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Abstract

In this article, we propose an alternative way of testing spatial clustering for common diseases. In order to detect
a hot spot, we treat a global cluster statistic from a localized perspective, and define an area with positively
correlated neighboring regions as a cluster. The proposed test uses the maximum likelihood method to detect the
existence of a cluster, and it does not require the calculation of the mean and variance as most spatial statistic tests
do. Using the spatial chi-square test of Rogerson (R) as a benchmark, our subsequent simulations and case study
show that when the existence or nonexistence of spatial clusters are apparent, our test result is consistent with R.
However, when a low value region surrounded by high value neighbors is considered, the result from R finds a

cluster, while our result finds no cluster.

I. INTRODUCTION

In the past few years, several new methods (Getis and
ord, 1992; Anselin, 1995) have been proposed to mea-
sure spatial associations for cluster analyses. These
tests are based on the test of spatial autocorrelation
(e.g., Moran 1), which assumes that either attribute
values (e.g., disease prevalence) is in equal probability
among all the geographic units or from a single parent
distribution. However, many have noted that popula-
tion sizes often vary substantially between rural and
urban units, and when the traditional permutation test
of equal probability applies to this situation, substan-
tially large variation often occurs in sparely populated
areas. For the global test, Oden (1995) applied regional
population weights to Moran I statistic to adjust for
the regional distributions of diseases. For the local
test, Bao and Henry (1996) provided a generalized
form of local spatial statistic (GLISA) that also ac-
counts for population distribution in the study area.
These developments are examples where usual sta-
tistical methods are modified to take into account the
spatial autocorrelation in the existing data structure
(Dutilleual, 1993). Consequently, if one wants to de-
termine the existence of a spatial cluster, one has to
make the judgement at a local scale if the significant
positive local association could be considered a clus-
ter.

Parallel to these developments, several attempts are
also made to work on the underlying distribution of
spatial dependency of disease data. Using the y? ap-
proximation with the degree of freedom being adjusted
by a Gamma function, Tango (1995) proposed a gen-
eral test, C,, to determine whether spatially distrib-
uted disease rates are independent or clustered based
on a spatial weight (W) matrix. Similar to Moran I,

an expected rate is derived for each region within a
study area and this rate is compared with the observed
rate within each region. Similar to Oden, Tango’s C,
also adjusts for population size in each region. A spe-
cial case of Tango C,is the Rogerson R (Rogerson, 1998;
1999), a spatial version of the Chi-square goodness-
of-fit statistic.

Given a population size () and disease prevalence
(IV;) at region i for a study area with m regions, the
random variable ris the m x I vector of r= N/N, where
N=N;+N,+...+ N, and the nonrandom variable p can
be expressed by the m x I vector of p;=¢; /£, where
E=&+E+...+&,. The spatial chi-square goodness-of-
fit statistics is defined as:

R= Z/ Z] w, (r-p) r pj) (1)
Where w; are elements of the weight matrix (W) de-
fined by

w,=a./ \[Pip; . @)

a; is a measure of geographic closeness of region i to
region j. Substitute w; with aij/ p;p; in equation

(1) we have

R=X (repfiip,+ XX _w, (r-p)(r-p)/ \|p;P; 3)

Rogerson further provides the expected value and
variance of R, and the test of significance using the
chi-square approximation with the degree of freedom
being adjusted by a Gamma function. It is clear from
equation (3) that the first term is the usual chi-square
statistic and the second term is the aspatial chi-square
statistic, and R is the sum of the two terms. However,
equation 3 also reveals some problems. First, either
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‘hot’ or ‘cool’ spots would make the test significant just
as the usual chi-square test does. Second, cool and
hot spots could coexist in a disease pattern, and these
tests cannot differentiate a cool spot from a hot spot.
As a result of second problem, these tests may not be
sensitive to local variation within a cluster, thus a hot
spot could contain a cool point or verse versa. In other
words, these tests generally only provide statistic sig-
nificance for the existence of spatial associations simi-
lar to LISA and G statistics at the local level.

In order to determine if a potential spatial associa-
tion around a neighborhood can be treated as a clus-
ter, we propose an alternative global test. Similar to
Tango’s C, or Rogerson’s R, we try to identify disease
clusters or any other spatial clusters associated with
rates. However, a spatial cluster in our case is prima-
rily based on the positive correlation among local val-
ues (rates), meaning a hot spot would not contain a
cool point. In the following section we provide ana-
lytical and statistical procedures for the measure, and
perform the test with simulated data. Results from
our test are compared with those from Tango’s and
Rogerson’s tests. In section 3, we provide a case study
about spatial distributions of elderly disability in Ala-
bama and Mississippi. Finally, we discuss the alter-
native statistic with some concluding remarks.

II. SPATIAL CLUSTERS AS CORRELATED
NEIGHBORS

Regardless of the nature of problems (e.g., continu-
ous or discrete), a common feature of most spatial sta-
tistics, according to Cliff and Ord (1981), is that they
are similar in the approach to the t-test (or ANOVA).
Spatially connected pairs are measured for their simi-
larity by referring to the sample mean, and this simi-
larity is then contrasted with a measure of spatial
similarity (e.g., spatial weight matrix). This type of
test is a natural extension of the case where there is
no spatial autocorrelation. In essence, it is a test for
spatial associations rather than for a cluster. As noted
by Anseling (1995), even when there is no spatial
autocorrelation, local clusters can still exist. To test
the existence of a cluster following this thread, we do
not have to compare local values with the expected
values. We can instead focus on similarity in values
around a neighborhood. Hence, contrary to common
spatial autocorrelation tests of no difference in mean,
we can construct a spatial structure with a built-in
cluster component for the existing data, and then test
the significance of the cluster component against the
null hypothesis of no cluster.

This analytical framework is similar to the param-
eterized simultaneous autoregressive (SAR) tests

(Haining, 1990) against an existing pattern. It as-
sesses the spatial dependence by testing the strength
of correlation among neighbors for each location. If
values in neighboring regions for a given location are
positively correlated, then regions around that loca-
tion are clustered. Such a test is very close to the
interpretation of G statistics (Getis and Ord 1992)
when there is a positive spatial association. This
framework is particularly useful for relating environ-
mental factors to a disease pattern. For instance, in
searching for environmental factors causing certain
diseases, environmental health specialists and epide-
miologists might be interested in a cluster where ev-
ery region in a hypothetically clustered area has an
excessive rate. This could imply that either the whole
cluster area is contaminated or embedded with some
environmental deficiency. However, if some regions
were excessive, while others were not, it would be dif-
ficult to convince environmental health specialists
that an environmental factor causes the excessive
prevalence of the disease in that particular area. Thus,
unlike general cases, where spatial associations can
be positive or negative, the spatial cluster is measured
by the correlation of neighborhood values. Formally,
a spatial cluster is a location/region with positively
correlated neighboring regions. According to this
definition, a region with a low value or rate sur-
rounded by regions with high values cannot be viewed
as having a cluster, and a possible negative spatial
association is not defined.

Following Rogerson’s notation, there are m regions in
a study area. Let & and IV; denote, respectively, the
population size and the number of disabled persons
at region i. If no spatial association exists, N; are
independent Poisson variables, whose distributions
can simply be approximated by a normal distribution
(Johnson, 1982). In a more general case, assuming p
is the probability of each person being disabled in the
study area, we have a set of random Poisson variables
N, each with a mean of p¢; . These Poisson variables
asymptotically follow a multinormal distribution,
which is an extension of the normal distribution in a
multi-dimension space for correlated dependent vari-
ables, i.e.,

Ni_péi
V&

where 62=p. This formulation, similar to Oden’s ad-
justed Moran I, implicitly accounts for the population
size in each region. Based on the assumption of large
population &, it is reasonable to assume that

= N(0,02)

B,

N, — pc.
B,:(Aipéz B=

; ) i=1l..m and
a2

4)
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has a multinormal distribution N, (0, 6%(1,,+¢W,,)) with
the mean of zero and covariance matrix of 6%(1,,+eW,,).
Here, the covariance structure has a similar model
structure as Rogerson’s R. If there is no spatial clus-
ter, the e term would be zero, leaving the usual o®term.
W, is a spatial weight matrix indexed by ¢ and j, and
the subscript m indicates the number of regions or
the number of rows in the matrix. When calculating
the covariance matrix, how to construct W, is entirely
at our disposal. A W,, can be a usual zero-one weight
matrix, or a continuum defined by some distance mea-
sure between region i and region j. In both Tango and
Rogerson, an exponential distance function, that is,
exp(-d(ij)/ 1) was used. If we let 1/t equal f3, it be-
comes the usual “distance decay” parameter with
larger values being associated with shorter distance
influence and smaller values being associated with
longer distance influence around each location. This
parameter can be tuned to see the impact of “distance
frictions” in various spatial scenarios.

Under the null hypothesis (H,) of independent spa-
tial distribution, £ should be statistically close to O.
One way to test is to construct a likelihood ratio test
comparing the observed pattern with the pattern un-
der the null hypothesis (Casella, 1990). If the e makes
a difference between the observed and the one under
the H,, then the likelihood ratio statistic should be
big enough so that the chance for the observed pat-
tern to match the H, pattern is very small (e.g.,
p<0.05). More precisely, testing the existence of clus-
ters is equivalent to testing: Hy : €=0 vs. H, :6>0.

Although there might be a closed distribution form
for the observed pattern, we do not have to derive it
when using the log-likelihood ratio test. If the larg-
est log-likelihood ratio statistic is small, then the ob-
served pattern is similar to the pattern of no spatial
cluster. A measure of spatial cluster, therefore, can
be obtained as the difference between 2max..,Log-like-
lihood and 2max., log-likelihood. After working out
some algebra (APPENDIX I), we derive our testing
statistics as:

T =—inf, ,[mIn BT (I, + €W, )-' B

+1InlZ, +€W, ]+ mlIn(BTB) ®)

m

Where, inf.., refers to the minimization over all
positivee, hence its negative is a maximization pro-

cess.
given by YN/¥&. When the likelihood function

achieves the maximum, we have D & and the cor-

p is the maximum likelihood estimator of p

responding € for our test 7', which asymptotically fol-
lows Chi-square distribution with one degree of free-
dom. A large T suggests that the observed distribu-

tion differs from the independent distribution, and the
H, is likely to be rejected. A small 7', on the other hand,
is likely to accept the H,,.

To see how the statistic performs, we generated a 10
by 10 grid (in 10 miles each unit) and obtained 7's
with three simulated patterns. First, a randomly gen-
erated population exposure along with the number of
disabled persons was randomly assigned to each re-
gion. The population ranges from 300 to 500 in each
region, and the number of disabled persons ranges
from 20 to 60. Euclidean distances between each grid
are used in the exponential distance function identi-
cal to Tango, where 1=1 or f=1. The P-value for our
test is close to 1, for Tango’s C, is 0.15 and for
Rogerson’s R1is 0.12, suggesting that all the tests yield
statistically similar results when there is no spatial
cluster. Next, we raised the number of people with a
disability randomly by 25 to 30 around the central 3
by 3 grids. In this case, all three tests are significant
with p-values close to 0 (P<0.05), suggesting that all
of them are capable of detecting a simulated cluster
for a centrally located “hot spot.” Finally, we sank the
central location within the 3 by 3 grids to a low value
while keeping all other values from the previous sce-
nario. The result from our test accepts the H, of no
clusters, but the results from C, and R reject the H,.
It suggests that C, and R are not sensitive to any con-
tinued plateau even with a basin at the center, whereas
our test treats a low value surrounded by high value
neighbors as no cluster.

III. CASE STUDY

Spatial patterns of elderly disability in Alabama and
Mississippi. At the national level, the spatial dispar-
ity of elderly disabilities has a very distinct pattern: a
high concentration in the Deep South and low con-
centration in the Midwest (Lin, 2000). In this case
study, we select Alabama and Mississippi, the two
states with the highest elderly disability rates. In
order to establish spatial relationship between eld-
erly disability with other spatial processes, it is nec-
essary to determine if there is any disability cluster
in these states. If there is no spatial cluster, then socio-
environmental factors in the south at a large geo-
graphic scale may contribute to the southern concen-
tration of elderly disability. If, on the other hand, there
are some spatial clusters, then some localized socio-
environmental processes may contribute to the state
level concentration, and we will want to correlate these
processes with the clusters.

Elderly disability rates at the county level are shown
in Figure 1a, 1b, and 1c (Figure 1). These summary
data are based on the long-form of the 1990 census!.
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The elderly is defined as those who are 65 and over,
and a person is considered having a disability if she
or he has a mobility or self-care limitation. When
county-level disability rates for Alabama (1a) and
Mississippi (1b) are viewed separately, it is hard to
find any high or low concentrations of disability. If
the rates for the two states are combined (1c) in a
single map, there are some indications of spatial clus-
ters or concentrations leaning toward Mississippi.

We performed three analyses for the three spatial

[ ]0.218 - 0.256

0.261 - 0.278
I 0.279 - 0.3
[ 0304 - 0.374

P. Mississippi Alone

patterns corresponding to Figure 1a, 1b, and 1c, that
is, examine disability distributions separately for Ala-
bama and Mississippi, and their combined distribu-
tion. Results from both C, and R (Table 1, first and
second columns) indicate the existence of spatial clus-
ters for all the patterns. For our test using the identi-
cal exponential function, there is no spatial cluster
for Alabama or Mississippi if the two states are inves-
tigated separately; there is an indication of the clus-
ter if the two states are jointly evaluated. As the ex-

Rate
0.218 - 0.256
0.261 - 0.278
I 0.279- 0.3

I 0.304 - 0.374

a.Alabama Alone

Rate
[ ]0.218-0.263
[]0.263-0.281
I 0.282 - 0.308
[ 0.309 - 0.405

c. Alabama and Mississippi Combined

Figure 1. Elderly disability rates in Alabama and Mississippi

1Statistics are generated using S-Plus software. Any data and
program codes used in this study are available upon request.
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Table 1. P-Values for testing spatial clusters for Mississippi and Alabama

Tango Cg Rogerson R T(exp)* T(power, (l+0(dij)‘l3 )
7=0.01 1=0.01 =100 B=1, 0=0.2 B=1,0=1
MS 0 0 0.13 18 0.22
AL 0 0 0.20 25 0.24
MS & AL 0 0 0.02 .003 0.03
a: The distance function in T(exp) is identical to the one used for calculating R or Cg.
ponential function is more sensitive to changesin dis- V. SUMMARY

tance measurements than the power function, we also
used several power functions to reevaluate these pat-
terns (Table 1, last two columns). The formula for the
power function is (1+0(d,-j)_'3 , where o is a scale pa-
rameter for adjusting distance measurements, and 3
is a tuning parameter for distance decay effects. This
power function equals 1 for the diagonal elements of
the W, which is identical to the value in the exponen-
tial function used by Rogerson. We experimented with
this power function with several levels of o and 3.
In general, if § is tuned “appropriately,” the results
are fairly consistent with different o's, rejecting H, if
the two states are combined, and accepting H, if the
two states are assessed separately. However, when 3
>2, which corresponds to considering a smaller neigh-
boring region in the model, our results with different
os (e.g., =0.2; 1; 1.5) tend to accept H,. This is un-
derstandable, since the most influential areas under
the examination are so few that they can hardly con-
stitute a cluster. We also experiment with different
C,s or Rs with a power function. The results are simi-
lar, rejecting H, for all three cases. For example, when
(l+O(d’.j)‘ﬁ with & =0.2 and 8 =1 is used, C,has the
163.42 likelihood ratio chi-square with 2.55 degrees
of freedom, as opposed to 263.77 likelihood ratio chi-
square with 3.88 degrees of freedom given the expo-
nential function.

There are several reasons why our results differ from
C,s or Rs in this case study. Most importantly, our test
by definition is less sensitive to some spatial associa-
tions, as it excludes some cases (e.g., hot spots with
some cool points), where a spatial association might
exist, but the rates might not be positively correlated
or excessive for all areas around a neighborhood. Sec-
ondly, the likelihood ratio test only searches the larg-
est likelihood ratio statistic (with one degree of free-
dom), whereas the R is based on the cumulative de-
viations adjusting for the degrees of freedom. Thirdly,
it seems that very small variances resulting from
Tango’s or Rogerson’s formulations make a huge dif-
ference (see Tiefelsdorf and Boots, 1997 for a discus-
sion of the variance in a similar context). Finally, our
normal approximation may not always appropriate
when the sample size in a particular county is not
sufficiently large.

In summary, we have introduced a test for spatial clus-
ters of cool or hot spots, and compared it with Tango’s
Cg and Rogerson’s R. One significant property of this
method is that it primarily models the neighboring
covariance instead of neighboring means, thus requir-
ing no calculation of expected value and variance.
Compared with R, our test is more sensitive to local
variation in values (rates), and it tends to treat a low
value region surrounded by high-value neighbors as
no cluster, while other tests may find an existence of
a cluster. Computationally, our test is more intensive
and time consuming than R, because it needs to search
the maximum of the log-likelihood.

Even though C,, R, and T depend on distance scales,
the underlying notion is not unreasonable: “the expo-
sure relates inversely to some geographical distance
from the focus” (Tango, 1995, p. 2324). However, there
is some arbitrariness of tuning the 8 or 7 parameter,
as f cannot be calibrated in the absence of other spa-
tial information. Perhaps several fs should be used
to reflect different spatial processes.

Finally, despite the global nature of the test, it is pos-
sible to approximately decompose the statistic (7) into
the sum of local contributions to the global statistic
by partitioning the W matrix into m local weight ma-
trices. A greater contribution of a location i indicates
the greater possibility of a cluster around that loca-
tion. And it is possible to use this local indicator to
detect clusters around a specific region. In addition,
we can also test the statistic power of 7' by providing
a set of es. Our next step is to explore ways of mea-
suring local clusters and testing the statistic power of
the T.

APPENDIX I. The Derivation of Likelihood RatioTest T

Given the density function of the multinormal distribution
1

f(X)=2mo2(I, +eW ) ? exp{—%BT(I +eW )1 B)

m m m m

we can construct a likelihood ratio test with (Max,, f(X))/
(Max, f(X)) or its equivalent test of the
2loglikelihood=2/(g,c,p)
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BT(I +€eW )-'B
P— —2]” ln{ (27[)6} —hl l Im +8W" |_ ( m £ m)
o2

to maximize2l(e,0,p), p is the least square estimator of re-
gressing N/sqrt(&) on & /sqrt(&). Therefore,
D =YXN/Y& . Differentiating 2/(¢,0,p) over 6, we have

g 28 2 BT(I, +eW,)'B
o o3

. \/BT(Im +eW )-1B
= 0= —m —— ms =
m

Substituting pand G into the log-likelihood function, we

have
20(e, S , p)=—mn(2x) — mIn(B'(1,,+eW,,)'B)
+mln(m)=Inl1,+eW, | —m

Our statistic

2l(e,6,p)—21(0,6,p)
+eW ) B-InlI +eW, |)+mIn(BTB)

m m m

T = max

£>0

=max,.,(—mInBT(]

=—inf_ [mIn BT (I, +eW, )" B+Inl I, +€eW, [|+min(B7B).

m m
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