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Abstract

Significant research effort has been focusing on using GIS for advanced spatial statistics, modeling, and simula-
tion. This paper argues that even though GIS have great potential to facilitate sophisticated spatial modeling and
spatial statistics, the simple but important theme of combining spatial information with statistical analysis has
not received enough attention and should not be neglected. This paper discusses how different types of geographic
information can be derived from and stored in GIS with special attention on location information. Other types of
geographic information such as spatial relationship and connectivity are derivatives of simple location informa-
tion and are briefly discussed. Using a set of centrographic measures - a subset of spatial statistics, this paper
demonstrates how statistical techniques can be combined with geographic information such as longitude and
latitude of points in analyses. Some of these techniques also utilize attribute data of the point locations in conjunc-
tion with locational information. As long as geographic information is extracted from GIS and made accessible to
users, the GIS environment provides great potential to develop new spatial analytical methods by directly ma-
nipulating geographic information alone or together with attribute data. Using locational and attribute data of
selected U.S. cities as an example, this paper shows how spatial mean, spatial median, standard distance and

deviational ellipse are derived in a GIS environment.

I. INTRODUCTION

Though many researchers have criticized that exist-
ing GIS are weak in spatial analytical capability, the
potential of GIS to enhance spatial analysis and mod-
eling is well recognized (Fischer et al. 1996). Not long
ago, Longley and Batty (1997) referred to the volume
edited by Berry and Marble (1968) as the first book
using the term Spatial Analysis. Furthermore, they
made the following comments in their introductory
chapter about Berry and Marble’s volume: “(it) was
upon how the spatial dimension might be incorporated
into conventional statistical theory...These concerns
still run through the field but they are less dominant
today. They have been supplanted by a number of con-
cerns which are represented in this volume: a con-
cern for representation, ...a concern for modelling and
simulation; questions for modelling time as well as
space...” (Longley and Batty 1997 p.2). Their comments
reflect a characteristic in today’s GIS research. The
latter set of concerns listed by Longley and Batty is
important to today’s GIS research, as most research-
ers realize the potentials of GIS on these specific types
of spatial analytical techniques. As a result, few re-
search activities have been devoted to the former con-
cern (incorporating the spatial dimension into statis-
tics), creating an impression that the theme of com-
bining the spatial dimension with statistics is no
longer useful. This situation is reflected by several
publications that have appeared in the past decade.
For instance, the volume of papers collected by Fischer
et al. (1996) provides an overview on the potential of

GIS for spatial analysis that involves primarily ad-
vanced spatial models. Most researchers have been
focusing on how GIS can facilitate powerful and so-
phisticated spatial analytical techniques and models,
such as those discussed by Bailey and Gatrell (1995).
As a result, simple spatial techniques and measures
that combine spatial information with statistical
methods, and sometimes with attribute data, have
been very much neglected. The potential and power
of merging spatial information, attribute information
with relatively simple statistical methods to enhance
spatial analysis, are not fully realized and exploited
by some researchers and most GIS users.

In this paper, I argue that when spatial information,
specifically locational information of geographical fea-
tures, is extracted from GIS, it can be used either in-
dependently or in conjunction with attribute data of
geographical features to perform statistical analyses
in a GIS environment. The types of spatial statistics
mentioned in this paper include centrographic mea-
sures, point pattern analysis, and spatial association.
However, the detailed discussion focuses on how
locational information derived from GIS can be eas-
ily used in centrographic measures. I also provide ex-
amples to show that these centrographic measures,
though not used as frequently as regression models,
are valuable in real world applications. I demonstrate
that when spatial information is made available ex-
plicitly in a GIS environment, then many spatial sta-
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tistics can be implemented. Another intent of this
paper is to point out the great potential of developing
new measures and analytical methods when we can
manipulate the spatial information stored in GIS to-
gether with attribute data of the geographical features.
The thirty-years-old concern and the very basic con-
cept advocated by Berry and Marble, that is the em-
phasis that spatial analysis incorporates the spatial
dimension into conventional statistics deserves more
attention.

In the next section, I briefly describe spatial analysis
from the traditional perspective of analyzing locational
information using statistical techniques. Then in the
third section, I discuss different types of spatial infor-
mation that can be derived from GIS. Locational in-
formation, however, is the most fundamental type of
information. Using several simple centrographic mea-
sures as examples, I demonstrate how locational in-
formation of point data is analyzed independently and
together with attribute of point features in the fourth
section. Data of selected U.S. cities are used to illus-
trate how each of these measures can be implemented
within a GIS environment.

II. SPATTIAL ANALYSIS AND GEOGRAPHIC IN-
FORMATION

Several researchers have been advocating the ana-
lytical potentials of GIS (Anselin and Getis 1982,
Fischer et al. 1996, Goodchild 1987, Griffith 1993a).
Some authors of GIS textbooks also have acknowl-
edged that spatial analysis is a major strength of GIS
(for example, DeMers 1997). One of the earlier books
on GIS by Burrough (1986) also has a very strong spa-
tial analysis flavor, especially in spatial statistics.
Goodchild (1992) defines spatial analysis as a set of
techniques that requires the locations of objects or
spatial information. For some techniques, attributes
of geographical features are required as well. Because
spatial analysis includes location information of geo-
graphic features, the results of analysis will change if
the geographical features are moved to different lo-
cations. Given this broad definition, Goodchild in-
cluded techniques ranging from simple descriptive
geostatistics and spatial statistics, to major spatial
mathematical models used by quantitative geogra-
phers and spatial statisticians. Even mapping can be
regarded as a spatial analytical technique according
to Goodchild’s definition. All these techniques require
spatial information to be used explicitly or incorpo-
rated implicitly in the analysis. Therefore, it is rea-
sonable to assume that performing spatial analysis
within a GIS environment is highly beneficial (Longley
and Batty 1997).

Merging attribute data with spatial information has
been a central issue in GIS applications. Subsequent
to Goodchild’s (1987) classification of spatial analyti-
cal procedures, Laurini and Thompson (1992, 92-93)
discussed different types of analysis that can be per-
formed in GIS. They further classified GIS operations
into three categories based upon the information re-
quired: require no spatial information (such as con-
ventional statistical analysis); require only spatial in-
formation (such as analysis of shape of spatial objects);
and require both spatial and attribute data. Although
most GIS provide some standard descriptive statisti-
cal procedures, these systems are not meant to per-
form heavy-duty sophisticated statistical analysis such
as commercial statistical packages. Therefore, the
strengths of GIS lie with the second and the third
type of operations, which both require spatial infor-
mation. These two types of operation also define spa-
tial analysis: using geographic information in the
analysis.

To implement the idea of utilizing spatial informa-
tion in statistical analysis, a large body of literature
already exists. These works concentrate mostly in the
areas of spatial interpolation (Burrough 1986) and
spatial association analysis (Anselin and Bao 1997,
Ding and Fotheringham 1992, Zhang and Griffith
1997). Many GIS packages, including ARC/INFO, have
built-in routines to support popular spatial interpo-
lation methods such as kriging, which is used widely
in geoscience. Environmental System Research Insti-
tute (ESRI) will soon deploy a geostatistics analyst
extension primarily for spatial interpolation for both
ArcView and ARC/INFO. Still most GIS are weak in
statistical capabilities. Therefore, the idea of integrat-
ing GIS packages with powerful statistical packages
is very appealing. A good example is the linking of
ArcView with S-Plus (Bao and Martin 1997), and sig-
nificant developments have been accomplished along
this line of research and implementation. These at-
tempts can overcome the weakness of GIS in perform-
ing advanced classical statistical analyses.

As the focus of development has been in terms of so-
phisticated techniques, such as different types of
kriging, spatio-temporal modeling, and simulation,
how geographic information can be derived from GIS
and is being used in those sophisticated analyses is
not transparent to users. Quite often, the geographic
information is not directly manipulated by the ana-
lyst during the process; rather, it is used immediately
after being derived from GIS. Thus, the potential for
using geographic information to develop other types
or new spatial analytical techniques and models may
not be realized. On the other hand, the use of geo-
graphic information for simple but powerful
centrographic and spatial statistics has not been ad-



Geographic Information Sciences

Vol. 5, No. 2, December 1999

165

dressed adequately. In this paper, I discuss how dif-
ferent types of geographic information can be derived
essentially from locational information. I attempt to
associate different types of geographic information
with different types of spatial analysis. Specifically, I
use centrographic measures as examples to demon-
strate how locational information derived from GIS
is used. This demonstration is to show that directly
manipulating or utilizing geographic information de-
rived from GIS has the potential to enhance further
development in spatial analysis.

III. DERIVING GEOGRAPHIC INFORMATION
FROM GIS

Locational

Both Clarke (1997) and NCGIA (1997) have discussed
various types of spatial information utilized in GIS
and spatial analysis. The simple locational informa-
tion (usually in terms of x-y coordinates) probably is
the most fundamental. Ironically, locational informa-
tion of spatial objects may not be as immediately avail-
able to users as most novice GIS users expect (for in-
stance, ARC/INFO, ArcView, Maptitude, and several
other packages do not have the x-y coordinates of spa-
tial objects stored explicitly in the attribute tables of
the DBMS). In most systems, however, location of geo-
graphical features can be extracted from spatial data
with a few simple steps. For instance, in ArcView, us-
ing the calculate function in the feature attribute table,
the x-y coordinates of geographical features, includ-
ing points and polygons, can be derived and then
stored as additional attributes in the feature table.
Clearly, one can go a step further and write an Av-
enue script for ArcView or an AML for ARC/INFO to
perform a similar coordinate-extraction process (such
an Avenue script- addxycoo.ave-is available as a
sample script in ArcView).

The x-y coordinates of point features can serve as the
basis of several spatial analytical procedures, mostly
regarded as descriptive spatial statistics or
geostatistics, which will be discussed later in greater
detail. As mentioned by Goodchild (1987, 1992) and
Laurini and Thompson (1992), locational information
can be analyzed alone or can be combined with at-
tribute data for analysis. As for the former type of
analysis, after the coordinates of geographical features
are stored in the attribute data, one can utilize the
database functions to analyze the coordinate data.
However, storing the coordinate data in the feature
table also facilitates the latter type of analysis. The
coordinate data can easily be used in conjunction with
other attribute data describing the geographical fea-
tures to perform spatial analysis. In the next section,

I will describe how the coordinate data can support
spatial statistics specifically.

Based upon the locational information of geographi-
cal features, one can also derive information about
the spatial relationship of geographic features or ob-
jects, and information on spatial relationships can
serve as the basis of several sets of spatial analytical
techniques. It is clear that certain types of spatial re-
lationship can be derived from locational information,
but it is not obvious that some other types of spatial
relationship can also be directly obtained from
locational information.

Distance

Quite often, spatial relationships are represented by
distances between objects, and the distances between
pairs of objects can be organized into a distance ma-
trix, D. If the D matrix is created for a set of point
features, then the straight-line Euclidean distances
between pairs of point features can be derived by uti-
lizing the point coordinates stored in the attribute
table to fill the matrix. In general, the matrix is a sym-
metrical matrix with zeros along the major diagonal.
That is, the distance between a point feature to itself
is zero, while off-diagonal elements are non-zeros.

The straight-line distance between a pair of points is
only one of the many distance measures. There are
distance measures for non-Euclidean space, such as
the Minkowskian distance, but they are of less inter-
est to most GIS users. Even on the Euclidean space,
there are other distance measures which may require
additional information often captured and provided
by spatial data. For instance, if points are located along
a transportation network, then the distance between
a pair of points is the distance between them along
the network (network distance) rather than the
straight-line distance. To derive this type of distance
information, we need topological information of the
network, including how the nodes (points) are related
to different network segments and how different net-
work segments are topologically related to each other.
Just locational information of points is not adequate.
The D matrix for a network also has many variations.
If the network possesses directional characteristics,
such as one-way streets or turn restrictions, certain
segments of the network become uni-directional. Ad-
ditional attributes have to be included to reflect these
directional characteristics of the segments. These at-
tributes definitely affect the calculation of distance
between locations if the distance is used for commut-
ing or transportation planning. In addition, shortest
paths can be derived.

In general, the D matrix for points captures essential
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locational information for several types of analysis.
Searching through the row or column of the D matrix
for each point, it is easy to identify the point nearest,
second nearest, third nearest, and so on to a given
point. Thus, based upon the D matrix for point fea-
tures, one can perform ordered neighbor statistics to
examine the nature of a point pattern (Boots and Getis
1988). This type of analysis requires only spatial in-
formation, but not the attribute data describing the
geographical features. However, when the spatial as-
sociation among points is investigated (Lee et al. 1994),
the point distance information is combined with the
point attribute information. Quite often, the distances
between points are used as the weights in the spatial
association calculation. For instance, the weights can
be inverses of distance between points. Thus, the D
matrix for points can support the calculation of sev-
eral spatial association measures for points such as
the G-statistics (Getis and Ord 1992).

The concept of the distance matrix is easily transfer-
able to describe polygon features. If the D matrix is
created for a set of polygon features, the entries of the
off-diagonal cells are basically the distances between
centroids of polygons because the locations of poly-
gons are usually represented by the centroids. In other
words, the distances between polygons are reduced to
distances between centroid points. This form of D
matrix can be used for spatial interaction modeling
(Fotheringham and O’Kelly 1989) together with at-
tribute information describing the characteristics of
the origins and destinations. The matrix can also be
used in various form of spatial interaction models to
calibrate models in different stages of the urban trans-
portation modeling system (UTMS), or models delin-
eating market boundaries, such as Huff’'s model
(Taaffe, Gauthier, O’Kelly 1996). This family of spa-
tial models, however, is sensitive to the definition of
regions or zones. As subunits of a larger area are col-
lectively represented by a single point or centroid of
the larger area, using different region definitions will
yield different results. This type of aggregation prob-
lem is well-documented in spatial interaction model-
ing (Putman and Chung 1989) and in location-alloca-
tion modeling (Current and Schilling 1987) literature.

In addition, distances between pairs of polygons are
inputs for many spatial autocorrelation measures,
which require both spatial relation information and
attribute data. Similar to the analysis of spatial
autocorrelation for points, the critical piece of spatial
information required to calculate spatial
autocorrelation statistics for polygons is to define
neighboring areal units of a given areal unit. In gen-
eral, spatial autocorrelation statistics can be classi-
fied into global and local statistics. The global G(d)-
statistic, which is a cross-product statistic, utilizes

distance to define the neighborhood of a region (Getis
and Ord 1992). Quite often, the magnitude of spatial
autocorrelation is spatially heterogeneous (Anselin
1995). Thus the local version of the G(d)-statistic is
used to measure the magnitude of spatial
autocorrelation within an immediate neighborhood.
A value indicating the magnitude of spatial associa-
tion between one area and its neighbors (in whatever
way they are defined) can be derived for each areal
unit. When the local G(d) is derived for all areal units,
the spatial association statistic can be mapped. The
local G(d)-statistic utilizes distance information to
identify neighborhood (Getis and Ord 1992). Similar
to the local G(d) statistic, other local indicators of spa-
tial association (Anselin 1995), such as the local Moran
and local Geary, though not necessarily, can rely on
the distance information captured in D to identify the
neighborhood of any given areal unit.

Adjacency

Adjacency relationship or contiguity is usually appli-
cable to polygon features, and is commonly used in
spatial autocorrelation analysis (Anselin 1988, Griffith
1988). It can be regarded as a reduced form of dis-
tance measure or a binary representation of distance.
In GIS environments, the distance between a pair of
adjacent polygon features can be defined as zero. In
this case, the distance between polygons is not de-
fined by the centroid distance between polygons, but
the distance between the nearest parts of the two poly-
gons. Therefore, as the two polygons touch each other,
the distance of their nearest parts is zero. But this
way of measuring distance of adjacent features is just
the opposite to the traditional practice in spatial sta-
tistics. In spatial modeling and statistics, if the pair of
polygons are adjacent, a “1” is used to indicate that
relationship, while a “0” indicates that the two poly-
gons are not adjacent in the D matrix. Thus, if the D
matrix constructed in a GIS environment uses zeros
to indicate polygon adjacency, then the matrix have
to be converted into a binary matrix that captures
the topological relationships of polygon features. Pairs
of polygons with zero distance will be converted to
“1”’s and to “0”s if the distances between the nearest
parts of two polygons are larger than zero. This bi-
nary matrix sometimes is referred to as the contigu-
ity (C) matrix or adjacency matrix.

Many global spatial autocorrelation statistics define
a neighborhood by the adjacency criterion. Joint count
statistics report the magnitude of spatial
autocorrelation of a binary variable for the entire
study region. Moran’s I and the Geary Ratio, which
are for interval or ratio variables, are also regarded
as global statistics. Adjacency sometimes is used to
define neighboring units in all these statistics. The
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contiguity information captured in D can also be used
to generate a Moran scatterplot to identify local varia-
tions of spatial autocorrelation in a graphical mode
(Anselin 1996), an implementation supported by most
GIS packages.

Connectivity

When the adjacency concept is applied to network
systems, the concept is often labeled as connectivity,
i.e., how well network segments are connected to each
other. If the two segments are connected, the distance
between them is zero as defined in most GIS pack-
ages. But in the normal practice of spatial statistics
and analysis and as in the previous discussion on poly-
gon adjacency, the C matrix, which depicts the con-
nectivity of the network, is a binary matrix with 1
indicating that the two network segments are con-
nected while 0 indicates disjoint segments. This type
of geographic information is useful for analyzing the
spatial autocorrelation of a network (Black 1992, Lee
et al. 1994). If the nodes or vertices, instead of seg-
ments of the network are treated as the geographical
features, then the connectivity relationship can be
applied to nodes or vertices along the network. The
distance between pairs of vertices is indicated by their
network distances. Network distances can be repre-
sented by the D matrix in different formats depend-
ing upon the purpose of analysis. For instance, if the
purpose is to analyze how well these locations are con-
nected on a network, then the distance between pairs
of locations can be reduced to a binary variable of con-
nectivity. This matrix then is the same as the C con-
nectivity matrix described in the previous section. This
matrix is the basis of several spatial analytical tech-
niques commonly used in network analysis (Werner
1985). Using the C matrix, one can evaluate the ac-
cessibility of nodes or vertices. One can also derive in
how many links a pair of locations are connected - a
shortest path based upon numbers of links. Obviously,
the network distance can be the actual distance be-
tween pairs of locations reported in D. A shortest path
based upon network distance can be derived for given
locations. With additional attribute information, the
D matrix can be used to solve location-allocation types
of problems.

Both connectivity and adjacency are specific relation-
ships of geographic features based upon the distance
measure. It is arguable that the distinction between
the two is artificial, but it seems to be equally valid to
argue that the same concept is applied to different
geographical features or objects. Most (Euclidean) dis-
tance measurements are based on the locational in-
formation of the features. Therefore, most spatial re-
lationships can be derived from locational informa-
tion. As long as different types of geographic informa-

tion are captured and stored in GIS, and users can
access them, they can be analyzed with existing tech-
niques or models as described above. They can, how-
ever, also facilitate the development of new spatial
analytical methods and techniques as the analysts can
now directly manipulate and explore how geographic
information can be analyzed or combined with other
attributes in statistical analysis.

One may argue that many statistical packages can
accomplish the above tasks. There are also evidences
showing that many spatial statistical and analytical
procedures have already been implemented in non-
GIS packages (for example, Griffith 1989, 1993b). The
question is whether conducting spatial statistical
analysis in a non-GIS environment is effective and
efficient. Several specific methods have been adopted
to perform spatial analytical procedures outside of
GIS. Some involved exporting spatial information,
such as the D matrix and the C matrix, such that the
information can be accessed by statistical packages
(Anselin 1992). With the advances in operating sys-
tems and software engineering, the integration of GIS
and statistical packages becomes more seamless
(Anselin and Bao 1997). These approaches, quite of-
ten require users to use statistical packages that one
may not be familiar with. To less sophisticated users,
learning an additional package other than GIS be-
comes a major impediment in learning and using spa-
tial statistics. On the other hand, GIS offer an envi-
ronment that can facilitate spatial analytical proce-
dures. For instance, in the exploratory stage of the
analysis, one may want to select a sub-region from
the entire study area to conduct the analysis first. GIS
offer a range of selection tools, including spatial query
or selection methods that ordinary statistical pack-
ages fail to support. In addition, attributes of geo-
graphical features are linked to the geographical fea-
tures such that analyses required to access both the
attribute information and spatial information (derived
from the geographical features) are readily available.
Obviously, if the analytical results can be represented
spatially (as some of those discussed later in this pa-
per), conducting the analysis within GIS definitely is
convenient to display the results in maps.

The rest of this paper demonstrates how locational
information, the most basic geographical information
that can be derived from GIS, can be used in a set of
centrographic measures to analyze point features. This
set of measures can be and had been labeled as de-
scriptive geostatistics because of their descriptive
nature. But later, because the term geostatistics have
been mostly associated with spatial interpolation
methods such as kriging, the term centrograhic mea-
sures or descriptive spatial statistics were adopted
instead (Kellerman 1981, Ebdon 1988). Most of them
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are the spatial extensions of descriptive classical sta-
tistics or bivariate statistics. They are ideal to show
how spatial information derived from GIS can be ana-
lyzed independently or in conjunction with attribute
data of the features using statistical techniques.

IV.IMPLEMENTING CENTROGRAPHIC MEA-
SURES IN GIS

As described earlier, regardless of the coordinate sys-
tem adopted to represent spatial data, the locational
information in the form of coordinates of features can
be extracted easily from most GIS with a few steps.
After the coordinates are extracted, they can either
be stored in the attribute table as additional attributes
for later analysis, or can be used immediately in the
calculation of statistics in the case of using a program.
The latter method does not require changing the at-
tribute database because the coordinates are not re-
corded but are used for calculation once when they
are extracted. Also, the geographic information has to
be extracted again if another analysis is performed.
The former method, on the other hand, requires chang-
ing the attribute databases by recording the coordi-
nates explicitly in the database so that they can be

used for subsequent analyses. If the coordinates are
stored as attributes, all descriptive centrographic
measures in the following discussion can be derived
using spreadsheet-like or database functions.

Spatial Mean

With the coordinates of a set of points, we can derive
the spatial mean, or the center of gravity (Ebdon 1988).
The formula is described in Table 1, wherey and Yy
are the coordinates of the spatial mean, x; and y; re-
spectively are the x and y coordinates for each point i,
and there is a total of n points. If the coordinates of
point features are included in the attribute table to-
gether with other attributes, then the formula for the
spatial mean calculation is easily implemented using
simple database or statistical operations supported
by most GIS. If each point is treated equally, points
are not differentiable one from another, then the for-
mula is reduced to two simple arithmetic means of x-
y coordinates. They are easy to obtain by database or
statistical functions in all GIS. For instance, in
ArcView the statistics function for feature table can
provide the summary statistics, including the mean
of the x-y coordinates. Quite often, points in the data-
base are not identical. Each point feature may be

Table 1. Location Information (x-y coordinates)

Types Statistics Formulae
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weighted differently (f;) according to what the point
represents. If the points represent living quarters or
residential buildings, the points may be weighted by
the numbers of residence in those locations, such as
the aged population counts in nursing homes. In the
case that the points are centroids of polygons repre-
senting the geographical regions or polygons, the
points may also be weighted. The weight factor is usu-
ally a characteristic of the point location and there-
fore should be reflected by one of the attributes in the
attribute table. To calculate the weighted spatial mean
using one of the attributes, that involves simply col-
umn operation in the database system to multiply the
coordinate readings by the chosen attribute (weight).
Using ArcView to illustrate the concept and assum-
ing that the spatial mean is weighted by an attribute
falready stored in the attribute table, the spatial mean
can be derived using the following steps: make the
attribute table editable; add two new fields to the table
to store the x-y coordinates to be extracted; use the
calculate function in the table, extract the x-coordi-
nates from the point shape by issuing this request to
the point shape: Point.GetX (for polygon shape, use
Polygon.ReturnCenter.GetX); similarly, issue the .GetY
request to the point shape to extract the y-coordinates;
add two more new fields to the table to store the f; x;
and f; y;for the weighted spatial mean; use the calcu-
late function in the table again, multiply the x-coordi-
nate field and the y-coordinate field by the weight f
separately; and use the statistics function to derive
the sums of fix; and f;y; separately and also the sum of
fi. The coordinates of the spatial mean is the sums of
fix; and f;y; divided by the sum of f. An alternative
approach to implement the calculation of spatial mean
is to write an Avenue script - the programming lan-
guage for ArcView. This approach has the advantage
of creating a point to represent the spatial mean on
the map after the spatial mean is derived. If no weight
is used to calculate the spatial mean, the above proce-
dure can easily be modified by leaving out the steps
multiplying the x-y coordinates by the weights. The
coordinates of the unweighted spatial mean is just
the averages of the x-y coordinates provided by the
statistics function in ArcView table. In other words,
the denominators of the equation in Table 1 should be
the total number of points.

Spatial mean is a measure of spatial central tendency
analogous to the classical statistics of mean and
weighted mean. It is useful in summarizing the over-
all location of a set of point features. For instance, the
Bureau of the Census has been calculating spatial
mean of the U.S. population for every census (Bureau
of the Census 1996). By plotting the spatial mean of
U.S. population over the past century, it is clear that
the population mean has been drifting from Delaware
and Maryland west and southward over the country

to Missouri. This set of spatial means indicates that
overall the U.S. population has been moving west and
south. Therefore, spatial mean is useful for compar-
ing the locational difference between different sets of
point features. For instance, a database of crime sta-
tistics consists of different types of crime. In an ex-
ploratory analysis, it might be useful to derive the
spatial mean for each type of crime, such as auto-theft
and robbery, to see if overall they are close to each
other. If the spatial means of these two types of crime
are close, this may be an indication that the two types
of crime may be (spatially) related somehow. The in-
dication offers directions to conduct more in-depth
analyses on the point patterns. Another example of
using spatial mean can be found in Thapar et al. (1999).
The authors conducted a spatio-temporal analysis on
the centers of population distribution of the U.S. over
three decades at the state level and using different
regionalization schemes. They also took advantage of
calculating the spatial means in GIS by displaying
the resultant spatial means and analyzing the changes
in spatial means for different periods and for differ-
ent spatial scales. The ways that spatial means were
used in these several examples of comparative analy-
ses demonstrate clearly how centrographic measures
can be used as suggested by Kellerman (1981).

Figure 1 shows an unweighted and a weighted spa-
tial mean of selected U.S. cities. Cities in the U.S. with
population larger than 0.5 million (in 1990) are se-
lected. Without using any weight, a spatial mean is
calculated to show the center of these large cities. The
center is very much at the central section of the U.S,,
indicating that large cities in the U.S. are not highly
concentrated in a specific region. But from visual in-
spection, it is obvious that most of the large cities are
located either along the two coastal areas or near the
Great Lakes. When we take into account the different
sizes of these cities, the spatial mean weighted by
population counts of these cities is pulled to the east.
In other words, the large cities in the east are slightly
larger than those on the west.
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Figure 1. Spatial Mean and Weighted Spatial Mean
(by population counts) of Large U.S. Cities
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Spatial Median

Another measure of central tendency is the median,
and its spatial counterpart is spatial median. Unfor-
tunately, this concept can be ambiguous. Ebdon (1988)
argues that the meaningful spatial measure analo-
gous to median is probably the so-called center of mini-
mum travel, which is a location from which the total
distance to all other points is minimized. This idea is
clearly captured by the objective function, MIN [.] for
spatial median in Table 1. The center can be estimated
using an iterative procedure or the Kuhn-Kuenne al-
gorithm depicted by the two equations underneath
the objective function. This iterative process searches
for the coordinate pair that minimizes the distance
function. Traditionally, the coordinate of the spatial
mean can be used as the initial values for the itera-
tive procedure (i.e., setting (u,.,,v,,) to the coordinates
of spatial mean as the initial values). Then a set of
new coordinates (u,,v,) is generated. The new coordi-
nates enter the iterative equations again to derive
another set of coordinates (u,,1,vy:1). In every itera-
tion, the location of the new coordinates is compared
with the former coordinate pair to derive a distance.
The iterative procedure is terminated when the dis-
tance between any two pairs of coordinates from the
two consecutive iterations is smaller than a predefined
tolerance value in distance. Obviously, a simple pro-
gram in GIS can implement the iterative procedure.
But with careful setup, a spreadsheet can also derived
the spatial median or the center. Still, the basic in-
puts are the coordinates of all the point locations as
in the calculation of the spatial mean. In fact, because
coordinate readings of the spatial mean is usually used
as the initial values of the iterative process, there-
fore, it is logical to calculate spatial mean prior to the
calculation of spatial median.

A brief survey of the literature indicates that spatial
median is used mainly in location-allocation model-
ing. The U.S. Bureau of the Census does provide the
spatial median estimates for most censuses to comple-
ment the spatial mean statistic (Bureau of the Cen-
sus 1996). Using the points representing the large U.S.
cities, the unweighted spatial median is calculated.
The result is shown in Figure 2. In addition to the
spatial median, Figure 2 also shows the spatial mean,
which is used as the initial location for the iterative
procedure, and all the intermediate locations derived
during the process. The intermediate locations drift
away from the spatial mean toward the spatial me-
dian. One should note that the iterative algorithm can
find a rather precise location for the spatial median if
the convergence criterion or the tolerance is set to a
very small distance unit.
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Figure 2. A Comparison of Spatial Mean and Spatial
Median for Largest U.S. Cities

Standard Distance

Based upon the locational information (x-y coordi-
nates) of point features, we can also use standard dis-
tance to describe the spatial spread of a given set of
features. This measure is analogous to the measures
of dispersion such as variance or standard deviation
in classical statistics. As defined in Table 1, the stan-
dard distance measure summarizes how all observa-
tions are spatially distributed around the spatial
mean. Thus the spatial mean is required in the calcu-
lation of this statistic. The standard distance measure
can accommodate weights as in the cases of spatial
mean and spatial median. If the standard distance is
weighted, then the weights () have to be included.
Otherwise, the weight component can be removed
from the numerator and the denominator is the total
number of observations or points.

As long as the coordinates of point locations and the
weight variable are found in the attribute table, the
standard distance can be computed using standard
database and statistics functions. After the spatial
mean is calculated, the deviations of each point from
the spatial mean can be computed using algebraic
operations. Then the deviations from the means should
be squared first. The squared of the deviations have
to be multiplied by the weights if the standard dis-
tance is a weighted one. If the standard distance is an
unweighted one, the squared deviations from the
means can be summed together and divided by the
number of observations to obtain the standard dis-
tance. Quite often, the spatial distance is used as a
radius so that a circle (standard distance circle) can
be drawn centering at the spatial mean to visually
represent the deviation from the mean.

Note that comparing standard distances derived from
different regions could be misleading as standard dis-
tance is influenced by size of the region. For instance,
the standard distances of population of the United
States and United Kingdom cannot be compared in a
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meaningful manner because of the different sizes of
the two countries. In order to compare these two dis-
tances, they have to be standardized by areas or a
variable that is a function of area (Taylor 1977). GIS
make this standardization process straightforward be-
cause most GIS have areas of regions included as an
attribute or can be obtained easily. This is another
reason why these centrographic measures and some
other spatial statistics should be implemented in GIS.

Similar to the use of spatial mean, standard distance
is useful when it is for comparing different sets of
points. In addition to examples provided by Kellerman
(1981), standard distance has been used occasionally.
After deriving standard distances for economically
disadvantaged groups over different years, Greene
(1991) was able to compare the locations and sizes of
the standard distance circles to show how the popula-
tion group has moved over the years. Using standard
distance to analyze automobile accident records,
Levine et al. (1995) were able to show that different
types of automobile accidents had different spatial
patterns.

In addition to the large cities selected from the U.S.
cities database, another set of cities with median house
value of $200,000 or higher in the 1990 Census was
selected. They may be regarded as cities that have a
high cost of living, and thus are labeled as “expensive
cities” in this example. A spatial mean togther with
the standard distance circle are derived for the ex-
pensive cities. They are shown in Figure 3 together
with the same statistics for large cities. By comparing
the two spatial means, it is apparent that, overall,
expensive cities are more likely to be in the west. As
indicated by the two standard distance circles, the
expensive cities are more widely spread than the large
cities. A detailed examination of these cities indicates
that those expensive cities include 12 Hawaiian cities
out of the 340 expensive cities. The Hawaiian cities
were not shown on the map because of limited map
space.

One important issue about using spatial statistics in
general and specifically centrographic measures such
as spatial mean and standard distance is the coordi-
nate system or projection. Figure 3 clearly shows that
the standard distance circles are not circles. All three
figures shown so far have been projected to Albers
conic projection for North America. However, the data
(i.e., the coordinates of the points) are still in original
latitude and longitude readings. The lengths of stan-
dard distances were in degree-decimal. Using the stan-
dard distances in degree-decimal as radii, the two
circles were drawn and they were circles if the maps
were unprojected. This phenomenon reminds us that
the centrographic measures introduced in this paper
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Figure 3. Standard Distance Circles and their corre-
sponding Spatial Means for Large and Expensive U.S.
Cities.

may not be too appropriate for analyses involving large
areas. For large geographical areas, to find a projec-
tion or a coordinate system to minimize the distor-
tion of distance in all directions, if not impossible, is
quite difficult. On the other hand, one may argue that
these centrographic measures are for descriptive and
exploratory purposes, and therefore, the distortions
or the biases introduced by the projection may not be
of significant consequences if the analysis is for com-
parative purposes over time or like the one described
in Figure 3.

Deviational Ellipse

Standard distance is useful to describe the spread of
locations around the spatial mean. But quite often
locations may spread around a spatial mean with a
specific orientation, which cannot be reflected by stan-
dard distance. For instance, in analyzing the activity
space of an individual (Abler et al. 1971), the shape of
the activity space is usually constrained by the work
place and the residence location. Using standard dis-
tance can only reflect the spread of activity locations,
failing to capture the directional nature of the space.
The derivation of a standard deviational ellipse (Table
1), which can be regarded as an extension of standard
distance, is entirely based on coordinates of the set of
locations. The ellipse can reflect the orientation of a
set of locations around the spatial mean. The deriva-
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tion of the ellipse is slightly more complicated than
the standard distance, but is easily applicable in the
GIS environment. The three major steps are: trans-
forming the locations to center at the spatial mean
(deriving the x’s and y’s); deriving the angle of rota-
tion based upon the transformed coordinates; and cal-
culating the deviations of locations along the rotated
x and y axes. The first step implies that the spatial
mean has to be derived prior to the fitting of the el-
lipse. Results from these three steps serve as param-
eters to construct the standard deviational ellipse. The
formulae for these ellipse parameters are slightly more
complicated than the other centrographic measures,
and intuitively one might argue that this statistic has
tobeimplemented with a program. Writing a program
(in Avenue or AML) will be an elegant way to imple-
ment the statistic, and the program can be reused. If
the database management system (DBMS), however,
has good support of trigonometric functions, it is still
possible to implement the statistic within the data-
base environment. The first step of transforming the
coordinates to center at (0,0) is very straight-for-
warded after the spatial mean is calculated. This pro-
cess simply requires subtracting the spatial mean from
the coordinates of each point. The second and the third
steps involve mainly column operations in a database
system or spreadsheet package together with several
trigonometric functions. The angle of rotation is de-
fined as the angle between the north and the axis in
the clockwise direction. Given this angle of rotation,
the deviations along the two axes (8, and §,) can be
derived.

Besides the classical work by Abler et al. (1971) using
ellipses to describe the daily activity space, ellipses
have not been widely used until recently. Levine et al.
(1995) derived ellipses for different types of automo-
bile accidents in Honolulu in order to analyze the geo-
graphical characteristics of different types of accidents.
In the context of geographic segregation, Wong (1999)
introduced an index to measure spatial segregation
based upon ellipses. Because an ellipse can capture
the spatial distribution (including the central ten-
dency, spatial dispersion, and orientation) of a given
population group, different ellipses can be derived for
different ethnic groups. By overlaying these ellipses,
the level of spatial correlation, which is inversely re-
lated to spatial segregation, among different ethnic
groups can be assessed. Using this new measure, Wong
(2000) analyzed the Chinese population groups based
upon provincial and county level data. The results shed
light on analyzing the ethnic segregation among the
Chinese populations.

Just for the purpose of illustration and putting aside
the issue of projection or coordinate system, devia-
tional ellipses are fitted for the two sets of cities: large

US Boundary
Ellipse (Large Cities)
/\/ Ellipse (Expensive Cities)

Figure 4. Standard Deviational Ellipses for Largest
and Expensive U.S. Cities

cities and expensive cities. The author uses ArcView
for all these demonstrations. To represent an ellipse
effectively, the major and minor axes of the ellipse
are drawn as polylines. Figure 4 shows the two el-
lipses. As expected, because several expensive cities
in Hawaii can be treated as geographical outliers, the
ellipse for expensive cities has a longer major axis
than the one for large cities. Overall, the orientations
of the two sets of cities are not dramatically different.

V.SUMMARY

This paper argues that the old concern of incorporat-
ing geographic information into statistical analysis
has been neglected to some extent in recent research
in GIS and spatial analysis. Most discussions on this
topic revolve around sophisticated modeling and ad-
vanced spatial statistics. There has been little discus-
sion on how spatial information can be derived from
GIS and how the information can be combined with
relatively simple statistical techniques. Although dif-
ferent types of spatial information can be derived from
GIS, the most fundamental information is locational
information. Based upon the locations of geographic
features, geographic information about spatial rela-
tionships is derived. These relationships are reflected
by distance, adjacency or contiguity, and connectivity
for network features, and they can be explicitly used
in statistical analysis or mathematical modeling. To
illustrate how statistical analyses can be performed
on geographic information alone or together with at-
tributes describing the geographic features, this pa-
per implements a set of centrographic measures for
point features in a GIS environment.

The series of techniques of a spatial mean, spatial
median, standard distance, and standard deviational
ellipse can be applied in a logical sequence to analyze
a set of locations. All of them analyze the location of
point features only, which are reflected by the x-y co-
ordinates. But they can also incorporate a weight at- -
tribute when analyzing locational information. These
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simple descriptive measures belong to the second and
third types of GIS operations discussed by Laurini
and Thompson (1992). Their results can also be plot-
ted on cartographic displays or be stored as additional
geographical features to facilitate further analyses.
Employing these techniques together with the spa-
tial selection capability of GIS may bring new insights
and enhance analyses (Anselin and Getis 1992). As
discussed before, many geographical studies utilize
this set of relatively simple spatial descriptive statis-
tics to shed light on problems.

This paper also demonstrates that different types of
geographic information can be extracted and stored
in a GIS environment. As soon as the geographic in-
formation is extracted and stored explicitly so that
users can access it, there is great potential for geog-
raphers and spatial analysts to develop new methods
to analyze geographic information alone, regardless
of the form in which it is stored (it can be two col-
umns of x-y coordinates, a distance matrix, or a bi-
nary connectivity matrix), or together with attribute
data. The several simple descriptive centrographic
measures implemented in this paper are just a few
examples to demonstrate the utility and potential of
this approach. When this approach is combined with
other features of GIS, such as the spatial query or
selection function, GIS can offer an environment with
great potential to enhance and further the develop-
ment of spatial analysis.

The simple approach of combining geographic infor-
mation with statistical analysis is old. But if this old
and simple approach is important and powerful, there
is no reason that we should not explore and utilize it.
Recent development in GIS has been focused on so-
phisticated modeling. Little discussion has been pro-
vided on how geographic information can be manipu-
lated and utilized directly in spatial analysis. This
paper discusses several aspects on this topic.
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