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Abstract—Generally, the channel-assignment problem (CAP) [17]. Recently, algorithms employing neural networks [4],
for mobile cellular systems is solved by graph-coloring algo- [12] and simulated annealing [3], [15] have also been pro-
rithms. These algorithms, though sometimes can yield an optimal posed. However, neural-network-based algorithms typically

solution, do not supply any information on whether an optimal . ; . . .
solution has been found or how far away it is from the optimum. yield only suboptimal solutions [13]. The simulated annealing

In view of these undesirable features, two relevant results are approach, although it may be more flexible, is easily trapped
presented in this paper. First, a lower bound for the minimum in a localminima which requires a lot of computation time to
number of channels required to satisfy a given call-traffic demand pe escaped from [3]. In short, different approaches have their
is derived. _Thls Iov_v_er bound is tighter than the existing ones own limitations. It reflects how hard the CAP is.
under certain conditions and can be used as a supplement for In th imolest f lati f the CAP | h
other approximate algorithms. Second, we propose an efficient n. € simp eg 0”“9 ation o e ' .ony cochan-
heuristic algorithm to solve this problem. Although the CAP Nel interference is considered. The problem is known to be
is nondeterministic polynomial (NP) complete in general, our equivalent to the classical graph-coloring problem. Since the
algorithm provides an optimal solution for a special class of graph-coloring problem is nondeterministic polynomial (NP)
network topologies. For the general case, promising results are compjate [10], an exact search for the optimal solution is
obtained, and numerical examples show that our algorithm has . tical f | | t due to it tiall
a better performance than many existing algorithms. Impractical for a large-scale system due 1o IS exponentially
_ growing computation time. Hence, most of the efforts are
Index Terms—Cellular systems, channel assignment, graph gpant in developing approximation algorithms [1], [5], [16].
coloring, maximum packing. . : . . .
These algorithms occasionally can find optimal solutions, but,
in general, provide only suboptimal ones with no information
|. INTRODUCTION on how far away they are from the optimal solution. In view of

HE LIMITING availability of the radio spectrum imposesthis undesirable feature, Gamst derives some lower bounds for
T an inherent bound on the capacity of a mobile celljhe minimum number of channels required [7]. Our paper will

lar system. As demands for various mobile communicatid}fovide another lower bound, which is tighter in some cases.
services grow, the question of how to utilize the valuabl/e 8|S0 propose an algorithm, which always finds the optimal
bandwidth in the most efficient way becomes more and maorglution for a special class of cellular network topologies. This
critical. To maximize the system capacity, one typically trie@Ptimality not only is significant in its own right, but it also

to reuse the frequencies as much as possible. However, ¥{RidS @ clue on which circumstances our algorithm has good

may increase the mutual interferences among the cellular us@&formance. Finally, an overall better performance compared
To maintain a certain quality of service, one has to keéB other existing algorithms will be demonstrated by numerical

the interference below a predefined level. For systems usfg@mPIes-
frequency division multiple access (FDMA) or time division
multiple access (TDMA), this requirement usually translates Il. PROBLEM FORMULATION
into compatibility constraints—stating for an arbitrary cell site Frequency sharing among different users is an important
what channels may be used for new calls based on wh&ue in mobile cellular systems. Many different multiple-
channels are currently used in other cell sites. Allocatingtcess schemes have been proposed. Among them, the most
the channels in an efficient way, which does not violate thgpular ones are FDMA, TDMA, and code division multiple
compatibility constraints, is the main objective of the channekccess (CDMA). In FDMA systems, the spectrum is divided
assignment problem (CAP). A lot of research can be foungto nonoverlapping frequency bands. Each user is allocated
in the literature. Most of the investigations are based e dedicated frequency band for information transmission. In
graph theoretic or heuristic approaches [1], [5], [6], [16ITDMA systems, each user is allocated a dedicated time slot for
transmission, and different users may share the same frequency
Manuscript received January 27, 1995; revised April 20, 1996. This WoRand' In CDMA systems, each user is assigned a well-designed
was supported by a grant from the Hong Kong Research Grants Council. code such that the interference among users is minimized. The
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referred to as a frequency channel. However, the idea may as Ill. PURE COCHANNEL INTERFERENCECASE

well be applied to TDMA systems, provided that we refer t0 1 re cochannel-interference problem can be defined by
a chgnnel as a tw_ne slot and d_eflne the compatibility matrg(topology graphG with n vertices representing the cells:
me\:/r\}tloned beloxv |nhan z:lpproplrlate way. I dinth each vertex has a weight; (1 <4 < n). A feasible coloring

€ assume that the channels are equally spaced in the ggl'ution assigns colors to the vertices with the constraint that
quency domain and are ordered from the low-frequency baﬂg two adjacent vertices have the same color. Moreover, a

to the high-frequency band with numbers 1, 2, 3, etc. A SyStE{/rBrtex v; with a weightw; needs to be assigned; colors.
of n cells is represented by anvectorX = [y, 22, -, &0l g objective of the problem is to find a solution with the

rEeaCuk;rgri”ea;:t (/ee?:l:gg;mii channels(m; > Ozllhzh:s;?rrr?rﬁeit minimum number of colors. The optimal policies are termed
q = [ma,ma, -+ mn). 9 the maximum packing (MP) assignments [2].

of the channels to the cells subjects to three different typeSUnfortunately, for an arbitrary graph, the problem of de-

of constraints. . . termining an MP assignment is NP complete. Hence, MP is

1) Cochannel constraint (c.c.c.): the same channel is Nt ijea| concept rather than a practical solution. However, for

allowed to be assigned to certain pairs of cells simult@ianhs of special structures, efficient algorithms to compute
nequsly. . ) MP assignments may exist, and we call thBtR algorithms

2) Adjacent-channel constraint (a.c.c.)_: channels adj_acent_ Nn this paper, a heuristic algorithm is proposed. It has the

number are_not aIIovyed fo be ass_lgned to certain pagﬁoperty of yielding solutions with performance close to the

of cells (typically, adjacent cells) simultaneously. MP assignments. Moreover, for a special class of network

3) Cosite constraint (¢.s.c.): any pair of channels aSSIgnFo?mlogy, it can be proved that this heuristic method is an MP

to the same cell must be separated by a certain numbéalgorithm.

The ab_ove constrqints can be represented byn?*_lﬁ Before we proceed, we have to define some terms. First
nonn'egatlveb ;ymmetrlc matri«, the so—callec@qmpaﬂbﬂﬂy of all, we define the neighborhood of N(v) as the set of
matrix. Thedjth elementc;; represents the minimum differ- .5 agiacent vertices. A set of vertices in a graph, which
ence between chan_nels assigned to mglhnd t_hat assigned 4. interconnected, is called dique For every clique, we
to cell z;. If any pair of cellsz; andz; is subjected to the yofine its cligue weightas the sum of weights of all the
cochannel constraint or adjacent-channel constraint, we haye:. < inside it. A vertex typically belongs to more than one
cij = 1 or 2, respectively. The cosite constraint is representex que. We denote,.«(v) as the clique, which contains
2{ ;gi;'?gc}?vﬂ elements;’s. Typically, c;; is greater than o4 1o maximum weight. (Ties are resolved randomly.) The

A : maximum clique weightf v, denoted ad¥ (v), is defined as

The CAP is specified by the triplf = (X, M, C) [7]. Let the cliqgue weight ofC,,,,x(v). When it is necessary to make

{1,2,---, N} be a set of channels arfd; the set of channels the corresponding grap® explicit, we write it asiV (v|G).

assigned to celk;. The objective of the problem is to find Basically, our algorithm uses theequirement exhaustive

the minimum value ofV such that there exists an assignmensttrate [5]. We pick up a color; and assign it to the vertices
patternH = {H;, H,, -- -, H,, }, which satisfies the following 1ol P P ¢ 9

one by one until no further assignment of that color is possible.

conditions: Then, the next coloe;4; is used, and the procedure is started
. over again. The question is how to determine which vertices
|Hi| = mi, for all ¢ should be colored by;. We choose the vertex with the greatest
and weight as the first vertex. To choose the subsequent vertices,
|h—}| > ¢, for all 4, j the principle of thenaximum overlap of denial areas defined

in the third method in [5] is used. This principle states that a
where |H;| denotes the number of channels in the set &hannel should be assigned to the cell whose denial area has
H;, and h, I/ denote an arbitrary channel iH; and H;, maximum overlap with the already existing denial area of that
respectively. channel. (The denial area for a celis the set of neighboring

This problem is equivalent to a generalized graph-colorirfg!ls, which cannot share the same frequency wittiue to
problem [16]. We represent each cell by a vertex with weiggpchannel interference. The denial area of a channel is the
w; = m;. If ¢;; > 0, the verticesy; and v; are joined set of vertices, which cannot be assigned with that channel.)
together by an edge with label;;. The resulting graph Our algorithm differs from the algorithm proposed in [5] in
is called aninterference graph The CAP is equivalent to the way the overlap is defined. In our algorithm, we define
assigning positive integersl, 2, - -+, M} to the vertices such the overlap as the number of cells within the intersection of
that each vertex hass; integers assigned. The differencéhe two denial areas. In [5], overlap is defined as the sum of
between the integers assigned to two adjacent vertices milit requirements of the cells within the intersecting areas. Our
not be less than the edge label. The objective is to minimigefinition ensures that the cells to which a channel is assigned
the maximum integer used. In the special case, where owign be packed as close to each other as possible. When there
cochannel interference is considered, #és are either zero’s is a tie, we break it by choosing the vertex with the largest
or one’s. This problem can then be transformed easily to th&aximum clique weight with respect to the topology graph
classical graph-coloring problem. In the next section, we wilhduced by the intersection of the denial areas. The rationale
consider this special case first. of this rule is that the larger the maximum clique weight is,
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Fig. 2. The corresponding graph of the seven-cell system.

Fig. 1. A seven-cell system for the demonstration of the SP algorithm.

e o stem, it corresponds to a two-cell buffering scheme, which
the more difficult it is for that vertex to be colored. We cal Y P 9

laorithm th ol ki SP) alaorith h eans that a channel used by a particular cell cannot be
our algorit m the sequential packing (SF) algorithm, w OFhared by any other cell whose distance from the original one
pseudocode is shown as follows. Note thatlenotes the set

; . is less than or equal to two “cells.” For example, in Fig. 1,
of vertices being colored by the current cotpland 7 denotes a channel used by cell can only be reused by cell, F
the vertices, which are forbidden to be coloreddy or G. This system can be represented by a topology graph
procedure SP(V, E): graph] (shown in Fig. 2).
svﬁielé has 1 or more vertices do 1) First of all, we usez; to color vertex A, which has the
let A and F be empty sets: greatest weight among all the vertices. The denial area,
let v be a vertex i ” o V anduw: denoted bysS, becomes{B, C, D}.
_U ' ,n{U” PUi € Wi 2) Next, we choose the vertex whose denial area has
= A, ey maximum overlap with the current denial area. Totally,

repeat . there are three candidates, namely, vertige$’, andG:
putv into A;
F:= FU{v}UN(v) a) (denial area ofF) (S = {B, D},
m = max,, cy\p [N (vi) N FY, b) (denial area ofF)(\S = {C, D};
if m=0 c) (denial area of&)(S = {D}.
let v be a vertex in{v; : v; € V'\ F and 3) We choose the one with maximum cardinality in the
Wi = MaXy, ey \F Wi} intersecting region. In this case, there is a tie between
else vertices £ and F. To break the tie, we first form
K = A{vi:v € VAF and|N(vi) N F| = m}; a subgraph for vertice and F. The subgraph is
if | K| =1 induced by the candidate vertex and the vertices in the
then letv be the only vertex ink; overlapping of the denial areas. Then, we choose the
else vertex that has a larger maximum clique weight in the
for eachv; € K do corresponding subgraph.
construct a subgraph,, induced ) .
by the vertex set a) For vertexF, conS|d_er the s_ubgraph mduce_d by
(N(v;) N F) U {v;); ];{I\i, D, E}. The maximum clique weight of is
let v be a veriex infu; : v; € K and . b) For vertexF, consider the subgraph induced by
W (v;|Sy,) = max,;cx W(v;|Sy,) 1 . . : :
end(else {C,D,F}. The maximum clique weight of” is
end{else SIX.
until ' =V; Therefore, vertext’ is chosen and colored by;. The
for eachv; € A do new denial ares&s becomes{B,C, D, E,G}.
color it with ¢; 4) No more vertices can be colored by Then, the weight
increasec by 1; of A and I are both decreased by one. The next color,
decreasev; by 1; ¢, IS used, and the procedure is repeated.
if w; =0 As will be discussed later, Theorem 1 shows that this
then delete fronz the vertexy; and all the algorithm yields an optimal solution for this simple example.
edges connecting to;; Besides, it is worth noting that the most time-consuming task
end{for} in this algorithm is the calculation of cligue weight. The
end{while} calculation of cliqgue weight is needed only if there is a tie
end. in the maximum overlap criterion. The number of candidate
Example: Fig. 1 shows a system of seven cellsd, vertices involved in the tie must be less than A vertex
B,---,G}. The number of required channels or weight ofypically belongs to more than one clique. However, due to

each cell is specified inside the corresponding hexagon. Oty cellular structure, a vertex cannot belong to more than
cochannel constraint is considered. A cluster size [M] cliques, where: is a constant. Therefore, in choosing a vertex
of seven is assumed. In a two-dimensional (2-D) hexagortal be colored, the clique-weight calculation is less than
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SP, i.e., first by the principle of maximum overlap of denial
area and then by the maximal clique weight if there is a tie.
This vertex is then colored by. This process repeats unii}

is empty. Afterwards, we continue the coloring using;. If
both P, and P,,; are empty, we start the process again using
the maximum weight criterion. The whole procedure repeats
until no more vertices can be colored by eitlgior ¢; 1.

Fig. 3. Example of a three-stripe system.

The above procedure can be more succinctly described by

the following pseudocode. We ugg, to denote the set of

. ) . _ Vertices that are forbidden to be colored by due to the
Since there are only vertices, the number of vertices beingnierference constraints

assigned the same color must be less thaAs a result, the
number of calculations i©(Nn?), whereN is the number of
colors used and is the number of vertices.

Although the CAPP(X, M, C) is NP complete in general,
for the pure cochannel case, it turns out that the SP algorithm
allocates channels optimally for networks with certain special
structure.

From now on, to facilitate the discussion, we will make
the standard technical assumption that cells are laid out in the
regular hexagonal tiling pattern. We define a system consisting
of 7 rows of cells an:-stripe cellular systemNotice that a
linear cellular system is a one-stripe system. A three-stripe
system is shown in Fig. 3. Furthermore, we assume that the
cochannel constraint is equivalent to a cluster $izef seven.

Theorem 1: For a graph arising from aur-stripe cellular
system with; less than or equal to three and a cluster size equal
to seven, the SP algorithm always yields a solution, which has
the smallest possible number of colors used. In other WOI’dS,2)
it is an MP algorithm for this special class of graphs.

The proof of Theorem 1 is given in Appendix A.

1)

IV. GENERALIZED SEQUENTIAL PACKING 3

The SP algorithm stated in the previous section can only
be used in the pure cochannel case. In this Section, we will
generalize it to include the adjacent chanfel, = 2) and
cosite constraints.

In the pure cochannel case, cells using the same channel
are packed closely to each other such that the utilization of
each channel is maximized. However, this may not be a good
policy if we have to take account of the adjacent-channel
constraint for the reason that a closely packed channel will
leave little room for its adjacent channels. Because of this
mutual intervention, we pack the channels on a two-by-two 4)
basis.

The generalized sequential packing (GSP) algorithm can be
described as follows. Suppose the round to color wjtlnd
ci+1 has just been initiated. We first find the vertex with the
greatest weight. The tie is broken arbitrarily. If this vertex can
be colored by;, we color it usinge;. Otherwise, we use; ;.

If both colors cannot be assigned, we choose the vertex with
the next greatest weight. This process repeats until a vertex
that can be colored by eithet;, or ¢;11 is found. We call
this the maximum weight criterion. Then, we try to color the
remaining vertices in a round-robin fashion. We first find the
set of vertices that are allowed to be colored &y but not
ci+1. Call this setp;. If F; is empty, it becomes;;’s turn.

if b, =VandF,4 1 =V
return

if £, #V
let v; € (V'\ F,,) which has maximum weight.
let w; be the weight ofy;

else
let w; =0

if Foy1 #V
let v; € (V' \ I},) which has maximum weight
let w; be the weight ofy;

else
letw; :=0
if w; Z wy
color v; by ¢,
else

color v; by ¢4
updatef,, and F,, 1;
letP, :=(V\F,)NF,1andP,; = F,N(V\ F.11)
if P,=¢andP,11=¢
goto 1;
if P,=¢
goto 4
else if N(v;) N F,, = ¢ for all v; € P,
chooseu; € P, by the maximum weight criterion
else
choosev; € P, by the principle of maximum
overlapping
(tie is broken by the condition of maximum
cligue weight)
color v; by ¢,
updatef;,, £, 1, P, and P41
repeat 3;
|f Pn+1 - ¢
goto 2
else if N(v;) N Fryr = ¢ forall v, € Pryg
choosey; € F,,+1 by the maximum weight
criterion
else
choosey; € F,,4+1 by the principle of maximum
overlapping
(tie is broken by the condition of maximum
clique weight)
color v; by c,41
updateft,,, F,, 41, P, and P, 11
repeat 4.

We have two variations of GSP. In the first variation, when

If not, we choose a vertex frof; using the same criterion of no further coloring bye; or ¢; ;1 is possible, we use the next
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In this example, SP uses seven channels, while both GSP1
1 1 1 2 1 1 1 and GSP2 use six. It demonstrates the effectiveness of packing
channels on a two-by-two basis. In fact, the solution obtained

Fig. 4. A seven-cell linear system for the demonstration of the GSP angy GSP1 or GSP2 is optimal for this prOblem'
rithm.

V. A LOWER BOUND FOR THE GENERAL CASE

two colors ¢;42 and ¢;43. The second one, however, will Before evaluating the performance of the algorithm GSP, it

“uncolor” the vertices already colored lay, ;. The procedure is useful to first derive a lower bound for the evaluation of

is started again using; andc;+o instead. We call these two different channel-assignment algorithms.

variations GSP1 and GSP2, respectively. In [7], several lower bounds are given. However, we find
Example: In Fig. 4, a linear network with seven cells isthat in some cases, the result obtained by our proposed GSP

shown. The channel requirement of each cell is shown insigestill quite far away from the tightest lower bound given.

the cell. We assume that the cochannel constraint is equival®@his motivates us to improve the bound. Here, we will derive

to a cluster size of three, i.e., two-cell buffering, and adjaceatlower bound, which, in some cases, is tighter than those

channels cannot be used by adjacent cells. No cosite constrgimen in [7].

is imposed. As in [7], we useSy(F) to denote the minimum number
Let cgj) be thejth assignment, where chanrigb allocated. of channels used for proble®, and we call a subsep of

In other words, the superscrigt specifies the order of the X v-completeif

assignment. First of all, we consider the assignment if SP is

used, i.e., channels are assigned one by one instead of two

by two (cf. GSP). In case of a tie, the cell in the left-mostiote that a 1-complete subset is equivalent to a clique. The

Cij 2 U, for all =;,z; € Q.

position is chosen. concept of av-complete subset is just a generalization of a
The assignment pattern of SP is clique.
{{6(2)} {6(4)} {c@} {c(l) c(g)} Theorem 2:Let P = (X, M,C) be a CAP and? be a 1-
L s i o= g complete subset oK. Let z; € Q. Assumec;; =k > u > 1
(Y, {871, {21, and there exists a subset @f R such that
Although ¢, is packed in the most compact way, there is no z; § R

room for ¢, due to the adjacent-channel constraint. This is the

motivation for the design of GSP. Now, we consider GSP?.”d

The assignment pattern is Cij > U, for all z; € R.
{{cf)}, {céQ)}, {cg)}, {c§1>,c§,4>}, Furthermore, letng = > ;cpm;. If k—2u+1<0
CUNRCO R So(P) 2 (mi — Dk +1+mpg (1)

At first, ¢; is assigned to the fourth cell (vertex), which hag|se
the greatest weight. Now, since we cannot find a vertex that
can be colored by, but notc,, we stop usinge; and try So(P) =z (mi — 1)k +1
¢2. The second and the sixth vertex can be colored:hyut + max(mgr — (m; — 1)(k —2u+1),0). (2)
not ¢;. So, we color them using,. No more vertices can be ) ) )
colored by either:, or ¢,. Therefore, we start the procedure ~ Proof: Define P’ = (X, M, C') with M’ having only
again usinge; ande,. Finally, the assignment pattern showWO nNonzero components
above can be obtained. mh =mi(z; € Q)
Next, we show the assignment procedure of GSP2, shown
and
at the bottom of the page. ,
The first step is simply the same as GSP1. However, in m; =mg(z; € R).
the second step, we “undo” the coloring®f The procedure
then continues using, andcs. Finally, a feasible assignment

H H ! ! ! !
is derived. Ci=k, c¢;=dc;=u and ;=1

The entries of the compatibility matri€’ are

1 e, e T A ) S S (28 SR S
2 {({&), e {4 {al), 6, {) e )
3) {{e), ¢ {&Vh Aa), {P) {e) ¢ )
2 {{e}, {2V, e}, Aa), {0 Ae) {9}
5) {{e),  {d") e} {a.d”) {al, {a) {) L
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TABLE |
PERFORMANCE OFSP LNDER DIFFERENT SYSTEM LAYOUTS
(CocHANNEL CASE)

dimension of | #. of times optimal solution | worst case average

system layout found (out of 30) performance | performance
10 x 10 16 7.40% 1.22%
5x 20 22 3.59% 0.30%

By Lemmas 4 and 5 in [7]So(F?) > So(F'). Now, we Fig.5. Example 2 and case 1 of example 3. The numbers in the cells
want to find So(P’). It is obvious that represent the corresponding; .

So(P') > (m) — Dk +1

since the channels used:f must be separated with minimum
distancek.

For any two channels in; spaced with distancé, the
number of channels that can be used by cellRtitetween
the gaps is

n=(k-1)-2u-1)=k—2u+1.

If n <0 no gap exists aneh’. more channels are neededFig- 6. Case 2 of example 3. The numbers in the cells represent the
=N . J correspondingm;.
Hence, (1) is obtained.

On the contrary, ifv > 0, there ardm/ — 1)n usable chan- ) ] ]
nels left inside all the gaps. #; < (m} — 1)n, no additional guarantee the obtained 0soIL_Jtlon does not exceed the optimal
channel is needed. Otherwise, we neefl— (m/ — 1)n more Value by more than 100%, is NP complete [9].
channels. Hence, (2) is obtained.

An example illustrating Theorem 2 is shown in the nex8. Example 2: General Case (Lower Bound)

section. We take an example from [7] to demonstrate that the lower
bound presented in the previous section can be tighter than that
VI. NUMERICAL EXAMPLES in [7]. The cellular layout is shown in Fig. 5. The numbers in
the cells represent the corresponding channel requirements.
A. Example 1: Pure Cochannel Case As in [7], we assume cochannel constraints equivalent to a

12-cell cluster, adjacent-channel constraints for adjacent cells,

In the pure cochannel case, it is well-known that thigue : .
P 4 and the cosite constraimf; = 5.

number . .
Let cell A be the cell that requires 77 channels. Since
p= mlax m; cii = 5, the most compact way to assign channels to dei
Q:clique
nieQ 1,6, 11, 16;--, 376, 381.

provides a lower bound for the number of channels neededIP to the adi t-ch | traints. ch Is that
since the channels assigned to the same clique must al ue 1o the adjacent-channel constraints, channels that can

be different. Hence, we will use this bound to judge thge used by its neighbors are
performance of SP under different system topologies. 3,4,8,9, 13, 14,--, 378, 379.

We compare two different layouts of hexagonal cells. The .
first one we considered is a 2010 system, and the second on Therefqre, there argr7 — 1,) x2=152 chc_anngls |n§|de the.
is 5 x 20. We assume a cluster si2é of seven. The channel “gaps.” Smge_ the total requirement of all its six neighbors is
requirement in each cell is generated randomly, ranging frohto: @n additional98—152 = 46 channels are needed. Hence,
1 to 100. Thirty instances of each system are obtained H]F lower bound '§81+46 :_427' Thls_bou_nq s tighter than
varying the seed of our random-number generator. Generalfy¢ Pest lower bound given in [7], which is just 414. .
we do not know the optimal solution, except when the solution The derivation of this lower bound is in the same spirit
of our algorithm is the same as the lower bound. So, we udg the proof ,Of Theorem 2. Actually, we can directly apply
the percentage of additional channels required relative to thB80rem 2 withk = 5 andu = 2. Let; be cell 4 and R the
lower bound as the performance measure. set containing the six adjacent cells of Then,mgz = 198.

The result is shown in Table I. It can be seen that SpAvation (2) gives a lower bound of 427 as above.
performs better when applying to thex5 20 system in both o
the worst and average case. An optimal solution is found 52 Example 3: General Case (Algorithmic Results)
out of 30 times. It is reasonable to expect that the “narrower” We now compare GSP1 and GSP2 with the algorithms
the network structure, the better the performance of SP. proposed by Box [1] and Sivarajast al. [16]. The examples

In general, the performance of SP is acceptable in lighte use are taken from [7] and [16]. The network structure and
of the fact that the problem to find an algorithm, which caohannel requirements are shown in Figs. 5 and 6.
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TABLE I
ALGORITHMIC REsULTS CORRESPONDING TO THEPROBLEM IN FiG. 5

Problem | N, | a.c.c | ¢; | LB | Sivarajan’s Box’s Box’s GSPL | GSP2
#. (50 iterations) | (100 iterations)
Pl 12 2 5 | 427 460 449 446 440 450
P2 7 2 5 | 427 447 446 445 436 444
P3 12 2 7| 533 536 533 533 565 533
P4 7 2 7 | 533 533 535 533 563 533
Ph 12 1 5 | 381 381 381 381 381 381
P6 7 1 5 | 381 381 381 381 381 381
P7 12 1 7 | 533 533 533 533 533 533
P8 7 1 7 | 533 533 533 533 533 533

TABLE 1lI
ALGORITHMIC RESULTS CORRESPONDING TO THEPROBLEM IN FiG. 6

Problem | N, | a.c.c | ¢;; | LB | Sivarajan’s Box's Box’s GSP1 | GSP2
#. (50 iterations) | (100 iterations)
Ql 12 2 5 | 258 283 271 274 201 273
Q2 7 2 5 | 258 270 273 273 273 268
Q3 12 2 7 1 309 310 309 309 311 309
Q4 7 2 7 1309 310 309 309 323 309
Q5 12 2 12 | 529 529 529 529 530 529

The original algorithm proposed by Box attempts to satisfyith maximum weight. Hence, optimal solutions are found in
the requirements using a given number of chan@élslt is all these cases.
an iterative algorithm, which starts with an arbitrary initial However, problems P1-2 and Q1-2 are relatively hard to
order of the requirement list. Each requirement is associatealve. The best results are obtained either by GSP1 or GSP2.
with a real number, which represents the assignment difficul#lthough GSP1 cannot deal with the problem limited by cosite
Assignment is made according to the order, using the figbnstraints adequately, it does have the best performance in P1
channel that is compatible with previous assignments. Ifaand P2. Problem P2 is just the same problem considered in the
requirement cannot be satisfied, the assignment difficulty pfevious example. As stated in [7], Box’s algorithm gives a
that requirement is increased by a random amount drawn usilution of 445, which is the best result at that time. However,
formly from [0.5,1.5. After an iteration, the requirement listboth GSP1 and GSP2 yield a better solution.
is rearranged in decreasing order of the assignment difficulty.In general, GSP2 gives satisfactory results in all the cases.
Then, the procedure is repeated. Its performance is better than Sivarajan’s algorithms in the
In order to make a fair comparison, Box’s algorithm igases we tested. If compared to Box’s heuristic, it requires
slightly modified. We use the tightest lower bound as thmore channels only for problem P1.
input parameterN. Additional channels will be used if a
requirement cannot be satisfied by the fidstchannels. The D. Example 4: Comparison with the Neural-Network Approach
algorithm terminates when all the requirements can be satisfiechecenﬂy,

byN channels or the number of iterations reachesaprescrit:[gﬁ [12]. In [4], eight problems were used for testing the
maximum value. _ _ proposed neural-network parallel algorithm. It was found that
~Another algorithm we considered is the one proposed hye ontimal solutions are obtained in all those cases. We have
Sivarajan [16]. Actually, it is not a single algorithm, but gjeq tg solve those problems using GSP2, and we find that it
class of algorithms based on different ordering strategies. FQk yields the optimal solutions.
a detailed description, see [16]. o Taking a closer look at those problems, we find that four of
The results are shown in Tables Il and Ill with different,am are identical to problems P4, P6, P8, and Q4, which we
interference constraints. The best result obtained among fige ajready examined in the pre\'/ioué ex:'slmple. Another two
whole class of Sivarajan’s algorithms are reproduced frof} e the same cellular network (as shown in Fig. 6), but with
[16]. The Box's algorithm is performed twice. One is limiteQyitrarent constraintsiV. = 7.a.c.c.— 1 and ¢ = 5 or 7. It
to a maximum of 50 iterations, and the other is limited to 10k \yorth noting that all these six problems are limited by the
It can be seen that most of the algorithms find the optimagjte constraint, which is relatively easy to solve as we have
solution in problems P3-8 and Q3-5. In these cases, the I0Wfinted out already. In fact, seven out of the eight problems
bounds are obtained by are cosite-constraint limited.
max{(m; — e} + 1 The remaining problem is taken from [12]. The data is
z€X obtained from a real-world network, which consists of 25 cells.
which implies that these problems are limited by the cositeosite constraint is not considered. In this case, the optimal
constraint. This class of problems can be well solved by GSB@lution is found by both the neural-network algorithm and
since it always assigns the smallest possible color to the ver@$P2.

the neural-network approach is used to solve CAP
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Since most of the tested problems are cosite-constraint lim-
ited, the ability of the neural-network approach in dealing with

problems like P1-2 and Q1-2 requires further investigation. e
VIl. CONCLUSION e

The CAP is a well-defined problem and has invoked a lot of
interest in the past years. It is known to be NP complete, even
if only the cochannel interference is considered. However, this
res“'? does no_t rule out the pOSSIbIlIty Of.an optlmal aSSIQnme'g}a 7. An example to illustrate the concept of the left- and right-hand side
algorithm, which works in polynomial time for some specials 5 cel.
network structures. In this paper, we propose the SP algorithm,
which is optimal for three-stripe cellular systems under the . . . . . .
P . Pe ar syst r%allzatlon in whichy; is colored byc, andw is colored by,
cochannel constraint. However, this optimality is not preserve : .
. : andv; € N(vy). Define the operation Swafy;, vy, ¢, cq) by
for other network structures with more general interference .
: : Swapping colorg:,, and¢, for cellsv; andw;, and all the cells
considerations. ; . . J T
. . . . an the right-hand side of either of these two cells. Similarly,
The SP algorithm is generalized for problems with the . .
We can define Swafw;, vk, o, ¢, ) by swappinge, and¢, for

adjacent channel and the cosite constraint. Numerical exam- ' .
) cellsv; andy;, and all the cells on the left-hand side of either of

ples from [16] are used to test the algorithm. Comparlsogﬁese two cells. If we apply the operation SW&g, vr. co, ca)

with other existing algorithms are made, and the results a{re o ; . . g
a realization and this swapping operation does not violate

convineing. It is aiso found that problems, which are limite e channels assigned for cells on the left-hand side of either
by the cosite constraint, are relatively easy to solve. Further o . L
research on classifying different traffic and network topology or vy, then the realization obtained after the swapping is
. . ny . PO gg’i]milar to the original realization. If at least one of the colors
instances is interesting and may provide clues on desugmHgs been used on cells on the left-hand side of either v
algorithms for problems of different classes. b

Additionally, we have derived a lower bound for the minEhen the two realizations are not eqqulent.
Proof of Theorem 1:A one- or two-stripe cellular system

imum number of channels required. It is tighter than that . . .
. . can be embedded into a three-stripe system. An assignment
proposed by Gamst in some cases. However, in some exam-

ples, there is still a gap between the lower bound and the bgrs?blem for a one- or two-stripe _system can be wewed_ as a
solution known. Further improvements might be possible. problem on a three-stripe system if cells outside of the original

system are considered to have no channel demands. Therefore,
it suffices to prove only the three-stripe case.
APPENDIX Let Usp be a realization obtained from the SP algorithm.
OPTIMALITY OF SP FOR THREE STRIPE SYSTEM If a color ¢, is used in a realization, let K, (¥) be the set
In this Appendix, we present the proof of Theorem 1.  of vertices colored by, in the I'. We claim that there exists
Given any graph, we call any feasible coloring of verticesan MP realization¥y;» such that
realization The realization, which requires the minimum num- o
ber of colors, is called aNP realization Given a realization, it Ko(¥sr) = Ka(¥rr).
is possible to obtain another realization by simply relabeling If this claim holds, we can use it to prove the theorem
some or all of the colors. We call realizations that can ksatement by using the following induction argument¥ifp
obtained from one another by relabeling colaguivalent has only one color, then it must be an MP realization.
For an arbitrary graph, the MP realization is not necessariBuppose the theorem statement holds for all SP realizations
unique. This is clear in view of the possibility of equivalentsing n colors. Now, consider a probled®® = (X, M, C).
realizations. However, some graphs may allow multiple MBuppose thaty;p and Wsp usesk + 1 andn + 1 colors
realizations that are not equivalent. For those realizatior{#, < =), respectively. Letc, be the first color used in the
which require the same number of colors, we define that th&p algorithm. For each vertex #6,(Wsp), subtract one from
are similar. Therefore, if a realization is similar to an MPthe corresponding component of the original requirenyeht
realization, it is also MP. to obtain M’. By the definition of the SP algorithm, the
One way to construct examples of similar realizations theg¢alization it yields forP’ = (X,M’,C) is equivalent to
are not equivalent is to use the following color swappin&sp without ¢, and, hence, requires colors. If the claim
operation for a three-stripe system with reuse factor of sevédmlds, MP will usek colors for the reduced probler®’. By
First of all, we introduce the concept of the left- and right-hanithe induction assumptiom is the minimal number of color
side of a cell. In a three-stripe system, there is an obvious lefieeded for®’ and, hencep must be equal té&. So, ¥y uses
and right-hand side relation between any two cells with one+ 1 colors, and this shows thatsp is also MP.
exceptional case. For example, in Fig.v4, v7, vs, v11, and Before proving the claim, we note that for a three-stripe
vi2 are on the right-hand side af;. The left-hand side is system and a cluster size of seven, cells (vertices) colored by
defined similarly. The only exception is the vertey, which the same coloe, can be labeled in a left—right ordé},, with
belongs neither to the left- nor the right-hand sidevof We no ambiguity (see Fig. 8). L&k, (v) be the succeeding vertex
call it the conjugate cell ofis. Now, assume that is a of v in S,, if it exists. Similarly, defineR;!(v) to be the
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Fig. 8. If v1,v2,v3, and vy are colored byc,, then S, = (v1,v2,v3, and vg).

Fig. 9. The cases, whet&/(v;) N F| < |N(v;) N F|. The denial area is shaded. Trivial cases, wherés further away fromw;, are not shown.

preceding vertex of in .S, if it exists. Notice that the order ¢,. This defines the new realizatioby;p- as claimed. On the
induced bysS,, is not necessarily identical to the order hovother hand, ifR,(v;) is well defined forlp, it must be also
the SP algorithm assigns the vertex to calgr However, for well defined for¥sp due to the nature of the SP algorithm,
a three-stripe system with cluster size of seven, the followinghich stops the assignment of a color only when there is no
property P, follows from the definition of the SP procedurecandidate cell available. Hence, we may assummandv;, are
and the geometry of the three-stripe system. well defined.

Suppose that vertex is assigned before vertey. If If v is also colored by, in the SP realization, then;
Ro(v;) = v; and N(v;) N N(w;) is not empty, theny; is is not contained inV(v;), and it must be on the right-hand
the first node on the right-hand side of that is assigned side ofv;. Hence, one can usg to colorv; in Wyp without
after v;. Similarly, if R;'(v;) = v; and N(v;) N N(v;) is causing any violation with cells on the right-hand side or the
not empty, theny; is the first node on the left-hand side ofconjugate cell ofv;. There is also no violation on the left-
v; that is assigned after;. hand side ofv; because the first cell on the left-hand side of

Suppose that, according to SP, verigxis the first vertex v; colored bye, in ®yp is v;. Hence, we can assume thatis
colored bye,. Notice that there exists an MP realizatigm,;>  colored byc, in ¥gp with ¢, # ¢,. Without loss of generality,
in which v is colored byc, sincevy must be colored by at we may assume that; is also colored by, in ¥yip.
least one color and one can relabel one of the colors,to  Let F' denote the set adlenial areajust before the assign-

If the vertices referenced hig, (vo) for both realizations are ment tov; is made in the SP algorithm. Notice that

identical for all integerl, then the claim holds. Suppose, on

the other hand, thdtis the integer with the smallest absolute |N(vp) N F| < |N(vy) N EY.

value, such that the vertices referenced BYy(vo) are not

identical for the two realizations. First, assume thiatpositive If not, thenv;, will be picked by the SP algorithm to be colored
andR! (vo) for ¥sp andWyp refers tov; anduy, respectively, by cq. There are two possible cases for further consideration.
with j # k. We claim that one can construct another MP Case 1) |[N(v) N F| < |[N(v,;) N F|: Due to the special

realizationWypr so that all the vertex assignment to the left topology of a three-stripe, the condition implies
of and up toR.~1(wv) are identical forly> and ¥y, and |N(vi) N N(w;)| < |[N(v;) N N(v;)|. Recall that
R (o) for Wypr refers tow,. both v, andw are on the right-hand side of. It
For notation simplicity, let us denot®,~*(vo) by v;. This follows that (N(v) N E) C (N(v;) N E) for all
node is colored by, in both realizations. Notice that &, (v;) possibley; (see Fig. 9). Hence, if an arbitrary color
is well defined for¥sp, but not for ¥y, then one can pick can be used to colar; in a realization, it can also
an arbitrary color used fop; in Wyp and replace it with be used to colog; without causing any violation
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Fig. 10. Let the shaded cells be the denial aféa The only possible
locations forv; andwv; are shown.

Fig. 11. SP realization may not be optimal in a four-stripe cellular syste

TABLE IV
THE ReALIZATION OF SP AND MP FOR
THE EXAMPLE SHOWN IN FIG. 7

Cell ‘1/513 \IJMP
A C1,€2,C4 C1,C2,C3
B C3 Cq
C C1 C3
D Co, Cq c1,Co
E C3,Cs C3,Cq4
F C1 C1
G C3 C4

for vertices on the left-hand side of.. Perform a
swapping operation Swafv;, v, ¢y, ca) ON Vyip.

This operation does not cause any violation. The

resulting realization sV, which satisfies the
claimed property.

Case 2) [N(u)NF| = |N(v; )NF|: Let G, be the subgraph [9]

induced by the vertex sétV(v) N F) U {v}. In
this case W (vi| G, ) £ W(v;|G.,), otherwiseuy,
will be colored byc, instead ofv;. If N(vx) N

F = N(v;) N F, we can perform the operation[12]
Swap.(v;, vk, &, ¢,) @s in Case 2). So, it is only [13]
necessary to consider the complementary situation.

Now, suppose thatV(vy) N F # N(v;) N F. The only

possible locations fop; and v, are shown in Fig. 10. From [15]
the figure, it is clear that, and v, are the only cells on the
left-hand side of;; andwy, which may experience a violation

if a swapping operation Swags performed.

If w; > wy, then inWyp, v; is colored by more colors than

v;. Therefore, we can find a color, say, that is used to color

685

v;, but notw,. Then, we can perform Swafy;, vy, ¢4, ca) @S
before to obtain¥yp:.

On the other hand, iv; < w,, thenw, > w;, due to the fact
W0kl Gy) < W (03] G,) and W ()]G, ) — W (ui| G, ) =
wj +ws —wy,—we. IN Wyp, one of the colors assigned 4 is
ca, @nde, cannot be assigned tq. Therefore, we can always
find a color, sayy, in v, which is not assigned to,. Hence,
the operations Swapuv;, vk, ¢, c,) and Swap(ve, vs, ¢, €q)
can be applied td/y;p. Notice that the operation Swagdoes
not alter the vertices, which are colored &y and so will not
affect the previous coloring aof,. The resulting realization is
Wnpr.

Hence, in both cases, we can fidd;p- with the claimed
property. Repeating this argument if necessary for the case,
wherel is negative, one can then guarantee that there is an MP
realization, which has an identical sequence of verti¢g@)
as Vsp up to |i| < I. Hence, there exists an MP realization,
which has the same set of vertices coloredchyas ¥sp, and
this proves the claim. As a result, the theorem is proved.

This theorem cannot be generalized toiastripe system for
¢ > 3. This can be seen from the example shown in Fig. 11
r?'originally due to Keeler [11]). As before, we assume a reuse
factor of seven. Table IV shows that SP uses five colors, while
MP uses only four. So, the SP realization is not optimal. It has
been shown that MP is NP hard. Since SP is a polynomial time
algorithm, this should not come as a surprise.
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