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Distributed Power Balancing in Cellular
Systems Using Limited Control-Data Flow

Kam Hung Lam and Wing Shing Wong

Abstract—In this paper, a new, distributed power-control algorithm is
introduced. The algorithm is based on the assumption that some limited
control-data communication is allowed according to a predefined data-
flow structure. The convergence property of this algorithm is analyzed.
Numerical study results are also presented.

Index Terms—Cooperative algorithm, distributed algorithm, positive
matrix, power control.

I. INTRODUCTION

Power control is an important issue in mobile communications
that receives a lot of attention (for example, see [1]–[5]). The basic
question is how to adjust the power level at each transmitter so that the
carrier-to-interference (C/I) ratio is optimized in some global sense.

The power-control problem is complicated by the effect of fast
fading, and it is common practice to divide this complicated problem
into two parts. First, one tries to obtain a globally optimal solution
ignoring the effect of fast fading. One can then design a close-loop
control for the transmitter to combat the effect of fast fading. In this
paper, we concentrate only on the first problem.

Since the C/I ratio can be defined at each receiver, there are a
variety of ways to combine these values to form a single, global
quality measure. One of the commonly used criterions is C/I balanc-
ing introduced by Aein [1]. Under this criterion, a system is optimally
controlled if all the uplink (or downlink) channels sharing the same
spectrum have identical C/I ratios. A balanced solution is also known
to be the optimal solution to the problem of maximizing the minimum
of all the individual C/I’s.

Given the nature of the power-control problem, that involves
transceivers that are geographically distributed, the solution should
ideally be computable by each transceiver in isolation without having
to communicate with other transceivers (the communication between
a mobile unit and the base station to which it belongs is allowed,
however). Unfortunately, most of the commonly known approaches
to power control, such as those stated in [3]–[5], are not completely
isolated algorithms. For example, the algorithms presented in [3] and
[4] allow each transceiver to compute its power level in isolation.
However, the algorithms do not converge unless a common normal-
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izing factor is chosen correctly. Hence, for these algorithms some
global communication seems unavoidable in order to guarantee that
the normalizing factors are chosen correctly.

In this paper, we introduce a new distributed power-control algo-
rithm. Our algorithm is based on the assumption that some limited
control-data communication between the interfering transceivers is
allowed. The algorithm is distributed in the sense that it is computed
by each transceiver based on its local information and information
sent by some of its neighbors. Of course, such information exchanges
generated some overhead. However, the trade-off is that the new
algorithm has the following nice features.

1) It does not require a common normalizing factor that needs to
be broadcast globally to all the mobile units.

2) It has the convergence property that the minimum of the C/I
ratio of all the interfering transceivers converges monotonically
upward to a limit.

3) While its rate of convergence is comparable to the algorithm
proposed in [4], fewer power adjustments are required. More-
over, it guarantees that there is no oscillation of power levels
during the adjustment.

4) Power level and C/I ratio constraints are incorporated.

After the basic introduction, we introduce the concept of control-
data flow structure that is essential in describing the intercell commu-
nication needed in the distributed algorithm. In Sections IV and V, the
algorithm is presented and analyzed. The findings of our numerical
study are discussed in Section VI.

In this paper, the effect of thermal noises is not modeled explicitly.
This assumption simplifies the mathematics significantly and enables
us a more lucid presentation of the key ideas.

II. SYSTEM MODEL

Our model is based on the model presented in [1] that is briefly
reviewed here for completeness. We study the scenario, where the
mobile cellular communication system hasK base stations, each
of which has one active user. For each user, there is a channel
pair consisting of an uplink and a downlink channel. The mode of
medium-access control on these channels can be frequency division
multiple access (FDMA) or time division multiple access (TDMA).
Neighboring channel interference is ignored.

Propagation loss and interference effects are captured by the link
gains. The notationGij is used to represent the path gain received
at the base stationi from the transmitter of the mobile uniti. The
matrix G = fGijg is known as the uplink-gain matrix. One can
define the downlink-gain matrix similarly. Since the power-control
issue for the uplink and downlink channels are quite similar in our
model, we concentrate only on the uplink channel power control to
simplify the discussion. Note thatGii represents the path gain for
the intended signal, while fori 6= j, Gij represents the path gain for
the interference signals. Thus, the C/I ratio received by base station
i and �i can be written as

�i =
GiiPi

j 6=i
GijPj

: (1)

We assume that this C/I ratio reflects the transmission quality at
the receiver; interference due to thermal noises is assumed to be
negligible. Equation (1) can be rewritten more compactly as

�i =
Pi

j 6=i
ZijPj

(2)
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Fig. 1. An example of a control-data flow structure.

where the normalized uplink-gain matrixZ is defined byZij =

Gij=Gii.
As in [1], a C/I ratio
 is defined to be achievable if power vector

P exists with all positive components such that�i � 
 for all i.
A matrix A is called irreducible if there does not exist a permuta-

tion of the base that can put it in the form

B 0

C D

where B and D are square matrices. Since the normalized link-
gain matrix is unlikely to contain any zero entry, we can assume
without losing much generality thatZ is irreducible. By the Frobenius
Theorem,Z has a unique, dominant real eigenvalue��. In [1], an
important result is proved stating that the largest achievable C/I ratio


� is related to�� by the formula



�
=

1

�� � 1
: (3)

Moreover, an eigenvector corresponding to the eigenvalue�
�

yields a balanced solution of the power-control problem. This result
reduces the problem of finding an optimal power-control solution to
finding the corresponding eigenvector of the normalized gain matrix.

III. CONTROL-DATA FLOW STRUCTURE

A crucial assumption in our model is that the base stations in the
system are interconnected by a packet-switched signaling network so
that a small amount of control-data information can be sent from one
base station to another. Of course, there is a cost associated with this
type of data communication, and, naturally, one wants to minimize
the cost by ensuring that this type of data communication is kept to
a minimum. Hence, the algorithm we propose is designed to restrict
control-data traffic to network neighbors as much as possible. By
network neighbors, we refer to those base stations between which
the data communication costs are small.

A key concept in our distributed algorithm is the control-data
flow structure. This structure can be represented as a directed graph.
It defines how the power-control data are passed among the base
stations. So, if there is a directed arc from node A to B, then
control data is expected to be passed from base station A to B.
The control-data flow structure is dictated by the topology of the
signaling network, but otherwise it can be quite general except that
it must satisfy the following.

A. Reachability Condition

A control-data flow structure satisfies the reachability condition
if, for any pair of nodes(A; B); there is a chain of directed arcs
starting fromA and terminating atB.

An example of a control-data flow structure satisfying the reach-
ability condition is provided in Fig. 1. Since we focus on the
uplink channels in this paper, the C/I ratios are assumed to be
measured locally at the base stations. These C/I ratio measurements
are averaged over a suitable time interval to smooth out fluctuations
due to fast fading. At the beginning of each algorithm iteration, each
base station passes the averaged C/I ratio measurement to some of
its neighbors according to the predefined control-data flow structure.
This information is then used in the computation of the next iteration.

IV. THE DISTRIBUTED POWER-CONTROL ALGORITHM

In this section, we define a simple distributed power-control
algorithm. Before we proceed, let us recall some basic notation, most
of which is borrowed from [1].

Bi ith base station; the user homing ontoBi is labeled as
the ith user;

K total number of active base stations;
K set of integers from 1 toK;

0 minimum C/I ratio for transmission with acceptable

quality;

�
(n)

i
C/I ratio at theith base station at thenth iteration;

P
(n)

i
transmitter power level of mobile uniti at thenth
iteration;

PM maximum transmission power level of the mobile units;
Ni set of indexes of base stations that send control-data

information to base stationi according to the
control-data flow structure;

N i
union ofNi with i.

The distributed power-control algorithm we propose is a discrete-
time algorithm. At each iteration, every base station computes its
own power level based on its power level in the previous iteration,
its current C/I ratio, and the C/I ratios it receives from its neighbors.
Hence, it is assumed that the computations are synchronized. The
issue of asynchronous updates, such as in [7], is not considered in
this paper. To be more precise, the new algorithm is defined by the
following set of equations.

A. The Cooperative Algorithm

Each mobile unit adjusts its power according to the following rules:

P
(0)

i = PM (4)

P
(n+1)

i = �
(n)

i P
(n)

i (5)

where�(n)i is defined to be

�
(n)

i =
min (�

(n)

i ; max (minj2N �
(n)

j ; 
0))

�
(n)

i

(6)

and m is a parameter of the algorithm that controls the rate of
convergence as explained in the numerical study section.

The use of themth square root function in the definition of�(n)i is
motivated by the fact that for a system with only two base stations,
it is possible to reach the balanced state in one iteration by choosing
�
(n)

i as a function of the form

c
minj=1; 2 �

(n)

j

�
(n)

i

:

A detailed discussion of this result is given in the Appendix.

V. CONVERGENCEPROPERTIES OF THECOOPERATIVEALGORITHM

We summarize the convergence properties of the cooperative
algorithm in a series of propositions and a theorem.

Proposition 1: The power levelP (n)

i is a monotone nonincreasing
function of n. Moreover, the function


(n) = min
j2K

�
(n)

j (7)

is a monotone nondecreasing function ofn.
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Proof: A function f is monotone nondecreasing iff(x) � f(y)

wheneverx � y. A monotone nonincreasing function is defined
similarly. The fact thatP (n)

i is monotone nonincreasing follows
simply from the fact that�(n)i � 1.

To show the second statement, note that

�
(n+1)

i =
�
(n)

i P
(n)

i

j 6=i ZijP
(n+1)

j

�
�
(n)

i P
(n)

i

j 6=i ZijP
(n)

j

= �
(n)

i �
(n)

i = �
(n)

i (�
(n)

i )m�1 (8)

where

�
(n)

i = min �
(n)

i ; max min
j2N

�
(n)

j ; 
0 : (9)

It follows from (8) that

�
(n+1)

i � min �
(n)

i ; max minj2N �
(n)

j ; 
0 : (10)

If minj2N �
(n)

j � 
0, then

�
(n+1)

i � min �
(n)

i ; min
j2N

�
(n)

j = min
j2N

�
(n)

j : (11)

On the other hand, ifminj2N �
(n)

j < 
0, then

�
(n+1)

i � min (�
(n)

i ; 
0) � min
j2N

�
(n)

j : (12)

Hence, in either case,
(n+ 1) � 
(n).
SinceP (n)

i is a monotone nonincreasing sequence with zero as a
lower bound, it follows that the limit ofP (n)

i exists asn tends to
infinity. Denote the limit byP �i . Denote the corresponding value of
the C/I ratio at theith base station as��i . Denote the limit of�(n)i

accordingly as��i . Although we have shown that the limiting power
control exists, in general, we cannot establish the fact that the limit
does not tend to zero. In our numerical studies, however, the power
limits we encountered have always been nonzero. In the rest of this
paper, we will always assume that the limiting power levels are all
positive.

Recall that
� is the dominant real eigenvalue of the normalized
uplink-gain matrixZ. We have the following result.

Proposition 2: If �
�
i � 
0 for all i, then �

�
i = 
�, and the

balanced solution is obtained.
Proof: Since��i is the limiting C/I ratio, it follows that

�
�
i =

��iP
�
i

j 6=i ZijP
�
j

= �
�
i�
�
i : (13)

Hence,��i = 1. This, in turn, implies that for anyi

�
�
i = min �

�
i ; max min

j2N
�
�
j ; 
0 = min

j2N
�
�
j : (14)

Let Bk be a base station that receives the globally maximal C/I
ratio. By the reachability assumption, for any nodei; i 6= k; there
is a chain of directed arcs starting from nodek and ending at node
i. Label the nodes in the chain asj0 = k; j1; j2; � � � ; jl = i. Since
j1 2 Nk; it follows that

�
�
k � �

�
j :

Similarly, one can show that

�
�
k � �

�
j � �

�
j � � � � �

�
i :

Since��k achieves the globally maximal value, the strict equality
holds in the previous inequalities and��i = �

�
k for all i.

Proposition 3: If there exists a base stationk such that��k < 
0;

then

1) �
�
i � 
0 for all i;

2) �
�
i = 
0 for any Bi satisfying�(0)i � 
0.

Proof: As before, it follows from (13) that��i = 1 for any base
stationi. If Bi has a neighborBj such that��j � 
0; then��i = 1

implies

�
�
i = min (�

�
i ; 
0): (15)

Hence,��i � 
0. By the reachability assumption, for any node
i; i 6= k; there is a chain of directed arcs starting from nodek and
ending at nodei. Thus, by inductively applying the previous argument
on the nodes along this chain, one can establish the first statement.

It follows from the definition of�(n)i that if �(n)i � 
0; then
�
(n)

i � 
0. Thus, (8) implies that�(n+1)i � 
0. So, if�(0)i � 
0; then
�
(n)

i � 
0 for any positive integern. Hence,��i � 
0. Combining
this result with the first statement, one concludes that

�
�
i = 
0

if �(0)i � 
0.
Theorem: Assume that the limiting power-control vector is non-

zero. If 
� � 
0; then the cooperative algorithm converges to the
balanced solution that is��i = 
� for all base stations. If
� < 
0;

then��i � 
0 for all base stations, with the strict inequality holding
for at least one base station. Moreover, if�

(0)

i � 
0; then��i = 
0.
Proof: To establish the theorem, let us first show that if�

�
i � 
0

for all i; then
� � 
0; and if ��k < 
0 for somek; then
� < 
0.
If this holds, then the condition
� � 
0 implies��i � 
0 for all i,
and
� < 
0 implies��k < 
0 for somek. The theorem then follows
from Propositions 2 and 3.

By a corollary of the Frobenius Theorem [6], it follows that for
any power-control assignment with all positive componentsP, the
C/I ratios defined by

�i(P) =
Pi

j 6=i ZijPj

(16)

satisfy the condition

min
i2K

�i(P) � 

� � max

i2K
�i(P): (17)

It follows in particular that

min
i2K

�
�
i � 


� � max
i2K

�
�
i : (18)

As a corollary of the Frobenius Theorem, if either one of the
inequalities in (18) can be replaced by an equality, thenP is an
eigenvector of
� andmini2K ��i = 
� = maxi2K �

�
i .

If �
�
k < 
0 for somek, then

min
i2K

�
�
i < 
0: (19)

It follows from Proposition 3 that for alli

�
�
i � 
0: (20)

Equation (20) implies that
� � 
0. If 
� = 
0; then 
� =

maxi2K �
�
i andmini2K ��i = maxi2K �

�
i : a contradiction to (19).

Hence,
� < 
0.
On the other hand, if��i � 
0 for all i, then by Proposition 2, the

balanced solution is obtained. So



�
= �

�
i � 
0:
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TABLE I
AVERAGE NUMBER OF ITERATIONS TO ACHIEVE THE SPECIFIED TARGET AVERAGED

OVER 1000 EXPERIMENTS. MEAN VALUE OF BALANCED C/I = 19:1 dB

Fig. 2. Layout of interfering cells. In the numerical study, interfering cells
are assumed to be circular.

VI. NUMERICAL STUDY

We have carried out a numerical study on the cooperative algo-
rithm. Our simulation model is similar to the model in [3]. The
standard hexagonal cell layout is assumed. The radius of the cells is
normalized to one. A fixed, homogeneous channel-allocation strategy
is used with a reuse factor ofN = 7. The distance between two
neighboring cells,D, is determined by the well-known formula

D = R
p
3N (21)

where R is the cell radius. SinceR is normalized to be one,
D =

p
21. The base stations are assumed to be located at the center of

the cells. Users in the 16 circular cells marked in Fig. 2 are assumed
to use the same bandwidth, and power control is required to minimize
the cochannel interference among them.

To simulate the users, the location of a mobile unit is generated
randomly by picking a set of polar coordinates(r; �) so thatr is
uniformly chosen on the interval [0, 1] and� is uniformly chosen
from [0, 2�]. The polar coordinate is then used to define the relative
position of theith mobile unit from the center of theith cell. The
link-gain valueGij is then defined by the formula

Gij =
Aij

d4ij
(22)

wheredij is the distance between theith base station and thejth
mobile unit andAij is the attenuation factor.

As we mentioned before, we only consider the effect of log-normal
fading and ignore the effect of fast fading in this study. Hence, for
all i and j, Aij is log-normal distributed with

E[10 log
10
Aij ] = 0dB (23)

(a)

(b)

Fig. 3. Data-flow control structure studied in this paper.

Var[10 log
10
Aij ] = �

2
= (6dB)

2
: (24)

Two types of control-data flow structure were considered. Structure
S1 is represented by a directed tour where node 1 is joined to node
2, node 2 is joined to node 3, and so on (node 16 is joined to
node 1). In structureS2, every cell sends its C/I information to its
geographical neighbors as shown in Fig. 3. WhileS1 is one of the
minimal structures possible that satisfies the reachability condition,
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Fig. 4. Rate of convergence of the cooperative algorithm. Minimum and maximum C/I ratios of cells using the cooperative algorithm with theS2

structure are displayed.

TABLE II
AVERAGE MAXIMUM AND MINIMUM POWER LEVELS TO ACHIEVE THE SPECIFIED TARGET

AVERAGED OVER 1000 EXPERIMENTS.MEAN VALUE OF BALANCED C/I = 19:1 dB

its corresponding algorithm has a rate of convergence about an order
of magnitude slower than one that usesS2. Hence,S1 is deemed
unacceptable.

A large number of simulation runs were conducted. In Figs. 4
and 5, we present some typical results seen in these experiments.
These figures compare the cooperative algorithm with the distributed
algorithm proposed in [4] that is known to have a fast rate of
convergence. The value ofm was chosen to be 1.5, and
0 was set
to zero. In Fig. 4, the rate of convergence of the new algorithm using
data structureS2 is presented. In Fig. 5, the rate of convergence using
the algorithm in [4] is presented. The different rates of convergence
for the different algorithms are also summarized in Table I, based on
1000 simulation runs.

In Table II, we compare the average minimum and maximum
power levels derived by the algorithms when the C/I ratio is within
target. Since the dynamic range of the power level is more important
that its absolute value, we normalize the maximum power in both
algorithms to one; in particular, this meansPM is equal to one. The
study shows that for the algorithm proposed in [4], the final power
levels are almost zero. So, in practice, the algorithm must terminate
before the equilibrium can be reached. For our algorithm, the derived
power levels are more realistic. Again, structureS2 provides better
performance thanS1. Moreover, the rate of convergence forS2 is
faster than the rate of convergence of the algorithm in [4], while the
rate of convergence forS1 is slower than both.

In Table III, the effects of differentm values are summarized.
The configuration of the system is identical to previous experiments.
The results indicate that the optimal value form to minimize the
number of iterations is around 1.5. This is slightly different from
the theoretical optimum value for a system consisting of two cells,

TABLE III
A COMPARISON OF THEEFFECT OFm ON THE CONVERGENCERATE

which is two. On the other hand, the dynamic range of the power
level is larger whenm is set at 1.5. So, there is a tradeoff between
the convergence speed and the quality of the solution.

VII. CONCLUSION

In this paper, a distributed power-control algorithm is proposed
based on the concept of using a small amount of control information
among the base stations. This algorithm does not require a common
normalizing factor that needs to be communicated globally, and it
exhibits desirable, monotonic convergence properties. A numerical
study of the proposed algorithm was performed, and it shows that the
speed of convergence can surpass a well-known distributed algorithm.
Moreover, the proposed algorithm typically requires smaller power
adjustments to achieve the balanced state.
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Fig. 5. Rate of convergence of the algorithm in [4]. Minimum and maximum C/I ratios are displayed.

APPENDIX

Proposition 4: For a two-cell system with quality threshold
0 set
to zero, if an algorithm of the form

P
(n+1)

1 = f
min(�

(n)
1 ; �

(n)
2 )

�
(n)
1

P
(n)
1 (25)

P
(n+1)
2 = f

min(�
(n)
1 ; �

(n)
2 )

�
(n)
2

P
(n)
2 (26)

converges in one step, thenf must be of the form

f(x) = c
p
x

where c is an arbitrary constant.
Proof: Assume without loss of generality that�(0)

1 � �
(0)

2 .
Define

xn =
�
(n)
2

�
(n)
1

: (27)

It then follows from the definition that

xn =
Z12

Z21

P
(n)
2

P
(n)
1

2

: (28)

If the algorithm converges in one step to the balanced solution,
then, x1 = 1. Hence,

1 =
Z12

Z21

f(1)P
(0)

2

f(x0)P
(0)

1

2

= x0
f(1)

f(x0)

2

: (29)

It follows that

f(x) = f(1)
p
x: (30)

Proposition 5: For a two-cell system with quality threshold
0 set
to zero, if an algorithm of the form

P
(n+1)
1 = f

�
(n)
2

�
(n)
1

P
(n)
1 (31)

P
(n+1)
2 = f

�
(n)
1

�
(n)
2

P
(n)
2 (32)

converges in one step, thenf must be of the form

f(x) =
p
xh(log x)

whereh(x) is an even function, that is,h(x) = h(�x).
Proof: By using arguments as in the proof of the previous

proposition, one can show that

1 =
Z12

Z21

f(1=x0)P
(n)
2

f(x0)P
(n)
1

2

= x0
f(1=x0)

f(x0)

2

: (33)

Since the valuex0 can be any positive real number,f must satisfy
the equation

f(x) =
p
xf(1=x) (34)

for any positive realx.
To solve (34), defineg(s) = f(es). Notice thatg can take any real

number as an argument. Equation (34) then becomes

g(s) = e
s=2

g(�s) (35)

for any reals.
Defineh(s) = e�s=4g(s). Then, (35) becomes

h(s) = h(�s) (36)

that is satisfied if and only ifh is an even function. Sincef(x) =p
xh(logx), the proposition then follows.
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