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ABSTRACT

Detection of curves (e.g., ridges) from very noisy images is
an important yet challenging task in photon-starved imag-
ing applications (e.g., nuclear imaging modalities, fluores-
cence/electron microscopy, radioastronomy, first photon/light-
in-flight imaging).

In this paper, we exploit the consistency of the image
along the curve, i.e., the fact that the image changes slowly
when we move along the curve—“locally” laminar images.
We compute a sequence of complex scalars that we call
Fourier-Argand moments, and show that the direction of vari-
ation of a laminar image is purely encoded in the phase of
these moments. In particular, focusing on ridges located at
the center of the image, we show that using these moments
altogether in a frequency estimation algorithm provides a
very accurate and highly robust estimate of the direction of
the ridge: we demonstrate this accuracy for noise levels as
high as −10 dB.

We then show how to detect curves—i.e., local ridges—by
computing the Fourier Argand moments within a sliding win-
dow across the image, and design a consistency map whose
thresholding allows to keep only the pixels on the curve.

Numerical experiments on both synthetic images and real
images (low light photography) demonstrate the accuracy and
robustness to noise of the proposed method, compared to a
state of the art method.

Index Terms— Laminar image, directional feature, rota-
tion covariant moments, frequency estimation, curve detec-
tion.

1. INTRODUCTION

The ability to recover images from very noisy measurements
has always been crucial to many research areas ranging from
physics to biology. In particular, starved-photon techniques
are now used for 3D image reconstruction [1] and non line-of-
sight imaging [2]. In these applications, the very low photon
flux makes the noise due to photon counting particularly high.

Confocal fluorescence microscopy is another instance of
very low intensity light measurements, caused by, both the
weak fluorescence process, and the existence of a pinhole
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which discards most of this light to achieve optical section-
ing. In this case, to obtain visually plausible images, long
exposure times (seconds) are usually required, which hinder
the observation of faster dynamic processes. Techniques that
are able to retrieve signals buried in large noise should in prin-
ciple reduce the exposure time and hence enable the observa-
tion of dynamic processes. Indeed, ridge and edge detection
is a fundamental task for many applications in the field of im-
age processing, such as image segmentation [3, 4], content
analysis [5, 6] and detection [7], etc.

In the derivation of his classical edge detection algorithm,
Canny [8] used the first derivatives of a Gaussian to approxi-
mate the optimal edge filter. The gradients of an image com-
puted using the filters are then used to detect edges and to es-
timate their directions. Later on, starting from the perspective
of matched filtering, Jacob et. al. [9] proposed to approxi-
mate the matched filter in the family of steerable filters. They
also reformulated Canny’s filter (together with his optimality
criteria) in this steerable filter framework. The key idea of
the approximation is that, by assuming a filter to be a linear
combination of several basis filters (derivatives of an isotropic
window function) rotating the filter amounts to changing the
coefficients of the linear combination without changing the
basis filters. This solves the problem for matched filtering that
when higher directional accuracy is required, the number of
rotations needed for the filter quickly becomes too large. Lin-
deberg addressed the problem of selecting the intrinsic scales
of ridges in [10], while at each scale he still used the second
order derivatives of an isotropic Gaussian function.

A common problem of above algorithms is that the esti-
mation of the direction is not accurate enough due to the low
directional sensitivity of the filters. In this paper, we show
how to approach the problem from a different perspective, by
exploiting the local directional consistency of curve images.
For this, we will first consider ideally consistent images: lam-
inar images; i.e., images that varies only in one direction θ,

I(x, y) = f(x cos θ + y sin θ), (1)

for some real-valued “shape” function f(x) and a direction
θ ∈ [0, 2π). This general formulation includes ridges, i.e.,
symmetric and localised shape function (typically, a Gaus-
sian); and edges, i.e., anti-symmetric shape function (typi-
cally, a sigmoid), plus to a constant.

We propose to compute complex-valued quantities that
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Fig. 1. Real parts of the complex-valued filters used for com-
puting the Fourier-Argand moments for different n.

we call Fourier-Argand moments1. For laminar images, we
show that the direction θ is solely encoded in the phase of
the moments. The good properties of the proposed Fourier-
Argand moments are actually related to the concept of rota-
tion covariance studied in [13, 14]. More importantly, using
several of these moments together, we are able to estimate the
direction θ of centered ridges with very high accuracy, even
when the image is buried in heavy noise.

Localizing this algorithm by computing the Fourier-
Argand moments within a sliding window across the image,
allows us to use this algorithm to estimate the local direc-
tion of the curve. In order to distinguish between curve and
non-curve pixels in the image, we devise a consistency map
which, after adequate thresholding, provides the curve pixel
location—and the accurate local curve direction.

2. ROTATIONAL MOMENTS OF LAMINAR IMAGES

In this section, we assume the image I(x, y) to be laminar and
show how its direction of variation can be estimated from the
phase of Fourier-Argand moments.

2.1. Fourier-Argand moments

We propose to compute the following moments of an image
I(x, y) defined for all positive integers n.

Mn =

∫∫
I(x, y)

(
x+ iy

|x+ iy|

)n

w
(
|x+ iy|

)
dxdy, (2)

where i2 = −1 and the (positive) window function w is typ-
ically a Gaussian function: w(r) = exp

(
−r2/(2σ2)

)
, where

σ is the size of this window. We name these moments as
Fourier-Argand moments because of their rotational covari-
ance (Argand) and their frequency interpretation (Fourier).
Fig. 1 shows the filters corresponding to the moments for
different n. Pure black means −1 and pure white means 1.

Let the image be laminar, i.e., I(x, y) varies only in the
direction θ according to (1). Substituting (1) into (2) and by

1 Jean-Robert Argand is credited for the geometric interpretation of complex
numbers x + iy at the beginning of the XIX century [11]. See [12] for a
geometric link between the Fourier transform and the Argand interpretation.

the change of variable x+ iy = eiθ(x′ + iy′), we find

Mn = an e
inθ, (3)

where an =

∫∫
f(x)

(
x+ iy

|x+ iy|

)n

w (|x+ iy|) dxdy. (4)

Notice that an is real for any real-valued f and integer n,
because a change of variable y′ = −y shows that an equals
its complex conjugate. Therefore, the direction θ is purely
encoded in the phase of the moments.

2.2. Centered ridge moments

Ridges are laminar images for which the shape function f(x)
is symmetric, and localized—e.g., a Gaussian function. When
the symmetry is around x = 0, i.e., when the ridge is cen-
tered, then it is easy to check from (4) that all the odd degree
moments vanish:

f(x) = f(−x) =⇒ M2n−1 = 0, n = 1, 2, . . . . (5)

Moreover, we notice that, for a centered ridge, the signs of
a2n usually alternate; i.e., sign(a2n) = − sign(a2n+2), for
n ≥ 0. To see this, let us compute the even-order Fourier-
Argand moments for a Dirac that varies in direction θ. Sub-
stituting I(x, y) = δ(x cos θ + y sin θ) into (2) and changing
to polar coordinates, we have

M2n =

∫ ∞

0

rw(r) dr

∫ 2π

0

δ(r cos(α− θ))ei2nα dα

= (−1)nei2nθ︸ ︷︷ ︸
exp(in(2θ+π))

× 2

∫ ∞

0

w(r) dr︸ ︷︷ ︸
>0

(6)

Hence, a property of a centered ridge is that its normalized
Fourier-Argand moments M2n/|M2n| follow a pure complex
exponential model exp(inα), where α = 2θ + π.

2.3. Centered ridge direction estimation

We have just shown that the direction of a centered ridge
is encoded only in the phase of the even Fourier-Argand
moments—not in their amplitude. Although any of these
moments can, individually, provide the direction information
(up to a multiple of π/n), their lack of directional sensitivity
make them very inaccurate in practical situations. Fortu-
nately, using several of these moments altogether increases
this accuracy dramatically, as we show in the following.

Assume that we have computed the first N even-order
Fourier-Argand moments of a centered ridge: M2n, n =
1, 2, . . . , N . Estimating θ can be done by minimizing the dif-
ference between the sequence of complex numbers M2n/|M2n|
and the model exp(inα) that is suggested by (6); or, if we
choose least-squares minimization, by computing

α∗ = arg max
α∈[0,2π)

Re
( N∑
n=1

M2n

|M2n|
e−inα

)
. (7)
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Fig. 2. Centered ridge image corrupted with addi-
tive Gaussian noise of PSNR 0 dB (a) and −10 dB (b).
The DFT of the normalized Fourier-Argand moments,{
M2n/|M2n|

}
n=1,2,...,20

, of the images in (a) and (b) is com-
puted, and their real part shown in (c) and (d). The maxi-
mum of these graphs matches the ground-truth direction of
the ridge very closely, despite the very high noise level.

According to our findings in Subsection 2.2, the least-squares
optimal α∗ is related to an estimate of θ by

θ̂ =
α∗ − π

2
mod π, (8)

Note that the π-uncertainty is of no consequence here (direc-
tion of a line).

The solution of (7) can be found either exactly, by solving
for the roots of a polynomial of degree 2N , or approximately,
by maximizing the real part of a Discrete Fourier Transform
over 360 points. The DFT choice provides an angle accuracy
of 0.5◦, which is sufficient in practice.

Fig. 2 demonstrates the very high robustness and direc-
tional sensitivity of the estimator (7). Here, 20 moments are
computed from a centered ridge image corrupted at differ-
ent noise levels. Both at 0 dB and at −10 dB, the real-part
of the DFT of these normalized moments has a sharp max-
imum close to the ground truth α = 2θ + π mod 2π. We
should mention that this high sensitivity comes from the fact
that estimating frequencies is actually much more accurate
than estimating amplitudes (see [15]).

3. A CURVE DETECTION ALGORITHM

In Section 2, we proposed an algorithm for estimating the di-
rection of centered ridges. We now want to show how this al-

gorithm can be applied to non-centered ridges, and more gen-
erally, to curves. The principle is that, within a small window,
a “consistent” curve (avoiding sharp turns) can be approxi-
mated reasonably well by a ridge, and that if the window is
located adequately, this ridge is centered.

3.1. Fourier-Argand filters and curve direction

Since the Fourier-Argand moments are already localized us-
ing the window w(|x+iy|), we can just shift the image I(x, y)
at various positions to obtain localized Fourier-Argand mo-
ments across the image. Accordingly, this transforms the inte-
gral definition (2) of the moments into a convolution. Specif-
ically, consider the filters defined by

hn(x, y) =
(
− x+ iy

|x+ iy|

)n

w(|x+ iy|),

then the localized Fourier-Argand moments result from the
2D convolution Mn(x, y) = (I ∗ hn)(x, y).

Once these moments have been computed at every point
of the image, we can use the frequency estimation algo-
rithm (7) discussed in Section 2.3. This provides us with
an image α∗(x, y) that is related to an image of pointwise
direction estimates θ̂(x, y) =

(
α∗(x, y)− π

)
/2 mod π.

3.2. Reliability criterion

What we have found in Section 2.3 is that the direction esti-
mate θ̂(x, y) at (x, y) is very accurate, even in the presence of
severe noise, as long as the curve behaves as a centered ridge
around that pixel. Assuming that the window size w is suf-
ficiently small for the curve to be straight within its support,
we still need to make sure that the curve is centered. To de-
vise a criterion that guarantees the reliability of our direction
estimate, we compute the correlation between the image and
a Gaussian ridge of width σc over the window w (typically,
σc = 1 pixel):

ρ(x, y) =

∫∫
I(x+ u, y + v) e

− (u cos θ̂+v sin θ̂)2

2σ2
c

×w(|u+ iv|) dudv (9)

where θ̂ denotes θ̂(x, y). If the curve goes through the pixel
at (x, y), we know that the estimation θ̂ is very accurate and
so, that ρ(x, y) should be significantly larger than when this
is not the case.

4. EXPERIMENTS

We compared the proposed method with several widely used
algorithms [10, 16, 9]. We chose to show comparison with the
steerable filter introduced and implemented by [9], which is
under the matched filtering framework and yields the highest
directional selectivity among these existing algorithms. We
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Fig. 3. Curve detection from noisy images (in column 2, ground-truth in column 1): comparison of the results provided by our
algorithm and the 4-th order steerable filter method [9]. Our algorithm: Column 3 shows the consistency map defined by (9) and
column 4 shows the result of processing column 3 using non-maximum supression and thresholding; steerable filter algorithm:
Column 5 shows the response map and column 6 shows the result of processing column 5 using the same non-maximum
supression and thresholding.

chose the 4th-order filters for detecting ridges as suggested
by the authors.

As for our algorithm, we chose the Gaussian window w
to have a standard deviation σ = 10 pixels; we also used 20
moments and solved the maximization problem (7) by using
a 360-point FFT.

We first generated a 256× 256 synthetic curve image and
added white Gaussian noise (Fig. 3 (a) and (b)). We also took
a 467 × 567 photograph of a headphone cable under full and
under weak light (Figs. 3 (g) and (h)). Figs. 3 (c) and (i) show
the consistency map ρ(x, y) defined by (9). Compared with
the response map (Fig. 3 (e) and (k)) of the steerable filter
method, the results of our algorithm show: 1) a more accurate
localisation; and 2) much fewer ridge responses in non-ridge
regions.

For both algorithms, we used the same non-maximum
suppression and a thresholding that keeps a fixed number of
pixels to get the final detection results (700 and 2000 for the
synthetic image and the real image, respectively). Figs. 3
(d) and (j) show the final detection results of our algorithm,
while Figs. 3 (f) and (l) show the results of the steerable filter
method. These examples show that our algorithm produces
less spurious ridges overall than the steerable filter method.

We conducted quantitative evaluation on the accuracy of
both algorithms. We consider a pixel to be on a (continuously
defined) curve if the distance from the pixel to the curve is
less than 0.5 pixels. Then we define the detection rate of a de-
tector as the number of pixels on the curve that are correctly
identified by the detector, divided by the total number of pix-
els on the curve, i.e., the number of true positives over the
total number of pixels on the curve. The first row in Table 1
shows that our method has a much higher detection rate. We

Table 1. Estimation error of curve location and direction.

Method Fourier-Argand Steerable Filter[9]
Detection Rate 54.89% 16.45%

Median Location Error 0.53 pixels 2.15 pixels
Mean Location Error 2.41 pixels 14.90 pixels

Median Direction Error 0.90 degrees 41.80 degrees
Mean Direction Error 1.94 degrees 35.57 degrees

also observe that, although many of the pixels detected by our
method are not exactly on the curve, they are yet fairly close.
This is confirmed by the computation of the median and the
mean of the distances from the detected pixels to the curve.
The results are listed in the 2nd and the 3rd rows of Table 1,
and they show, again, that our method exhibits a significantly
higher localization accuracy. Finally, a quantitative analysis
of the accuracy of the estimated direction is shown in the last
two rows of Table 1, and shows that our method provides the
direction of the curve with significantly higher accuracy.

5. CONCLUSION

In this paper, we proposed a new approach for the detection of
smooth curves from very noisy images. Specifically, we pro-
posed to compute rotationally covariant moments (Fourier-
Argand), and use a frequency estimation approach to retrieve
the curve direction. We emphasize here that it is the collec-
tion of a sequence of such moments that allow us to estimate
the direction with a high accuracy and very high robustness
to noise. We also proposed a direction consistency criterion
to distinguish curve from non-curve pixels. The proposed
method is demonstrated by numerical experiments on both
synthetic and real images.
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