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ABSTRACT

We propose a novel blind deconvolution method that consist-
ing of firstly estimating the variance of the Gaussian blur,
then performing non-blind deconvolution with the estimated
PSF. The main contribution of this paper is the first step —
to estimate the variance of the Gaussian blur, by minimizing
a novel objective functional: an unbiased estimate of a blur
MSE (SURE). The optimal parameter and blur variance are
obtained by minimizing this criterion over linear processings
that have the form of simple Wiener filterings. We then per-
form non-blind deconvolution using our recent high-quality
SURE-based deconvolution algorithm.

The very competitive results show the highly accurate es-
timation of the blur variance (compared to the ground-truth
value) and the great potential of developing more powerful
blind deconvolution algorithms based on the SURE-type prin-
ciple.

Index Terms— Blind deconvolution, minimization of
blur SURE, Wiener filtering, estimation of blur variance

1. INTRODUCTION

In many applications, the image formation can be mathe-
matically represented as [1]:

y = H0x + b (1)
where y ∈ RN is the measurements of the original unknown
data x ∈ RN (N is pixel number of the image), when x is dis-
torted by unknown true point-spread function (PSF) h0 and
corrupted by additive Gaussian noise b ∼ N (0,σ2I), H0 ∈

RN×N is the corresponding convolution matrix of h0. The
blind deconvolution task amounts to recovering both x and
h0 from only the measured data y [1].

Since blind deconvolution is a highly ill-posed problem, a
number of methods have been developed to introduce a cer-
tain constraints on x and h as regularization terms, namely
L1(x) and L2(h), to represent the prior knowledge [1–3].
They formulate blind deconvolution as the following joint
minimization problem [1, 2]:

min
x,h
‖y−Hx‖22 +λ1L1(x) +λ2L2(h) (2)
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where ‖y−Hx‖22 is data-fidelity term, λ1 and λ2 are regular-
ization parameters.

In some particular applications, the PSF is of known spe-
cific parametric form and is completely characterized by a
few number of parameters [4]. Of particular interest is the
Gaussian PSF, which can be used for modeling many degra-
dation scenarios in real applications [4–6]. In this context, the
parametric blind deconvolution is to estimate the variance of
Gaussian blur, by, for instance, minimizing (2) [4], or mea-
suring the response of second derivative Gaussian filter to
edges [7, 8].

Instead of jointly estimating both h and x as [1–4, 9], we
focus on the estimation of the PSF only. This paper proposes
a new method to estimate the variance of Gaussian blur, based
on the minimization of an unbiased estimate of the blur MSE
(blur SURE 1), which has been recently used and shown to be
a powerful tool for denoising and deconvolution [10]. Finally,
we use our proposed SURE-LET approach to perform non-
blind deconvolution with the estimated PSF [11].

2. GENERIC PSF ESTIMATION BASED ON THE
MINIMIZATION OF BLUR SURE

2.1. New criterion — blur SURE

Denote the function (or processing) of the observed data
y by F(y). Instead of the standard MSE given as 1

N E
{∥∥∥F(y)−

x
∥∥∥2}, we consider the following blurred (filtered) version:

blur MSE =
1
N

E
{∥∥∥HF(y)−H0x

∥∥∥2} (3)

as the objective functional to be minimized as shown in the
next section, where H and H0 are the estimated (tentative)
and the unknown true PSF, respectively, Thus, our purpose of
is to find Ĥ — the minimizer of the blur MSE, as our estimate
of PSF.

Notice that we cannot directly minimize (3) to obtain the
estimate H, as H0x is unknown. However, based on the linear
model (1), the quantity of (3) can be replaced by a statistical
estimate — blur SURE, involving only the measurements y,
as summarized as the following theorem.

1SURE: acronym for Stein’s Unbiased Risk Estimate.
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Theorem 2.1 Given the linear model (1), the following ran-
dom variable:

ε̃ =
1
N

{∥∥∥HF(y)−y
∥∥∥2

+ 2σ2divy
(
HF(y)

)}
−σ2 (4)

is an unbiased estimator of the blur MSE defined by (3), i.e.
E {ε̃} = 1

N E
{∥∥∥HF(y)−H0x

∥∥∥2}
, where the divergence divyu =∑N

n=1
∂un
∂yn

for ∀u ∈ RN .

The proof can be completed by substituting (y− b) for H0x
and using Stein’s lemma [12]. Refer to [13] for the similar
proof of the standard SURE. Now, ε̃, the blur SURE, is our
objective functional to be minimized, also a novel criterion
for estimating H.

2.2. Generic PSF estimation

Note that the minimization of (3) and (4) requires to spec-
ify the function F(y). We are now going to restrict ourselves
to linear processing denoted by F(y) = Wy. It is well known
that for the linear model (1), the ideal linear processing W
that minimizes 1

N ‖Wy−x‖2 is Wiener filtering, given by:

W(ω) =
H∗0(ω)

|H0(ω)|2 +σ2/S (ω)
(5)

in the Fourier domain, where S (ω) is the power spectrum
density of x [14]. Then, based on Wiener filter as (5), we
obtain the following theorem.

Theorem 2.2 Consider the minimization of the blur MSE
over tentative H:

min
H

1
N

E
{∥∥∥HWHy−H0x

∥∥∥2} (6)

where WH is defined as WH(ω) =
H∗(ω)

|H(ω)|2+σ2/S (ω) in Fourier do-
main. Then, the minimizer Ĥ(ω) of (6) satisfies:

U(ω) =

∣∣∣H0(ω)
∣∣∣2∣∣∣H0(ω)

∣∣∣2 +σ2/S (ω)
=

∣∣∣Ĥ(ω)
∣∣∣2∣∣∣Ĥ(ω)

∣∣∣2 +σ2/S (ω)
for ∀ω (7)

which implies that Ĥ(ω) = H0(ω) for ∀ω.

The theorem can be easily proved by Wiener theory for per-
forming denoising/deconvolution [14]. Let us call U(ω) in
(7) as “frequency-band indicator”. This theorem shows the
essential equivalence between minimization of the blur MSE
(6) and equality of band indicator (7).

To conclude, it has been justified that the minimizer Ĥ(ω)
of the blur MSE is exactly the same as the latent true H0(ω),
which enables us to safely minimize ε̃ — a good substitute
for the blur MSE, to estimate H.

2.3. Approximation of the Wiener filter

However, S (ω) in (7) is unknown in practice. If σ2/S (ω)
is replaced by a constant λ, such that |H0(ω)|2

|H0(ω)|2+λ
is a good ap-

proximation of the band indicator of (7) for ∀ω, we obtain the
approximated Wiener filter WH,λ as:

WH,λ = (HTH +λI)−1HT i.e. WH,λ(ω) =
H∗(ω)
|H(ω)|2 +λ

(8)

tentative
H

¸

compute WH;¸

defined by (8)

minH;¸ ~²¸(H)
defined by (9)

to be estimated Wiener filtering minimizing 
blur SURE

final estimate

scope of this paper

(Ĥ; ^̧) =argmin~²̧ (H)

perform non-blind deconvolution with Ĥ

Fig. 1. The procedure of generic PSF estimation: joint minimiza-
tion of blur SURE over H and λ, as shown in (9).

Substituting F(y) = WH,λy into (4), we formulate PSF esti-
mation as the following joint minimization problem:

min
H,λ

ε̃λ(H) = min
H,λ

1
N

{∥∥∥HWH,λy−y
∥∥∥2

+ 2σ2Tr
(
HWH,λ

)}
−σ2 (9)

Note that the corresponding approximated band indicator
with WH,λ(ω) is given by;

Uappro(ω) = H(ω)WH,λ(ω) =
|H(ω)|2

|H(ω)|2 +λ
(10)

The potential hypothesis of our approach is that the band-
width of H0(ω) is narrower than that of S (ω), so that σ2/S (ω)
can be approximated by the estimated λ̂, which makes (10) to
be a good approximation of the accurate band indicator (7).
Thus, the procedure of PSF estimation can be summarized as
Fig.1.

3. ESTIMATION OF VARIANCE OF GAUSSIAN
BLUR BASED ON OPTIMAL WIENER FILTER

By taking Gaussian blur for example, this section is to ex-
emplify the proposed approach for estimating PSF in Section
2.

3.1. Formulation of estimating variance of Gaussian blur

Denote Gaussian function with variance s2 by hs(i, j) =

C ·exp
(
−

i2+ j2

2s2

)
, where (i, j) denotes the 2-D coordinates, C is

normalized coefficient such that
∑

i, j hs(i, j) = 1, also denote
the corresponding convolution matrix of hs by Hs. Similar
to (9), the estimation of blur variance s2 is formulated as the
following joint minimization problem:

min
s,λ

ε̃λ(s) = min
s,λ

1
N

∥∥∥Hs(HT
s Hs +λI)−1HT

s y−y
∥∥∥2

+
2σ2

N
Tr

(
Hs(HT

s Hs +λI)−1HT
s

)
−σ2 (11)
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Fig. 2. Example of Cameraman blurred by true H0 with s0 = 2 and
noise level σ2 = 1: the estimated ŝ = 1.98 and λ̂ = 8×10−4.

3.2. Line search for alternating minimization

We can use the alternating minimization to solve (11), and
the evolution of the algorithm can be described as:

· · · → λ(k) = argmin
λ
ε̃λ(s(k))→ s(k+1) = argmin

s
ε̃λ(k) (s)→ ·· · (12)

As the minimization problem involves only 2 variables: blur
size s and Wiener parameter λ, the minimization in each di-
rection can be efficiently performed by line search, until the
algorithm reaches the convergence. The details of the alter-
nating minimization are shown in Algorithm 1.

Algorithm 1 : Alternating Minimization Algorithm
Input: ε̃λ(s): objective function given as (11);
Output: optimal λ̂ and ŝ

1: initialize s(0);
2: repeat by k := k + 1
3: given s(k), line search for λ(k) = argminλ ε̃λ

(
s(k)

)
;

4: given λ(k), line search for s(k+1) = argmins ε̃λ(k) (s);
5: until

∣∣∣s(k+1)− s(k)
∣∣∣ ≤ δ1 and

∣∣∣λ(k+1)−λ(k)
∣∣∣ ≤ δ2 for some δ1

and δ2.

Figures (2-3) show that the estimated λ̂ by minimizing
(11) yields both the highly accurate approximation of the
band indicator (7) and the accurate estimate ŝ ≈ s0. Sub-
figures (a) show that both the blur MSE and SURE reach
their minimums at the estimated ŝ ≈ s0; Sub-figures (b) show
the good approximation as (10) of band indicator to the
accurate one as (7) with the estimated λ̂. The zoom-in of
s ∈ (1.5,2.5) denoted by the yellow box is to show the really
unique minimum of blur SURE. The figures also demonstrate
the essential equivalence between approximation of band
indicator and PSF estimation.

3.3. Additional remark

Note that the main purpose of this paper is to estimate
the variance of Gaussian blur, rather than simultaneously es-
timating both PSF and original image, as emphasized in Fig.1.
After estimating PSF, we can use existing non-blind deconvo-
lution methods to obtain the deconvolved data with the esti-
mated PSF. In this paper, we use the SURE-LET approach to
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Fig. 3. Example of Lena blurred by true H0 with s0 = 2 and and
noise level σ2 = 1: the estimated ŝ = 2.04 and λ̂ = 1.2×10−3.

perform the non-blind deconvolution [11]: the whole process-
ing is linearly parametrized by using multiple Wiener filter-
ings as elementary functions, followed by undecimated Haar-
wavelet thresholding. The linear coefficients are obtained by
minimizing standard SURE [13]. Refer to [11] for more de-
tails.

4. EXPERIMENTAL RESULTS

We perform experiments on 2 standard test images: Lena
and Cameraman 2, blurred by Gaussian PSF with variances
9 and 5, respectively, and corrupted by Gaussian noise corre-
sponding to BSNR = 40dB and 20dB 3 [1, 9].

4.1. The accuracy of our estimated blur variance

Table 1. The estimated ŝ of the proposed method
true std s0 = 3 s0 = 2.24
BSNR 40dB 20dB 40dB 20dB

Lena 3.05 3.07 2.33 2.32
Cameraman 3.00 2.96 2.31 2.31

Table 1 reports the estimated ŝ. We can see that the esti-
mated ŝ is very close to the latent true s0. One might wonder
that how the non-blind deconvolution algorithm is sensitive
to the accuracy of the PSF. We would like to note that for
our proposed SURE-LET approach [11], the loss of using the
estimated Ĥ reported in this table, compared to that with ac-
curate H0, is within 0.2dB in terms of PSNR of the decon-
volution performance. It implies that with the estimated PSF,
we can achieve comparable deconvolution performance to the
non-blind version of SURE-LET approach.

4.2. Comparison with the state of the art

The results shown in Tables 2–3 are compared to the
state-of-the-art blind deconvolution methods: TV-based al-
gorithm [2], variational Bayesian algorithms: SAR1 and
SAR2 [3], TV1 and TV2 [1], StStSt [9]. The performance

2The two images are shown in [1, 9]
3The blurred SNR is defined as: BSNR = 10log10

var(Hx)
σ2 [1, 3]

454



(a) Observed image (b) Restored image

Fig. 4. Restoration of Jupiter: the estimated noise std is σ= 4.68 by
using MAD (median absolute deviation) [15], the estimated Gaus-
sian blur std is ŝ = 2.41.

is measured by Improved SNR 4. We can observe that the
proposed method outperforms the other methods.
Table 2. Improved SNR (in dB) under Gaussian blur with variance
9

Method SAR1 [3] SAR2 [3] TV1 [1] TV2 [1] ours

BSNR 40dB

Lena 1.35 1.43 2.53 2.59 4.54
Cameraman 1.03 1.01 1.82 1.73 3.15

BSNR 20dB

Lena 1.62 -11.32 2.62 -32.50 3.13
Cameraman 1.16 -8.83 1.70 -40.89 2.15

Table 3. Improved SNR (in dB) on Cameraman under Gaussian
blur with variance 5

BSNR Method [2] StStSt [9] ours
40dB 1.32 2.82 3.42
20dB 1.17 1.57 2.35

4.3. Application to real astronomical images

In our last set of experiments, the method is applied to a
real image of Jupiter, shown in Fig.4-(a). There is no exact
expression of the PSF for this image; however, as suggested
in [1, 3, 5, 6], the PSF can be well approximated by Gaussian
function. Fig.4-(b) shows the restored image using Gaussian
kernel with ŝ = 2.41, estimated by our algorithm.

5. CONCLUSIONS

In this paper, we proposed a new blind deconvolution
method to estimate Gaussian blur variance based on a new
criterion — blur SURE: a statistical estimate of blur MSE.
The optimal Wiener filtering, as the linear solution of the min-
imization of blur MSE, can be well approximated using an
optimal regularization parameter, which is jointly estimated
by minimizing blur SURE, along with blur variance.

Results obtained show that the proposed method has sig-
nificant improvement of quality both numerically and visu-
ally. Compared to the other methods of estimating blur vari-

4Improved SNR is defined as ISNR = 10log10
‖y−x‖2

‖x̂−x‖2 [3, 9].

ance, the main advantage of our approach is that 1) the accu-
racy of the estimated blur variance has been justified by the
blur SURE: a novel objective functional; 2) it does not need
to find particular edges and measure the zero-crossing of their
particular responses to particular filter as [7, 8] did, which is
easily affected by the noise corruption.

Although the discussion of this paper, limited to Gaus-
sian blur, is but an exemplification of SURE-type approach to
blind deconvolution problem, it is worth noting that SURE-
type minimization itself does not specify any particular para-
metric form of PSF. There is huge potential to develop spe-
cific algorithms for various application, e.g. fluorescence mi-
croscopy [4], based on SURE-type principle.
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