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Abstract

This study uses various spatial statistical methods to examine and model large- and small-scale spatial structure
in bird abundance and urbanization. A set of chaparral-vegetated points across an urbanizing landscape in the
Santa Monica Mountains of southern California was surveyed for birds in 1997 and mapped in a GIS. For each
sample location, GIS landuse data were used to calculate surrounding urbanization proportion.

We first used semivariograms and correlograms to detect large-scale trends, and Moran’s I statistic to test for
small-scale spatial autocorrelation in bird abundance. Relationships between bird abundance and surrounding
urbanization levels were then analyzed using ordinary least-squares (OLS) regression. Upon detection of spatial
autocorrelation in model residuals, spatial covariance models were constructed to incorporate this small-scale
spatial dependence statistically and obtain non-biased estimates of urbanization influence. As a conservative
comparison, we also removed the large-scale spatial trends from bird abundance and regressed the detrended
model residuals on surrounding urbanization proportion to examine the effects of local variations in urbanization
on bird abundance.

Results of spatial covariance models, as well as detrended non-spatial models, indicate that chaparral bird popu-
lations are affected by changes in surrounding landscape composition, regardless of spatial location. Semivariogram
and correlogram analysis provided further insight into the spatial structures of the bird populations examined.

L. INTRODUCTION

Increasingly, many large-scale ecological studies in-
volve an explicit spatial component. With the grow-
ing availability and sophistication of Geographic In-
formation Systems (GIS), as well as inexpensive Geo-
graphic Positioning Systems (GPS), ecologists can now
georeference their sampling locations relatively eas-
ily and accurately. Oftentimes, however, this extra
information is not used to its full potential. In ecol-
ogy, GIS is now widely used as a map presentation
and spatial analysis tool, facilitating the visualization
and quantitative characterization of spatial variables
and relationships among them. Commonly, however,
spatial data are analyzed using simple statistical
methods that ignore the underlying spatial structure
and often improperly assume independence among
sampling locations. This tendency is likely due to the
statistical complexity and computation-intensiveness
of many spatial statistical techniques, as well as their
lack of widespread availability. But the omission of
spatial dependence in statistical analyses can be prob-
lematic for the interpretation of results, and may re-
sult in biased model parameter estimates (Robertson
1987, Anselin 1989) and false detection of significant
relationships (Legendre 1993).

Spatial dependence can occur at different scales, which

may be indicative of the process(es) driving the ob-
served spatial patterns. Generally speaking, however,
spatial autocorrelation in a data set indicates the pres-
ence of small-scale spatial dependence due to the in-
terdependence of neighboring sites (Cressie 1993,
MathSoft 1996). Small-scale spatial dependence is
generally stochastic in origin and therefore difficult
to predict. Conversely, large-scale or “structural” spa-
tial dependence (Rossi et al. 1992) refers to a predict-
able pattern or spatial trend (Cressie 1993), which is
often related to underlying physiographic features.

With respect to animal populations, large-scale spa-
tial dependence in a species’ distribution and abun-
dance may reflect “continuous biogeographical disper-
sion routes” (Carroll and Pearson 1998), as well as
underlying trends in the abiotic environment (e.g.,
topography, substrate, climate) that are generated
slowly over geologic time (Brown 1984). Small-scale
dependence tends instead to reflect patchiness in the
biotic environment, stemming from stochastic distur-
bance events or complex species interactions that oc-
cur on an ecological time population dynamics, and
density-dependent behaviors (e.g., territoriality, flock-
ing) (Brown et al. 1995). These small-scale biological
interactions may introduce temporal and/or spatial
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lags, decoupling a system from underlying geophysi-
cal factors (Wiens 1989) and making spatial variabil-
ity difficult to predict.

As a result of these and other sources of spatial de-
pendence, animal populations are likely to be non-
uniformly distributed across a landscape, and sam-
pling locations may not be equally independent of one
another. Rather, sites that are closer in spatial prox-
imity are likely to be more similar in species abun-
dance (Brown 1984, Rossi et al. 1992). Thus, a funda-
mental statistical assumption is violated when popu-
lations exhibit significant spatial dependence. This
leads to an over-specification of degrees of freedom,
and an increased probability of rejecting a valid null
hypothesis (type I or a error), meaning that results
may too often be declared significant (Legendre 1993).

Ordinary least-squares (OLS) regression is typically
used to model the relationships between ecological
variables. If spatial autocorrelation is present in the
error term, however, the estimated results will be bi-
ased and inconsistent (Anselin 1989). One must there-
fore control for spatial location when analyzing rela-
tionships between spatially distributed ecological vari-
ables. While the detection of spatial autocorrelation
in regression model residuals may indicate the pres-
ence of an additional explanatory variable, this vari-
able may not be easily measurable. Thus the spatial
autocorrelation structure may instead be explicitly
modeled, so that independence assumptions are met
and significance tests are valid. Large-scale trends,
which are easily misinterpreted as small-scale
autocorrelation (Legendre and Fortin 1989), should
first be investigated using semivariograms,
correlograms, or other “structure functions” (Yaglom
1957).

This study attempts to address the above-named
shortcomings in the analysis of spatial ecological data.
Our primary goal was to assess the responses of se-
lected songbird species to increasing levels of urban-
ization (residential development), taking into consid-
eration the influence of small- and large-scale spatial
dependence. Bird abundance data were sampled from
the Santa Monica Mountains of southern California,
which are facing urban encroachment on three sides
by metropolitan Los Angeles. The study area contains
a mosaic of interspersed suburban development and
native chaparral vegetation and presents a unique op-
portunity to study the effects of urban encroachment
at its intermediate stage, before the native habitat is
severely fragmented.

Using non-spatial generalized linear regression mod-
els, the abundances of several chaparral- and wood-
land-associated bird species were previously found to

be negatively associated with levels of surrounding
urbanization, while two urban-associated species ex-
hibited positive associations with surrounding urban-
ization (Stralberg 1999). The validity of these results
was called into question, however, when the underly-
ing spatial patterns were examined.

Because the bird census locations used in this study
were distributed over a large (~17,000 ha) geographic
area, they were unlikely to constitute independent
sampling points. Spatial distributions of both species
appeared to follow an east-west urbanization gradi-
ent (Figures 1 and 2), suggesting the presence of large-
scale spatial trends in their abundance patterns. Fur-
thermore, small-scale interactions among sampling lo-
cations may have resulted in spatially autocorrelated
abundances, which would invalidate the statistical
tests for traditional non-spatial models.

In this paper, we introduce various methods for iden-
tifying spatial structure and estimating spatial mod-
els and apply them to the analysis of urbanization
influence on two chaparral bird species. The analysis
included four major steps: (1) identifying spatial trends
and large- and small-scale spatial dependence in bird
abundance and urbanization proportion, using
semivariograms and correlograms; (2) estimating the
impacts of urbanization levels on bird abundance us-
ing (non-spatial) ordinary least squares (OLS) regres-
sion, with diagnostics of the spatial dependence in
model residuals; (3) re-estimating regression model
of bird abundance on surrounding urbanization lev-
els by removing large-scale spatial trends in bird abun-
dance (regression of bird abundance on spatial coor-
dinates), and investigating spatial structure in
detrended model residuals; and (4) estimating spa-
tial covariance models for bird abundance by incorpo-
rating small-scale spatial dependence, using spatial
covariance structures suggested by semivariogram
and correlogram analyses. The original conclusions of
this study are modified in light of the new analyses,
and potential mechanisms for the underlying spatial
structure of the system are discussed.

II. METHODOLOGY AND EMPIRICAL EVI-
DENCE

Data Processing

Of the thirteen species exhibiting significant responses
to some measure of surrounding urbanization
(Stralberg 1999), two were selected for further analy-
sisin this study, due to the relative robustness of their
models, and the small departures from normality in
their model residuals.The Wrentit (Chamaea fasciata)
was negatively associated with surrounding urban-
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ization proportion within a 500m radius, while the
Northern Mockingbird (Mimus polyglottos) was posi-
tively associated with urbanization proportion within
2000m (Stralberg 1999).

Maximum per point abundance was estimated for sev-
eral bird species at 107 locations (see Figure 1) by
taking the maximum of two 100m fixed-radius point
counts (Ralph et al. 1993) conducted during the sum-
mer of 1997. For each sample point, several measures
of surrounding urbanization, including the proportion
of the area within a circle of a specified radius con-
tained in urban land uses, were calculated from GIS
land use data in Arc/Info 7.1.1. Land use data were
obtained from a 1:24000 Arc/Info polygon coverage,
constructed from 1990 aerial photos by the Southern
California Association of Governments. Buffer radii
used to measure urbanization proportion ranged from
250m to 4000m. (See Stralberg 1999 for detailed field
and GIS methods.) X-Y Coordinates and urbaniza-
tion calculations for each sample location were ex-
ported to a database file and combined with bird abun-
dance data for statistical analysis externally from the
GIS.

S-Plus 4.5 (MathSoft 1997), S+SpatialStats (MathSoft
1996), and S-Plus for ArcView GIS (MathSoft 1998)
were used for estimating semivariogram and
correlogram. The Mixed Models Procedure in SAS
6.12 (SAS 1997, Littell et al. 1996) was used for esti-
mating spatial covariance models.

Investigating Spatial Patterns in Bird Abun-
dance

One class of tools for examining spatial structure de-
tecting scales of influence in ecological data comes
from the field of geostatistics and the generalized re-
gional variable model (Matheron 1963). Despite a
relatively long kriging tradition in the mining and
geology fields (David 1977, Journel and Huijbrets
1978), semivariograms (Matheron 1963) have not been
widely applied to ecological studies (but see Grieg-
Smith 1983 and Taylor 1984). Recently, however,
semivariograms have been used to describe spatial
structure and interpolate the values of ecological vari-
ables over space (e.g., Villard and Maurer 1996,
Robertson et al. 1997, Meisel and Turner 1998).

The standard semivariance function g(h) of
geostatistics theory (Matheron 1963) is estimated by
one-half the average squared difference between
points separated by a distance h, defined as:
INCIIN (h)l
Y (z-z))
_ =l =l , 1
Y= TN .
where N(h) is the set of all pairwise Euclidean dis-

5

tancesi-j=h, |N(h)| is the number of distinct pairs
in N(h), and z;and z; are data values at spatial loca-
tions i and j, respectively (MathSoft 1996). Directional
semivariograms, where g is a function of the direc-
tion as well as magnitude of 2, may also be examined
if the spatial autocorrelation of a variable is not “iso-
tropic” (Cressie 1993).

Inversely related to the semivariogram is the
covariogram, which may be used to describe the spa-
tial difference between sampling points at various “lag
distances” or distance classes, and to detect spatial
trends. The empirical covariance function, C(h), rep-
resents the portion of the population variance that is
explained by spatial autocorrelation at lag distance
h. 1t is defined by:

IN(IIN ()]
> (z-2)(z;-2)

_ . _i=l j=1 2
C(h) cov(z;, z;) NG 2)
The term “correlogram”, r(h), is often defined as the
standardized covariogram (C(h)/s?), but may also be
used to refer to any plot of autocorrelation versus spa-
tial lag distance (or temporal lags, in the case of time-
series analysis). A commonly used autocorrelation
index, related to r(h), is Moran’s I statistic (Moran
1950), which generally ranges from -1 to 1. For a given
distance class h, Moran’s statistic, I(h), is defined as:

I 12
nz w2, —2)(z; —2)
i=l j=I

I(h)y=~ | 3
{ZZ“’UZ(Q—Z)E} ’ (3)
1 i=l

=l j=

where w;; takes on the value 1 when the pair (i, J) per-
tains to distance class h, and 0 otherwise; n is the
number of sampled observations (Legendre and Fortin
1989). Because they are standardized, correlograms
may easily be compared. A Moran’s I correlogram can
also be tested for statistical significance, making it
less subjective than the semivariogram for describ-
ing spatial structure and detecting autocorrelation.

Several recent ecological studies have used
correlograms and spatial autocorrelation statistics to
examine large- and small-scale dependence in species
distribution patterns (e.g., Carroll and Pearson 1998,
Koenig 1998, Koenig and Knops 1998). In terms of
large-scale patterns, positive autocorrelation at small
distances coupled with negative autocorrelation at
large distances indicates the presence of a gradient,
or large-scale trend. With respect to small-scale pat-
terns, the evaluation of autocorrelation statistics at
various lag distances in a correlogram may be useful
in determining the maximum scale of significant spa-
tial autocorrelation. This may indicate the size of the
“ecological neighborhood” for the species or phenom-
enon being investigated (Addicott et al. 1987), or the
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Figure 1a. Wrentit abundance. Maximum of two counts (1997). 107 sampling locations.
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Figure 1b. Northern Mockingbird abundance. Maximum of two counts (1997). 107 sampling locations.

range of interaction between sites (Cressie 1993).

Upon visual inspection of distribution maps, the
Wrentit seemed to decrease in abundance from west
to east, while the Northern Mockingbird increased
(Figure 1a,b). The Wrentit also appeared to exhibit a
north-south trend, with higher abundances in the
south. To examine these apparent large-scale trends
in bird abundance, as well as small-scale
autocorrelation, the spatial covariance structure of the
sampling locations was examined with respect to bird
abundance, as well as urbanization proportion, using

two related structure functions, the semivariogram
and the correlogram. For each variable, we examined
large-scale trends, and determined the effective range
of spatial autocorrelation (if any).

For maximum 1997 abundance of each species and
urbanization proportion within a 2000m radius, an
omnidirectional semivariogram, as well as directional
semivariograms in the east-west (90° azimuth) and
north-south (0° azimuth) directions (using a 45° tol-
erance), were constructed based on the 107 sampled
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locations. Fourteen lag distances, at 1000m intervals,
were used for the omnidirectional and east/west
semivariograms; nine 1000m lag distances were ex-
amined in the north/south direction. Semivariograms
were generated using the variogram function in
S+SpatialStats (MathSoft 1996).

Omnidirectional correlograms were also constructed
in S+SpatialStats (MathSoft 1996) for each of the
above variables, using Moran’s I autocorrelation sta-
tistics individually calculated for each 1000m lag dis-
tance (e.g., 0-1000m, 1000-2000m). In calculating the
values of Moran’s I, point pairs within the given in-
terval were considered to be spatial neighbors, and
assigned a spatial weight (w;) of 1; all other point pairs
were assigned a spatial weight of 0. We tested for
overall significance of each correlogram using a
Bonferroni-adjusted significance level (a = 0.01) to
account for multiple comparisons, as well as for sig-
nificance of individual correlation values (a = 0.05),
as suggested by Legendre and Fortin (1989).

The overall trend apparent in the omnidirectional
semivariogram for urbanization (Figure 2a) was
driven primarily by east-west variation, as supported
by the 90° directional semivariogram (2b), in which

* Sample sizes for each distance class in omnidirectional semivariograms:
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Figure 2. Empirical Semivariograms, y(h), for Urban-
ization Proportion (2000m radius).

East/West = 90° azimuth, North/South = 0° azimuth; 45° toler-
ance. Lag distance values represent averages distances between
pairs of points within each 1000m distance class.*

the variation among points increases almost mono-
tonically with distance, particularly at lag distances
of 7000m or larger. The north-south (0°)
semivariogram (2c) exhibited a similar trend between
0-8000m.

Both species exhibited distinct large-scale spatial
trends (Figure 3) that appear to follow the urbaniza-
tion trend. These trends occurred primarily in the
east-west direction (3b,e), but also in the north-south
direction (3c,f). The semivariograms did not increase
monotonically, however, suggesting the presence of
additional spatial structure not related to the east-
west or north-south gradients.

In general, the omnidirectional semivariograms for
both species resembled the east-west semivariograms,
indicating that large-scale spatial trends were driven
primarily by the east-west gradient (perhaps result-
ing from urbanization). The north-south
semivariograms were most likely constrained by the
configuration of the study area (long and narrow); thus
they were based on fewer point pairs within each lag
interval, and may be less reliable than the other
semivariograms. The east-west semivariograms are
most suspect at the shorter lag distances (<1000m)
due to fewer point pairs, while both directional and
omnidirectional semivariograms should be interpreted
with caution at the larger lag distances (>8000m).

The omnidirectional Moran’s I correlogram for urban-
ization proportion displayed a nearly linear decrease

Avg.dist. 361 1044 2038 3010 4024 5011 5980 7013 7950 8987 9989 10939 11972 13041
# Pairs 72 282 357 567 580 582 504 388 287 158 158 151 110 137
East/West:

Avg.dist. 379 1060 2033 3002 4024 5010 5994 7020 7973 9021 9989 10939 11972 13041
# Pairs 31 164 166 297 322 332 292 256 199 130 158 151 110 137
North/South:

Avg.dist. 348 1021 2043 3018 4025 5012 5960 6999 7898 8832

# Pairs 41 118 191 270 258 250 212 132 88 28
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Figure 3. Empirical Semivariograms, y(h), for Maximum 1997 Bird Abundance.
East/West = 90° azimuth, North/South = 0° azimuth; 45° tolerance. Lag distance values represent averages distances between pairs

of points within each 1000m distance class (see Figure 2 note).

in autocorrelation (covariance) with increasing lag
distance (Figure 4a). It demonstrated overall signifi-
cance (p<0.01), as well as significant autocorrelation
values for almost all distance classes. This indicates
a clear, large-scale gradient, supporting the conclu-
sions of the semivariogram analysis.

Correlograms also confirmed that both species were
distributed along a spatial gradient, based on the
steady (if not monotonic) decrease from positive to
negative autocorrelation and overall significance (p <
0.01) of each correlogram (Figure 4b,c). Both species
exhibited significant positive autocorrelation (p <0.05)
in more than one of the closer distance classes, while
only the mockingbird also showed significant nega-
tive autocorrelation (p < 0.05) at greater distance

classes. Autocorrelation ranges suggested by the
correlograms were approximately 7000m for the
Wrentit (4b) and 5000m for the mockingbird (4c).

Examining Spatial Dependence in Non-Spatial
Model Error Terms

Results from the previous section indicated large-scale
trends in the abundances of both species, which could
invalidate tests for spatial autocorrelation (Legendre
1993). That is, the similarity between sites that are
close in spatial proximity may be due to their position
on a gradient, rather than some intrinsic heterogene-
ity-producing spatial process. To obtain a reliable pic-
ture of small-scale autocorrelation, large-scale trends
must first be removed.
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Because similar trends were also observed in land-
scape urbanization proportion (within a 2000m radius
of each point), we suspected that these large-scale
trends were actually products of the urbanization gra-
dient. Thus we modeled the effects of surrounding
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Figure 4. Moran’s I correlogram for Urbanization
(2000m radius) and Bird Abundance.
Shaded squares represent significant (p<0.05) autocorrelation. Lag

distance values represent maximum distances between pairs of
points within each 1000m distance class.**

urbanization levels on bird abundance and examined
the resulting model residuals for remaining spatial
autocorrelation, using the same tools as in the previ-
ous section. Using a 500m urbanization radius for
the Wrentit, and a 2000m radius for the Northern
Mockingbird (see results from Stralberg 1999), maxi-
mum-per-point abundance was regressed on sur-
rounding urbanization proportion, using ordinary
least squares (OLS) regression.

As demonstrated previously, the level of surrounding
urbanization was a significant predictor of abundance
for both species (Table 1). Due to the high variation
in the system, R? values were low, although regres-

Table 1. Non-spatial and detrended models for bird abundance.

OLS model: bird Trend model

Trend model: bird abundance /

abundance ~ residuals ~ urbanization measures ~
urbanization urbanization X,y coordinates
measures measures (x = east/west, y =north/south)
Wrentit
B £S.E. -7.83 £ 1.41 -3.82 £ 1.24  Significant effects N
(p-value) (<0.0001) (0.008) (p<0.05) Yo X7y
F-statistic 30.61 9.43 F-statistic 18.36
(p-value) (<0.0001) (0.003) (p-value) (<0.0001)
R? 0.23 0.08 R® 0.35
Northern
Mockingbird
B+S.E. 3.42 + 0.40 1.65+0.43 Significant effects X, y, X*y
(p-value) (<0.0001) (<0.0001) (p<0.05)
F-statistic 72.05 14.89 F-statistic 10.67
(p-value) (<0.0001) (<0.0001) (p-value) (<0.0001)
R’ 0.41 0.12 R’ 0.24

f3 is the regression coefficient for the effect of urbanization proportion within a surrounding radius (500m for Wrentit; 2000m for

Northern Mockingbird).

** Sample sizes for each distance class in Moran’s I Correlograms:
Maximum distance 1000 2000 3000 4000 5000

6000 7000 8000 9000

10000 11000 12000 13000

Number of Pairs 198 317 480 556 583

577 403 384 211 148 162 120 120
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Figure 5. Empirical Semivariograms, y(th), for Non-Spatial Urbanization Model Residuals.
East/West = 90° azimuth, North/South = 0° azimuth; 45° tolerance. Lag distance values represent averages distances between pairs of

points within each 1000m distance class (see Figure 2 note).

sion coefficients (b) were highly significant. The mock-
ingbird exhibited a positive response to surrounding
urbanization proportion, while the Wrentit was nega-
tively influenced.

For both species, omnidirectional semivariograms for
non-spatial model residuals increased initially, but
eventually reached a maximum, indicating the pos-
sible presence of spatial autocorrelation in model re-
siduals up to the distance at which the sill was reached
(range) (Figure 5a,d).
differed, semivariograms for both species exhibited
several small peaks and troughs, which may indicate
that several processes, operating at different spatial

Although the sill and range

scales, govern bird abundance. They may also reflect
patchiness in the sampling locations, however
(Legendre and Fortin 1989, Meisel and Turner 1998).
The omnidirectional semivariograms for Wrentit and
Northern Mockingbird residuals reached their respec-
tive sills at ranges of 7000m (Figure 5a) and 10,000m
(5d). Thus these species still appeared to exhibit a
slight large-scale trend in their abundance patterns,
even after the effect of urbanization was removed.
These trends appeared to be driven by remaining
north-south dependence (5c¢,f), which may have been
a product of topography, in that study area consists of
many north-south running canyons. Within these
canyons, bird abundance may be more similar than
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between sites in different canyons that are closer in a
Euclidean sense. Both species may also vary with el-
evation, which generally increases from south to north
in the study area. The comparatively flat east-west
semivariograms (5b,e) suggested that autocorrelation
in these species may be anisotropic (direction-depen-
dent).

The presence of a sill in each semivariogram indicated
that the residuals were stationary over the study area,
which in turn suggested that large-scale trends in bird
abundance were largely explained by variations in
urbanization. However, the large autocorrelation
ranges revealed by the semivariograms (7000-
10,000m) indicated that model residuals still con-
tained large-scale spatial dependence, perhaps due to
the influence of other large-scale patterns (smaller
than the size of the study area), such as patterns of
variation in vegetation or elevation.

Examination of omnidirectional Moran’s I
correlograms provided a more complete picture of
spatial structure in urbanization model residuals.
Correlograms were overall significant (p < 0.01) for
both species, with spatial autocorrelation generally
declining with distance and oscillating around zero
(Figure 6a,b). What the correlograms suggested, be-
yond the semivariograms, was a maximum range of
“small-scale” autocorrelation (when the correlogram
first reaches zero). Both species exhibited significant
small-scale spatial autocorrelation (p < 0.05), with
maximum autocorrelation ranges apparently near
2000m. Additional autocorrelation beyond these
ranges may represent remaining large-scale trends
and/or patchiness in the sampling sites.

Again, both species exhibited somewhat periodic dips
and crests in the correlograms for their model residu-
als. For the Wrentit, significant positive spatial
autocorrelation occurred at 1000m and 5000m; nega-
tive autocorrelation was present at the 7000m and
9000m lag distances (Figure 6a). The mockingbird

was positively autocorrelated at 1000m and 12,000m,
and negatively autocorrelated at 6000m and 10,000m
(6b). Positive autocorrelation at large distances may
represent similarities at extreme ends of the study
area, caused by large-scale processes, but more plau-
sible is the influence of outliers, given the high vari-
ability and large gaps in the data.

Modeling Large-scale Spatial Trends

Because the east-west trend in urbanization was so
prominent, separating the effects of urbanization and
spatial location on bird abundance was difficult. Re-
sults from the previous section suggested that large-
scale trends in bird abundance are largely a reflec-
tion of variations in urbanization, but that additional
large-scale spatial dependencies may have been
present, primarily in the north-south direction. The
question remained as to whether these trends indi-
cated non-stationarity over the study area (a “true
gradient”), or intrinsic autocorrelation among sam-
pling locations separated by large distances (a “false
gradient”) (Legendre 1993). If the former is true, then
bird abundance should vary as a function of spatial
location, and residuals should be uncorrelated once
the trend is removed (Legendre 1993).

To statistically remove the large-scale trend, a trend
model was estimated for the abundance of each spe-
cies on the x-y coordinates of the sampling locations
and the interaction between them (z ~x +y + x*y).
The trend model residuals were then regressed on
urbanization proportion for each species. Finally,
semivariograms and correlograms were used for in-
vestigating the remaining spatial trends and depen-
dence in the residuals of the de-trended urbanization
models.

For the Wrentit, spatial location explained a greater
portion of the variation in abundance than urbaniza-
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tion proportion—35% vs. 23% (Table 1). For the North-
ern Mockingbird, however, surrounding urbanization
levels explained more of the variance than spatial lo-
cation (41% vs. 24%). Over 50% of the variation in
urbanization (at the 2000m radius) was explained by
spatial location, which means that the two effects are
difficult to separate.

After removing the large-scale spatial trend, urban-
ization proportion was still a significant predictor of
abundance for both species, although the explanatory
power of these models was generally low, compared
with the initial OLS models (i.e., lower R? and p-val-
ues) (Table 1). These results indicate that urbaniza-
tion, in and of itself, did explain a significant portion
of the variation in abundance of these species, even
under the most conservative assumptions.

Semivariogram and correlogram analyses suggested
that Wrentit abundance may have followed a “true”
gradient, in that detrended model residuals appeared
to be uncorrelated (Figures 7a,8a), while the North-
ern Mockingbird, whose residuals were still correlated,
may exhibit a “false gradient” (Figures 7b,8b). The

extent to which these large-scale trends in abundance
were a product of urbanization remains unclear, how-
ever, especially since surrounding urbanization pro-
portion at a particular scale may not describe all of
the variation in urbanization.

Estimating Spatial Error Term Models

Most GIS and statistical software packages provide
functions for estimating traditional regression mod-
els such as Ordinary Least Squares regression (OLS),
which are commonly used to estimate structural re-
lationships among variables. If residuals are not in-
dependent, however, parameter estimates from OLS
models are biased (Robertson 1987, Anselin 1989), and
confidence intervals may be too small (Legendre 1993).
Upon detection of spatial dependence in regression
model residuals (e.g., using Moran’s I statistic), sev-
eral types of error models can be specified to incorpo-
rate spatial dependence, assuming that residuals are
stationary (i.e., no trend).

One method is to explicitly model the spatial covari-
ance structure of the error terms, using
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semivariogram/covariogram models to define the na-
ture of spatial dependence in the residuals and esti-
mate the appropriate spatial parameters. This type
of covariance modeling can be integrated with a mixed
model framework (Zimmerman and Harville 1991,
Littell et al. 1996) and takes a geostatistical approach,
which is best suited for data like bird abundance,
which varies (more or less) continuously over space
(Cressie 1993). The general mixed model with spa-
tial variability is of the form y =X+ Zy+ e, where y
is a vector of observed data, is an unknown vector of
fixed-effects parameters with known design matrix
X, yis an unknown vector of random-effects param-
eters with known design matrix Z, and e is an un-
known random error vector (SAS 1997). The spatial
covariance is modeled through R = var(e), using re-
stricted maximum likelihood estimation (REML) to
simultaneously estimate regression coefficients and
covariance parameters. Ify; occurs at location s;, then
the covariance structure is defined by assuming that
the covariance of two locations, s; and s;, is a function
of d;, the distance between them. The covariance
model then takes on the general form:

Var(e,) =0’ = Gl2 & 622’
with Cov(ei,ej)=62[f(dij)] @

where d is the range, ¢° is the sill, 6, is the nugget,
and 6,’ is the remaining variance, or partial sill.Since
the covariance and semivariance are directly related
(under the assumption of stationarity), these param-
eters can be expressed in terms of semivariogram pa-
rameters. The function f(d;;) depends on the shape of
the semivariogram, and is generally specified accord-
ing to the results of the empirical variogram.

Spatial dependence detected in the residuals from
non-spatial regression models meant that the models
were improperly specified (Anselin 1989). If this
autocorrelation represents positive, small-scale
autocorrelation, rather than large-scale trends, then
spatial covariance models can be used to adjust for
the spatial dependence. Thus, for each species, we fit
a spatial covariance model (Littell et al. 1996) corre-
sponding to the non-spatial model. The models were
fit using mixed model regression in SAS 6.12 with
REML (Restricted Maximum Likelihood) estimation
of model parameters (SAS 1997) and an exponential
covariance function:

sy =el %) ®

The range parameter (p) was fixed at a value consis-
tent with the empirical semivariogram for non-spa-
tial model residuals, and the partial sill (G,?) and nug-
get (0,%) values were estimated simultaneously with

estimation of regression coefficients (f). Using the
maximum values of the empirical semivariograms, the

approximate ranges estimated were 7000m for the
Wrentit and 9000m for the Northern Mockingbird.
These range estimates are rather large, however, and
the spatial covariance model is only intended for posi-
tive, small-scale dependence (Littell et al. 1996). Thus
we used as a second range estimate the approximate
distance at which the correlogram for non-spatial
model residuals first reached zero: 2000m for both
species. For the Wrentit, this smaller range also cor-
responded with the range suggested by the east-west
directional semivariogram. The use of two different
ranges (small vs. large) also provided a sensitivity
analysis for the regression parameters. Based on the
apparent convergence of the semivariograms to a sill,
we assumed stationarity in both cases, despite irregu-
larities and large autocorrelation ranges in the
semivariograms and correlograms. We also assumed
isotropic behavior, despite differences in east/west and
north/south semivariograms.

Likelihood ratio %2 tests (-2 times the log likelihood
from the non-spatial model minus —2 times the log
likelihood from the spatial model) were used to deter-
mine the significance of the spatial (vs. non-spatial)
models. The “best” covariance model could not be de-
termined statistically, but was evaluated by compar-
ing log likelihood values and significance of individual
spatial parameter estimates. Regression coefficients
and standard errors were also compared between spa-
tial and non-spatial models to determine whether
modeling of spatial structure in the residuals changed
the substantive interpretations of the regression
analysis.

For both species, the spatial models exhibited signifi-
cantly better fit than the corresponding non-spatial
models (y2 likelihood ratio test, p < 0.05) (Table 2), in-
dicating significance of the spatial covariance param-
eters. The Wrentit exhibited the largest variation in
regression parameter estimates between the three
models, with somewhat higher magnitude values es-
timated by the non-spatial model than in either spa-
tial covariance model, although confidence intervals
for all parameter estimates were overlapping (Table
2). Spatial parameter estimates (o;? and 0,°) were
larger in the large range (7000m) model, but the nug-
get effect was only significantly different from zero (p
< 0.05) in the small range (2000m) model. The log
likelihood value for the large-scale model was slightly
higher, indicating that the incorporation of large-scale
spatial structure (up to 7000m) improved model fit
for this species, but with a consequent reduction in
the urbanization parameter estimate. This suggests
that part of the urbanization association may indeed
be attributable to spatial autocorrelation. The most
appropriate model depends on the range of
autocorrelation assumed.
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Table 2. Non-spatial vs. spatial covariance models for Bird Abundance.

Non-Spatial Model

Spatial Covariance Models

Wrentit
B +S.E. -7.83 +1.41
(p-value) (<0.0001)
-2 Log Likelihood 400.93
Range (p)
Nugget (5,") = S.E.
Partial Sill (¢,”) = S.E.
Model Likelihood Ratio Chi-
Square (p-value)
Northern Mockingbird
B+S.E. 3.43 £ 0.41
(p-value) (<0.0001)
-2 Log Likelihood 241.85

Range (p)
Nugget (6,) + S.E.
Partial Sill ((522) + S.E.

Model Likelihood Ratio Chi-

Square (p-value)

-6.16 + 1.78 -4.93 + 1.82
(0.0008) (0.0078)
384.34 382.59
2000m 7000m

1.28 +£0.51 1.77 £ 0.81

1.45 + 0.29 1.65 + 0.27
16.59 18.34
(0.0009) (0.0004)

3.23 +0.74 2.96 + 0.90
(<0.0001) (0.0014)
204.84 210.39
2000m 9000m

0.69 + 0.22 2.30 + 0.87

0.10 + 0.06 0.14 + 0.06
37.01 31.45
(<0.0001) (<0.0001)

B is the regression coefficient for the effect of urbanization proportion within a surrounding radius (500m for Wrentit; 2000m for

Northern Mockingbird).

The Northern Mockingbird exhibited a slightly
smaller relative reduction in regression parameter
estimates with the inclusion of spatial parameters
(Table 2). Spatial covariance parameter estimates
were also significantly different from zero (p < 0.05)
in both spatial models, but the nugget estimate was
quite a bit larger in the large range model (9000m)
than in the small range (2000m) model. For this spe-
cies, the 2000m range distance appeared to generate
the best-fitting model, based on the higher log likeli-
hood value. Thus the incorporation of large-scale
autocorrelation (above 2000m) was unnecessary and
inappropriate for this species.

ITI. DISCUSSION

The two species examined in this study demonstrated
significant population responses to urbanization at
large spatial scales, suggesting that their abundances
may be affected by changes in landscape composition
and pattern. Using a variety of spatial statistics tools,
we were able to consider the influence of spatial de-
pendence in our study, in order to verify these results.
Equally important, these techniques also allowed a
better understanding of the spatial structures of the
species under study, and the landscape mosaic that
they inhabit. Different insights were gained for each
species, while common spatial patterns were also il-
luminated.

Both species exhibited large-scale spatial trends in
their abundance, primarily coinciding with the east-
west urbanization gradient along which they were
sampled (Figures 3,4). After accounting for urban-
ization effects, however, these trends were largely
absent from model residuals (Figures 5,6), suggest-
ing that urbanization explained most of the large-scale
spatial structure in these species. Conversely, when
the spatial trends were removed, both species still
demonstrated significant responses to changes in ur-
banization (Table 1).

Abundance patterns for both species also exhibited
additional spatial autocorrelation unrelated to urban-
ization (Figures 5,6). The use of spatial covariance
models to incorporate this small-scale spatial depen-
dence (where possible) allowed conclusions about ur-
banization effects to be more robust. In general, the
observed relationships between urbanization and bird
abundance held, despite small-scale spatial structure
(autocorrelation) in the data. Furthermore, the spa-
tial covariance models had better predictive capabili-
ties, indicated by the significant improvement in log
likelihood statistics. If desired, the spatial and re-
gression parameter estimates obtained in these analy-
ses could be used to interpolate bird abundance at
points between those sampled.
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Ranges of Spatial Autocorrelation

Ranges of small-scale spatial autocorrelation, as sug-
gested by the correlogram analysis, can be interpreted
as indications of the ecological neighborhoods for each
species—that is, the “regions of activity or influence
during periods of time appropriate to particular eco-
logical processes” (Addicott et al. 1987, p.340). De-
pending on the process and time-scale, a mobile
animal’s ecological neighborhood can be defined by
factors like (in order of increasing spatial scale) breed-
ing territory size, home range size, natal/adult dis-
persal distance, and spatial extent of a local popula-
tion.

The large autocorrelation distances found in this
study—as compared with average dispersal ranges
and territory sizes (see, e.g., Erickson 1938, Derrickson
and Breitwisch 1992, Baker et al. 1995)—may indi-
cate the influence of population (vs. individual) dy-
namics, which is reasonable given the intermediate
temporal and spatial scales of the urbanization pro-
cesses being studied. Time lags may also result in a
decoupling of ecological variables and responses in
bird abundance (Wiens 1989). Given the coarse reso-
lution of this analysis, however, autocorrelation at
smaller scales, resulting from interactions among in-
dividuals, could not easily be detected.

Of the two species examined, the Northern Mocking-
bird demonstrated the strongest small-scale
autocorrelation, even after large-scale trends were
removed. This indicated a strong interdependence
among sampling sites, independent of the location in
the landscape, but may also have been due in part to
the clustering of this species near urban developments.
Similar results were obtained for the Wrentit, a spe-
cies that was negatively associated with surrounding
urbanization, although for this species, residuals were
no longer correlated after large-scale trends were re-
moved (Figure 8). The Wrentit also seemed to exhibit
anisotropic variation in the shorter distance ranges
(Figure 3), which likely explained the weaker overall
autocorrelation values.

Small-scale

Large-scale Trends vs.

Autocorrelation

Spatial covariance modeling is most appropriate for
small-scale spatial dependence resulting from the in-
teractions among sites that are close in spatial prox-
imity. Spatial autocorrelation can also occur at larger
scales, when the influence of one site carries a long
way through geographic space (Legendre 1993). But
large-scale spatial dependence commonly reflects a
spatial gradient, and if so, it should be removed be-
fore spatial autocorrelation is modeled, as it violates

the stationarity assumption (Legendre 1993). The
distinction between the two is subtle, and also depends
upon the temporal scale and window of analysis
(Wiens 1981). For the purpose of geostatistical analy-
ses, a true gradient should encompass and extend
beyond the study area. Large-scale patterns that are
smaller than this can be incorporated in a spatial co-
variance model.

In this study, large-scale spatial dependence in bird
abundance was certainly present, but most of it was
explained by the urbanization gradient. Remaining
large-scale structure appeared to be operating on a
smaller scale than that of the study area (as demon-
strated by semivariograms in Figure 5) and may have
followed patterns of variation in vegetation, topogra-
phy, or other geophysical factors. It may also have
been a product of aggregated sampling locations
(Legendre and Fortin 1989), resulting from a combi-
nation of habitat fragmentation by urbanization, clus-
tering of census sites along trails and fire roads, and
gaps in census sites due to restricted access. Regard-
less of the source, this large-scale spatial dependence
appeared to be adequately described in the spatial
covariance models.

For the Wrentit, residuals from the detrended models
exhibited no spatial autocorrelation (Figure 8), sug-
gesting that spatial covariance models may not be
necessary to describe its abundance patterns if large-
scale trends are removed. Here emerges a possible
trade-off between describing the distribution of abun-
dance and detecting urbanization-related changes. If
the primary goal is to model the abundance of this
species in this particular landscape, then factoring in
spatial location, in addition to the effect of urbaniza-
tion influence, may be adequate. The remaining re-
siduals were uncorrelated, so the model should be
appropriately specified. Given the distinct urbaniza-
tion gradient, however, such a model diminishes the
potential for detection of urbanization influences. If
autocorrelation is thought to occur over large dis-
tances, than this spatial dependence can instead be
explicitly incorporated in a spatial covariance model.

The decision to de-trend a variable, in cases such as
this when the trend is not obvious, depends on the
assumptions made about the system. Here, because
the birds under study are fairly widespread and com-
mon throughout the Santa Monica Mountains, and
vegetation was similar at all sites sampled, we would
expect urbanization and landscape pattern to cause
more variation in abundance than spatial location per
se.

Directional semivariograms indicated that trends in
bird abundance were primarily driven by east-west
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variation (Figure 3), but after factoring out urbaniza-
tion, north-south autocorrelation was responsible for
remaining large-scale dependence (Figure 5). These
results suggest that east-west trends were primarily
urbanization-related, while north-south trends were
likely due to natural features (i.e., the north-south
orientation of the canyons and trails along which sam-
pling sites were located). Anisotropic covariance mod-
els, explicitly incorporating direction, as well as dis-
tance, may therefore be more appropriate for these
species. Furthermore, the use of local spatial statis-
tics (Getis and Ord 1992, Anselin 1995, Bao and Henry
1996) may help identify specific regions of
autocorrelation.

IV. CONCLUSION

Fundamentally, spatial autocorrelation in nature is
caused by unknown factors that could potentially be
measured and modeled explicitly, as many have done,
particularly in small-scale studies. Measuring these
unknown variables is often infeasible or impractical,
however, especially when they involve things like ani-
mal behavior, indirect effects of biotic interactions, and
time lags. Furthermore, such “bottom-up” approaches
may sacrifice generalizability (Wiens 1989, Root and
Schneider 1995).

In this study, landscape-level urbanization influences
on bird abundance were the primary focus of inter-
est, while habitat type (i.e., vegetation) was kept con-
stant. Since small-scale autocorrelation has a large
stochastic component, it is difficult to predict. Thus,
in the absence of the elusive “right” variables, the use
of spatial statistics is a good way to ensure that con-
clusions are valid for the explanatory factors exam-
ined.
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