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ABSTRACT 

We propose a novel deconvolution algorithm based on the 
minimization of Stein's unbiased risk estimate (SURE). We 
linearly parametrize the deconvolution process by using mul­
tiple Wiener filterings as elementary functions, followed by 
undecimated Haar-wavelet thresholding. The key contribu­
tions of our approach are: 1) the linear combination of several 
Wiener filters with different (but fixed) regularization param­
eters, which avoids the manual adjustment of a single non­
linear parameter; 2) the use of linear parameterization, which 
makes the SURE minimization finally boil down to solving 
a linear system of equations, leading to a very fast and exact 
optimization of the whole deconvolution process. 

The results obtained on standard test images show that our 
algorithm favorably compares with the other state-of-the-art 
deconvolution methods in both speed and quality. 

Index Terms- Deconvolution, SURE minimization, 
linear parametrization, Wiener filtering, undecimated Haar 
wavelet thresholding 

1. INTRODUCTION 

Image deconvolution is a standard linear inverse problem 
with various applications [1]. Of most practical interest is that 
singular or ill-conditioned convolution operator yields highly 
noise-sensitive solution, which makes deconvolution particu­
larly challenging [2]. 

To cope with the ill-posedness of the problem, a large 
number of techniques have been developed, by incorporat­
ing some regularization term to express a priori knowledge 
of the original image [3]: e.g. Tikhonov regularization [4], 
piecewise smoothness [1] and sparsity in transform domain 
[5]. Particularly, the sparse representation can be further en­
hanced by, for example, block matching technique [6], which 
currently achieves the state-of-the-art deconvolution perfor­
mance. 

Recently, we have developed an alternative approach for 
denoising application [7], based on Stein's unbiased risk esti­
mate (SURE) - an unbiased estimator of the Mean Squared 
Error (MSE) [8]. In the context of image deconvolution, 
SURE can be used 1) to optimize non-linear parameter in the 
estimator [9], 2) to monitor the SNR improvement in iterative 

978-1-4673-2533-2112/$26.00 ©2012 IEEE 3037 

algorithms [10], 3) as a minimization criterion for designing 
the estimators [2]. This paper follows the last point. 

One of the main contributions of our work is to overcome 
the difficulty of adjusting a nonlinear regularization parame­
ter, by linearly parametrizing the deconvolution processing. 
This is achieved by considering the linear combination of a 
number of Wiener filterings with different (but fixed) regular­
ization parameters, optimized by SURE minimization. Due 
to the quadratic nature of SURE and the linear parameteriza­
tion of the processing, the deconvolution problem finally boils 
down to solving a linear system of equations. Its solution, i.e. 
the linear coefficients of these Wiener filterings, automatically 
constitutes the combination with minimum MSE as our final 
estimate. 

This paper is organized as follows: first, we introduce the 
theoretical background of SURE-LET principle to deconvo­
lution problem; then, we exemplify the principle by describ­
ing a typical structure of the elementary functions, i.e. mul­
tiple Wiener filterings with different regularization parame­
ters followed by undecimated wavelet thresholding; finally, 
we present our experimental results and draw the conclusion. 

2. SURE-LET PRINCIPLE TO DECONVOLUTION 
PROBLEM 

2.1. Problem statement 

Consider the linear observation model: 

y=Hx+b (1) 

where y E n�N is the collection of the N pixels of the measured 
image, HE RNxN is a distortion matrix (typically a convolu­
tion), x E RN is the original unknown image, bERN is additive 
white Gaussian noise with variance (T2. 

Our approach to estimate x consists in finding a function 
(or processing) of the measured data F(y) = [fl(y),f2(y), ... 
, fN(y)]T ERN such that the MSE (or actually, an estimate of 
this MSE, typically the SURE): 

MSE = �g{IIF(Y) - x112} (2) 

is minimal, where g{.} denotes expected value. We would like 
to insist here that the estimate x = F(y) is only the outcome of 
the processing. The main spirit of our approach is to estimate 
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the function F that transforms y into X, indeed, rather than the 
solution x itself. 

2.2. Convolution SURE 

Notice that we cannot directly minimize MSE given by 
(2) to obtain the estimate x, as we have no access to the orig­
inal data x. However, based on the linear model (1) and the 
Gaussian noise assumption, the value of the MSE can be re­
placed by a statistical estimate - Stein's Unbiased Risk Es­
timate (SURE), involving only the measurements y, which is 
summarized in the following theorem. 

Theorem 2.1 Given the linear model (1), assuming fn(Y) is 
at least weakly differentiable, the following random variable: 

E = �(IIF(Y)le _2yTWTF(y)+2cr2divy (WTF(y»)} + � IIxl12 
is an unbiased estimator of the MSE defined by (2), i. e. 

0"{E} = �0" {IIF(y) - xIl2}, where divyu = L:�=l ��;; for Vu E �,N. 

This theorem is a natural extension of Stein's lemma 
[8-10] to the distortion model (1). Considering the possi­
ble ill-posed ness of the matrix H, we approximate H-1 by a 
Tikhonov regularized inverse [4]: 

Hill = (HTH+,SSTst HT 
(3) 

for some parameter f3 and matrix S, to stabilize E. Thus, we 
replace the SURE by a stabilized version [10]: 

where the last term �llxl12 is a constant w.r.t. F(y), and is 
thus irrelevant for minimizing Ef3. For detailed derivation of 
(4), refer to [10], which has also taken the similar stabilization 
strategy. Empirically, we choose S as the discrete Laplacian 
operator and f3 = 1 X 1O-5(T2 to achieve a good balance be­
tween the approximation accuracy and the stability of Ef3. 

2.3. Linear parametrization of F(y) - LET 

Now, we can minimize the stabilized SURE denoted by Ef3 
(4) in practice, instead of minimizing the MSE (2). The next 
question naturally arises: how to choose the function F, such 
that F(y) is sufficiently close to x? Here, we adopt the LET 
(Linear Expansion of Thresholds) strategy [7] to deconvolu­
tion problems, by parametrizing F(y) as a linear combination 
of a small number of known basic processings Fk(y) E lRN for 
k = 1, 2, . . .  ,K, i.e. 

K 
F(y) = i >kFk(y) = Fa (5) 

k=l 
where K is the number of linear coefficients ak to be deter­
mined, and generally K «N. Fa is the matrix notation, where 
F = [FI(y),F2(y), ... , FK(y)] ERNxK, a = [al , a2, . . .  ,aK]T ERK. 
This parametrization dramatically reduces the problem size 
from pixel number N to the number of basis functions K. The 
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underlying hypothesis here is that the processing F does not 
change "too much" when the input y changes "slowly", such 
that F(y) can be represented by only a few number of basis 
functions as (5). 

2.4. SURE-LET optimization 

Now, the deconvolution problem essentially amounts to 
finding the linear coefficients ak in (5) such that Ef3 is mini­
mized. Substituting (5) into (4), and performing the deriva-

tive of Ef3 w.r.t. ak: � �: = 0, we obtain the following linear 
system of equations: 

K 

I (Fk(y)Fk'(Y) )ak' _(yTHilTFk(y)-cr2div(HilTFk(y» ) = 0 (6) 
k'=l '-v-"" , . 

Mk,k' Ck 

Eq.(6) can be summarized in matrix form as Ma = c, where 
M = FTF E RKxK and c = [CI,C2, .. . ,CK]T E RK. Due to the 
possible singularity of M, we use the pseudo-inverse of M to 
solve the linear system of equations. 

It is also worth noting that the corresponding MSE min­
imization leads to solving MaMSE = FT x with the solution, 
namely MSE-LET - serving as a counterpart to SURE-LET. 
The accuracy of using the SURE-LET estimate can be veri­
fied by comparing it with MSE-LET. 

3. CONSTRUCTION OF ELEMENTARY FUNCTION 

3.1. Multi-Wiener deconvolutions 

To exemplify the SURE-LET approach to deconvolution 
problems, we begin with simple Wiener deconvolutions with 
parameters Ab for k = 1, 2, . . .  ,K: 

(7) 

as the elementary functions, where S is the discrete Laplacian 
operator. Thus, the LET representation (5) is a linear combi­
nation of Wiener filters with different Ab whose weights ak 
are obtained by solving (6). Fig.l shows an example of tak­
ing three Wiener filters: we can see that different values of 
Ak capture different details and features of the image. The 
SURE-optimized linear coefficients ak will produce the com­
bined estimate with a similar balance between noise reduc­
tion and edge preservation, as a single optimized Wiener fil­
ter. The advantage of the LET approach in this example is 
that there is no non-linear regularization parameter tuning. 

3.2. Multi-Wiener wavelet-thresholding deconvolution 

Further developing the structure of 3.1, we consider mul­
tiple Wiener filterings followed by thresholding in the un­
decimated Haar wavelet domain as the elementary func­
tion, shown in Fig.2. Denoting the decomposition and 
reconstruction of undecimated wavelet transform by D = 



PSNR=25.81dB 

Fig. 1. Example of linearly combining three Wiener filters with 

regularization parameters Al = 1 X 10-4, ,12 = 1 X 10-3, ,13 = 1 X 10-2, 
balanced by their weights al = 0.31, a2 = 0.78, a3 = -0.08 - the 

solution to (6). The linearly-combined estimate is nearly equivalent 

to single Wiener filtering with optimal A = 3.85 X 10-4 in terms of 

PSNR. 

[Dy,DI, ... ,D},D}+]r and R = [R] , R2, . . .  , RJ, R1+]], respec­
tively (J + 1 refers to the low-pass wavelet subband, which is 
not thresholded), the LET representation (5) is expressed as: 

M L J M 

F(y) = I I Iam,l,jR/11 (Wm,j) + Iam,1+lR1+lWm,J+I (8) 
m=ll=1 j=1 m=l 

highpass subbands lowpass subbands 

where the wavelet coefficients Wm,j = DjHAI�,Y in j-th sub­
band of m-th Wiener deconvolution. M, Land J refer to the 
number of Wiener regularizations (typically M = 3), elemen­
tary non-linear point-wise thresholding functions elO (typi­
cally L = 2), and high-pass wavelet subbands (typically J = 9 
for three decomposition levels), respectively. In this paper, 
we choose the following thresholding functions: 1 Bl(Wm,j) = Wm,j l l - exp !-(� ):ll B2(W )=W . l-exp -( "' . ./ ) m,J m,J 9<.T;J 

(9) 

where (7�" j stands for the variance of the colored noise blll,j = 

DjHAI b: (7�l
j
' = Tr(U;-TDTDj,H-;-l ). 

In , /lm } /l.m 
As (8) indicated, we have K = M J L + M elementary func-

tions in all and so, as many weights am,l,j to determine. Again, 
the SURE minimization finally boils down to solving a linear 
system of equations of order K. 
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Fig. 2. Flowchart of SURE-LET approach: multi-Wiener filtering 

followed by transform-domain thresholding. 

4. EXPERIMENTAL RESULTS 

4.1. Parameter setting of the proposed method 

In this section, we use the structure of Eq.(8) and Fig.2 
as the elementary function Fk(y). We apply M = 3 Wiener 
filters with A l = 1 X 10-4(72, ,12 = 1 X 10-3(72, ,13 = 3 X 10-3(72 

and undecimated Haar wavelet transform. The thresholding 
functions are specified as (9). Typically, if we use J = 9 (i.e. 
3 decomposition level), we will have K = 3 x 2 x 9 + 3 = 57 
coefficients to be found via solving (6). 

4.2. Comparison with the state of the art 

We perform experiments on two test images (other images 
also show the same trends): House (256 x 256) and Mixture 

(512 x 512) I, under three noise levels (7 = 1, 10, 50) and five 
benchmark convolution kernels [1,6]: 1) Gaussian filter with 
std 3; 2) Rational filter h(i, j) = (l + P + p)-I for i,j = -7, . . .  , 7; 
3) Separable filter 5 x5 filter with weights [1,4,6,4,1]/16 
along both horizontal and vertical directions; 4) 5 x 5 uniform 
blur; 5) 9 x 9 uniform blur. The experimental performance 
is measured by PSNR 2. The results shown in Tables 1-2 
are compared with the state-of-the-art deconvolution meth­
ods: BM3D [6], C-SALSA [5] and TVMM [1]. Fig.3 shows 
a visual result. Note that all the PSNR results (in dB) reported 
below have been averaged over 10 noise realizations, and the 
best scores within a O.l dB margin are highlighted in Tables 
1-2. 

It can be seen from the reported results that the proposed 
SURE-LET algorithm uniformly outperforms all of the other 
techniques. We also wish to note that our algorithm is very 
robust to a wide range of noise levels, and particularly, sig­
nificant improvements are frequently observed for large noise 
variance over other algorithms. The tables also show in italic 
the result of minimizing the MSE in lieu of the SURE, demon-

I All of the images are available at: http://decsai.ugr.es/cvglCG/base.htm 
2For 8-bit images, we define PSNR = IOloglO 

255� [6 7]. 
IIx-xll-IN ' 



strating that the SURE minimization is a good substitute to the 
MSE minimization. Table 3 reports the computational time of 
the deconvolution methods, which shows that our approach is 
substantially faster than other approaches. We would also like 
to stress that our implementation uses only standard Matlab 
code without any compiled routine. 

Table 1. Comparison of some state-of-the-art deconvolution meth­

ods (under Gaussian blur with std 3) 

II cr II I I 10 I 50 III 10 50 

Image House 256 x 256 Mixture 512 x 512 

Input 24.22 22.73 13.73 14.84 14.64 11.46 

BM3D 29.19 27.05 23.95 16.70 15.59 14.60 

TVMM 29.45 26.72 23.08 16.37 15.20 14.46 

C-SALSA 29.25 26.55 22.97 16.52 15.65 14.70 

SURE-LET 29.40 27.10 24.20 16.73 15.74 14.85 
MSE-LET 29.74 27.44 24.53 16.80 15.88 14.98 

Best scores within a O.ldE margin are highlighted. 

Table 2. Image Mixture deconvolution for various blurs and noise 

levels 
II cr II 10 50 III 10 50 

Blur Ratiollaljilrer Separabte filter 

Input 15.96 15.70 11.95 18.38 17.94 12.76 
BM3D 28.53 17.25 14.85 26.54 20.04 16.15 

TYMM 28.28 17.30 13.78 27.17 20.64 15.25 
C-SALSA 27.26 18.04 15.02 26.58 20.16 16.19 

SURE-LET 30.00 18.53 15.50 28.08 21.18 16.94 
MSE LET 30.38 18.70 15.58 28.43 21.53 17.06 

Blur 5 x 5 uniform blur 9 x 9 uniform blur 

lnput 15.92 15.67 11.94 14.58 14.40 11.35 
BM3D 25.53 17.90 15.56 20.66 16.01 14.60 

TYMM 25.70 18.30 14.52 20.70 15.64 13.66 
C-SALSA 24.26 18.15 15.37 20.04 16.30 14.29 

SURE-LET 26.41 18.94 16.04 21.70 16.65 15.01 -- -- -- -- --
MSE-LET 26.71 19.06 16.13 21.96 16.76 15.07 

* Best scores within a O.ldB margin are highlighted. 

Table 3. Comparisons of computational time (units: sec.) * 

Degradation scenario II BM3D I TV-MM I C-SALSA I SURE-LET 

House 256 x 256 
2.96 146.13 48.04 1.36 

Gaussian blur, cr = I 
Mixture 512x512 

13.65 289.14 55.72 5.34 
Rational blur, cr = 10 

Hardware environment used: Inte1(R) Core (TM)2 Duo CPU E7400 

@2.80GHz, memory size: 3GB 

S. CONCLUSION 

In this paper, we have presented a new deconvolution 
method based on the SURE-LET principle, which linearly 
parametrizes the processing and minimizes SURE - an esti­
mate of the resulting MSE, to find the best linear combination 
of the basis functions. The originality of our approach is to 
use multiple Wiener filterings with different but fixed regu­
larization parameters, to avoid empirical adjustment. 

Note that the proposed algorithm is but a simple exempli­
fication of the SURE-LET principle, where we did not try to 
take advantage of all the degrees of freedom in the design of 
the elementary functions Fk(y). And yet, the obtained results 
are already quite outstanding. The great flexibility and the 
limited computational cost of the proposed approach allow to 
develop more sophisticated forms of the basic processings, 
for example, by taking into account multi scale or spatial de­
pendencies, or electing more directional deconvolutions. It 
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Fig. 3. Restoration of Mixture degraded by 9 x 9 uniform blur with 

noise std cr = 50 

is likely that there is a substantial margin of improvement of 
SURE-LET type algorithms. 
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