One concludes the amount of
uncertainty introduced by georeferencing to
management district centroids has a severe impact
on spatial analyses.

Of course the 20 management districts are a construct
I used to illustrate how location uncertainty may be
incorporated into spatial statistics. In reality the
centers of the fires were known with high resolution,
and the analysis of these “exact” data is shown in
Figure 6. The map of the locations of the fires is on
the left of Figure 6, and the value of the test statistic
(vertical line on the histogram) is superimposed on
the reference distribution (black histogram). The P-
valueis 0.012, and the observed space-time association
between fire locations and times is unlikely to be due
to chance alone. There indeed is positive spatial
autocorrelation in the times when fires occur.

This example illustrates how credibility and location
models may be used to determine the impact of
location uncertainty on spatial analyses.

VI. CONCLUSION

Credibility is a flexible new approach to spatial
randomization tests, but is not a panacea. It applies
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Figure 6. Analysis of fire data georeferenced to locations of fires.
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only to spatially referenced data, and to spatial
statistics that incorporate measures of geographic
proximity or distance. It uses Monte Carlo sampling
to generate the null distribution, and not distribution
theory, as classical statistics do. It is a technique for
testing hypotheses regarding spatial pattern, and is
best described as a method for Exploratory Spatial
Data Analysis. It is meant to complement, not replace,
traditional spatial statistics that use P-values and
alpha levels. In conjunction with these techniques it
forms a quantitative basis for evaluating the likely
impact of location uncertainty on one’s ability to make
statistical decisions with spatial data. Finally, it is
appropriate for spatial data that are observational,
autocorrelated, and uncertain.

How do P-values relate to credibility? Suppose we have
a measuring instrument for determining geographic
coordinates. Location uncertainty is present in sample
locations because of measurement error in the
instrument. We use an appropriate location model
for modeling the measurement error, and propagate
this error through the proximity metric into the
distribution, g, of the test statistic. Now suppose we
improve the measuring instrument, reducing the
variance in g,. As the measuring instrument becomes
increasingly precise, variance in g, decreases. When
the instrument is perfect, locations are known

precisely and g, condenses to a point mass at the value
of the test statistic, r Credibility then is 1 when r*
is greater than or equal to that value of the reference
distribution corresponding to ¢, the Type I error. For
the imaginary situation where locations are measured
without error, C=1 when the P-value is less than or
equal to o, otherwise C=0. The mechanism for
statistical inference using P-values is the special case
of credibility for precise locations. This is clearly shown
in Figure 7, which shows an analysis of the fire data
using 1500 artificial management units. Location
uncertainty is substantially less than in Figure 5 (1500
polygons vs. 20 polygons) and the distribution of the
test statistic is much narrower and entirely outside
the reference distribution. The corresponding
credibility is 1.0.

How does credibility relate to statistical power? Recall,
under the classical statistical paradigm, power is the
probability of correctly rejecting the null hypothesis.
This assumes precise locations and a distribution
under the alternative hypothesis that is constructed
by repeating the appropriate experiment. In contrast,
credibility is the proportion of possible realizations of
the uncertain locations that are statistically unusual.
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Figure 7. Analysis of fire data georeferenced to 1,500 region centroids.
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