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ABSTRACT
We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families.
This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of
embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another.
We consider a dual pair of such multiresolutions, where the scaling functions at a given scale are mutually
biorthogonal with respect to translation. Also, they must have the shortest-possible support while reproducing a
given set of exponential polynomials. This constitutes a generalization of the standard polynomial reproduction
property.

The corresponding refinement filters are derived from the ones that were studied by Dyn et al. in the framework
of non-stationary subdivision schemes. By using different factorizations of these filters, we obtain a general family
of compactly supported dual wavelet bases of L2. In particular, if the exponential parameters are all zero, one
retrieves the standard CDF B-spline wavelets and the 9/7 wavelets. Our generalized description yields equivalent
constructions for E-spline wavelets.

A fast filterbank implementation of the corresponding wavelet transform follows naturally; it is similar to
Mallat’s algorithm, except that the filters are now scale-dependent. This new scheme offers high flexibility and is
tunable to the spectral characteristics of a wide class of signals. In particular, it is possible to obtain symmetric
basis functions that are well-suited for image processing.
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1. INTRODUCTION
In a previous paper,1 we focused on non-stationary multiresolution spaces generated by a set of orthonormal
and compactly supported scaling functions that can reproduce a given set of exponential polynomials. These
represented a natural extension of the orthonormal Daubechies wavelets. While using essentially the same
computational structure as conventional wavelets (perfect reconstruction filter banks), they can be adapted to
the analysis of specific types of signals. For instance, narrow-band signals can accurately be approximated by
polynomials modulated at the suitable frequency. However, the design of orthonormal wavelets requires a step
known as spectral factorization, which can make the filter lengths grow when going to coarser scales; moreover,
orthogonal filters cannot be symmetric. These limitations are also encountered in classical wavelet filter design,
and they can be circumvented by relaxing the orthogonality condition and considering biorthogonal structures.

Here, we extend our construction to dual multiresolution analyses that contain a given set of exponential
polynomials. After a brief description of such structures in Sect. 2, we introduce the corresponding filter-bank
decomposition in Sect. 3. In Sect. 4, we relate the reproduction of exponential polynomials to the roots of the
filters. We further characterize these filters in Sect. 5, which leads to an extension of two families of biorthogonal
wavelets, commonly referred to as Cohen-Daubechies-Feauveau and 9/7 wavelets (Sect. 6).

2. NON-STATIONARY MULTIRESOLUTIONS
2.1. Definition
The fundamental structure that underlies our construction is a set of embedded, shift-invariant approximation
spaces. The important difference with stationary multiresolutions encountered in classical wavelet theory is that
each space is generated using a different function,2 which depends on the scale parameter j. In addition, we
impose that these so-called scaling functions have integer translates that are linearly independent.



Definition 2.1 (Non-stationary multiresolution). Given the scaling functions (ϕj)j∈Z, the spaces

Vj = span
{

ϕj

(
t − 2jk

2j

)
, k ∈ Z

}
(1)

define a non-stationary multiresolution if and only if

• for any j ∈ Z,
(
ϕj(t/2j − k)

)
k∈Z is a Riesz basis of Vj;

• for any j ∈ Z, Vj+1 ⊂ Vj;

•
⋃

j∈Z Vj is dense in L2(R);

•
⋂

j∈Z Vj = {0}.

2.2. Basic Properties
The embedding of the spaces Vj implies the existence of scaling filters hj [k] ∈ "2(Z) such that

ϕj+1

(
t

2j+1

)
=

∑

k∈Z
hj [k]ϕj

(
t − 2jk

2j

)
. (2)

Conversely this scaling relation implies that any function in Vj+1 can be expressed as a linear combination of
the basis functions of Vj , hence providing a necessary and sufficient condition for Vj+1 ⊂ Vj .

In the Fourier-domain, the scaling relation (2) reads

2ϕ̂j+1 (2ω) = Hj

(
eiω

)
ϕ̂j (ω) . (3)

A consequence of this relation is the infinite-product formula, which defines the scaling functions using the scaling
filters only, provided limj→−∞ ϕ̂j

(
2jω

)
= 1. In this case

ϕ̂j(ω) =
+∞∏

"=1

1
2
Hj−"

(
ei2−!ω

)
. (4)

3. BIORTHOGONAL MULTIRESOLUTION DECOMPOSITION
In what follows, we are concerned with pairs of multiresolution analyses (Ṽj)j∈Z, (Vj)j∈Z (resp. the “analysis”
and “synthesis” spaces) that provide a practical structure for multiscale signal approximation. This is achieved
by enforcing a biorthogonality relation between the integer shifts of their respective scaling functions: at any
scale j ∈ Z,

〈ϕ̃j ,ϕj(·− k)〉 = δ[k]. (5)

To approximate a function f ∈ L2(R), we can then use

P̃Vj f(t) =
∑

k∈Z
xj [k]2−j/2ϕj

(
t/2j − k

)
, (6)

where xj [k] =
〈
f, 2−j/2ϕ̃j

(
·/2j − k

)〉
, which defines a projection operator on Vj (perpendicularly to Ṽj), at each

scale j.

This continuous-time approximation framework is related to discrete filter-bank structures through the fol-
lowing simple property. Notice that all scaling functions (and thus the filters) are assumed to be real.

Property 1 (Biorthogonal filters). If the biorthogonality relation (5) holds for any j ∈ Z, then the
z-transforms of the scaling filters hj [k] and h̃j [k] must satisfy

Hj(z)H̃j(z−1) + Hj(−z)H̃j(−z−1) = 4 (7)
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Figure 1. Non-stationary filter bank.

for all j.
Equivalently, (7) states that the discrete filters hj [k]/

√
2 and h̃j [k]/

√
2 are biorthogonal with respect to their

even translates. For the filter bank in Fig. 1 this ensures perfect reconstruction (i.e. x′
j [k] = xj [k]), provided

that one sets Gj(z) = znH̃j(−z−1) and G̃j(z) = znHj(−z−1), where n is an odd integer.
This structure also describes an efficient way to compute coarser approximations of a function f from a given

projection P̃Vj f . More precisely, if xj [k] denotes the components of the projection at scale j (see (6)), then
xj+1[k], which represents P̃Vj+1 f , is obtained from the upper branch of the filter bank in Fig. 1.

Similarly, we may introduce the wavelet functions

ψj(t) =
∑

k∈Z
gj−1[k]ϕj−1(2t − k), (8)

and use them to generate the spaces

Wj = span
{

ψj

(
t − 2jk

2j

)
, k ∈ Z

}
. (9)

Then the biorthogonality relation (7) and the definition of the filters gj [k] and g̃j [k] imply that Vj = Vj+1⊕Wj+1

as well as Wj+1 ⊥ Ṽj+1. Analogue definitions and properties hold for (ψ̃j)j∈Z and (W̃j)j∈Z.
We may also define the projection operator

P̃Wj f(t) =
∑

k∈Z
yj [k]2−j/2ψj

(
t/2j − k

)
, (10)

where yj [k] =
〈
f, 2−j/2ψ̃j

(
·/2j − k

)〉
. Then the second channel of the filter bank in Fig. 1 computes the

components yj+1[k] from xj [k]. The perfect reconstruction property ensures that P̃Vj f = P̃Vj+1f + P̃Wj+1f .
Notice that the semi-orthogonal construction of Khalidov et al.3 also leads to this type of nonstationary

multiresolution pairs, except that Ṽj = Vj and W̃j = Wj ; this typically implies that some of the scaling functions
and wavelets are infinitely supported. Here, we will constrain the scaling functions (and thus the wavelets) to be
compactly supported both on the analysis and the synthesis side. This implies that the scaling filters must be
FIR, allowing a simple and numerically efficient filter-bank implementation that is strictly equivalent to Mallat’s
Fast Wavelet Transform. Since the involved filters depend on the scale j, the only adaptation needed is to
precompute them up to the desired coarseness level.



4. REPRODUCTION OF EXPONENTIAL POLYNOMIALS
We shall now discuss the conditions under which all the approximation spaces Vj can contain a given set of
exponential polynomials.
Theorem 4.1. Assume that the biorthogonality relation (7) holds and that the scaling functions (ϕj)j∈Z are
compactly supported and such that limj→−∞ ϕ̂j

(
2jω

)
= 1. Then the spaces (Vj)j∈Z contain the exponential

polynomials P (t)eαt, deg P (t) ≤ N − 1 if and only if each filter Hj(z) has a zero of order N at z = −e2jα, for
any j ∈ Z.

This result can be extended to handle the case where we would like the spaces Vj to contain exponential poly-
nomials with different parameters. To formalize this, we consider a vector &α ∈ CN and we denote

(
α(m)

)
m∈[1,Nd]

its distinct components of respective multiplicities N(m). Then the spaces Vj contain the functions P (t)eα(m)t,
deg P (t) ≤ N(m) − 1 if and only if each filter Hj(z) is divisible by R2j $α(z), where

R$α(z) =
N∏

n=1

(
1 + eαnz−1

)
. (11)

5. GENERALIZED DESLAURIERS-DUBUC INTERPOLATORS
In order to find a family of solutions of (7), we first consider the auxiliary equation

Hj(z) + Hj(−z) = 2 (12)

where Hj(z) is of the form R2j $α(z)Qj(z), following Th. 4.1. This type of filters has recently been studied by
Dyn et al.,4 in the framework of generalized Deslauriers-Dubuc interpolatory subdivision schemes.5 Here, we
further require that Hj(z) is symmetric. Since it should also be real, this means that if α ∈ C is an element of
&α, then so must α∗, −α and −α∗, with the same multiplicity.

We aim at determining the shortest possible filter Qj(z) such that (12) holds. With this in mind, it is possible
to perform the standard change of variable Z = (z + z−1)/2 and to get polynomials A(Z), B(Z) ∈ R[Z] such
that 




R2j $α(z) = A

(
z+z−1

2

)

Qj(z) = B
(

z+z−1

2

) (13)

The existence of a solution to (12) is then ensured by the following mathematical result:
Theorem 5.1 (Bézout). Given A(Z) ∈ R[Z], there exists a polynomial B(Z) ∈ R[Z] such that

A(Z)B(Z) + A(−Z)B(−Z) = 4 (14)

if and only if A(Z) has no pair of opposite roots. In this case there exists a unique polynomial B0(Z) ∈ R[Z]
satisfying (14) and such that deg B0(Z) < deg A(Z).
Notice that one also encounters the Bézout equation (14) in the orthonormal case.1

6. GENERALIZED BIORTHOGONAL WAVELETS
6.1. Generalized Cohen-Daubechies-Feauveau Wavelets
From the previous section, one can easily derive a generalization of the family of biorthogonal B-spline wavelets
described by Cohen, Daubechies and Feauveau.6 The procedure essentially consists in taking certain roots from
R2j $α(z) (that were part of Hj(z) in Equation (12)) and moving them to H̃j(z−1), so as to obtain solutions of
(7).

It is therefore useful to introduce vectors &γ and &̃γ such that &α =
(
&γ : &̃γ

)
, where (:) denotes concatenation.

Then
A

(
z + z−1

2

)
= R2j$γ(z)R2j$̃γ(z). (15)
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Figure 2. Generalized Cohen-Daubechies-Feauveau scaling functions ϕ̃0(t) (left) and ϕ0(t) (right), obtained for "α =
[1, 1,−1,−1] and "γ = [−1,−1]. Both functions reproduce exponential polynomials of the form P (t)e−t, deg P (t) ≤ 1.

Since we are looking for real filters, one must pay attention to the fact that distinct complex-conjugate
elements of &γ (and a fortiori &̃γ) must have the same multiplicity. Provided this condition is satisfied, one can
freely choose &γ and &̃γ and set: {

Hj(z) = R2j$γ(z)
H̃j(z) = R2j$̃γ(z−1)Qj(z) (16)

where Qj(z) is obtained from the lowest-degree Bézout solution B0(Z). Figure 2 shows an example of the
corresponding functions at scale j = 0. It should be noted that the synthesis scaling function ϕ0(t) is an
exponential B-spline of parameter &γ.7 In particular, it is possible to design symmetric scaling functions and
wavelets by adequately choosing the &γ parameter, which can be of interest for image processing. The classical
construction is retrieved by setting &α = &0; then ϕ0(t) is a conventional B-spline.

It should be mentioned that, as in the classical framework, not all combinations for &γ and &̃γ guarantee that
the infinite product formula (4) for ϕ̃j(t) will converge to a regular function.

6.2. Generalized 9/7 Wavelets
Additionally, it is also possible to split B0

(
(z + z−1)/2

)
into individual factors and to affect them to either

Hj(z) or H̃j(z−1). If we further impose that the resulting filters should be symmetric, we can operate directly
on B(Z). In particular, this can lead to a generalization of the so-called “9/7” filters used for image coding.8

As an example, we consider &γ = &̃γ = [2iπ/5, 2iπ/5,−2iπ/5,−2iπ/5] and thus &α = &γ : &̃γ ∈ C8. In this case
B0(Z) ∈ R[Z] is of degree 3 and has 2 complex-conjugate roots. Consequently, there is only one non-trivial
factorization leading to real-valued filters. The corresponding scaling functions are plotted in Fig. 3.

7. CONCLUSION
The examples presented illustrate the flexibility of the proposed design method. Most importantly, it is possible
to incorporate a priori knowledge on the characteristics of the signals to be analysed into the approximation
spaces, via the exponential parameters. Then one has the choice between biorthogonal E-spline wavelets or
“almost orthonormal” 9/7 wavelets. Both cases allow for symmetric functions.
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Figure 3. Biorthogonal scaling functions ϕ̃0(t) (left) and ϕ0(t) (right) corresponding to a generalization of the 9/7 filters
(see text). The functions obtained from the classical 9/7 filters are represented using dashed lines.

Compared to the previously studied orthonormal case, this makes the corresponding filters attractive for new
tasks, such as image processing (e.g. texture analysis). In general, for a given class of signals with significant
harmonic or exponential trends (e.g. speech, OCT or neuronal signals), the proposed multiresolution structures
may provide sparse representations. This can be useful in a number of applications, such as coding, detection or
denoising.

REFERENCES
1. C. Vonesch, T. Blu, and M. Unser, “Generalized Daubechies wavelets,” Proceedings of the International

Conference on Acoustics, Speech and Signal Processing , 2005.
2. C. de Boor, R. DeVore, and A. Ron, “On the construction of multivariate (pre)wavelets,” Constr. Ap-

prox. 9(2), 1993.
3. I. Khalidov and M. Unser, “From differential equations to the construction of wavelet-like bases,” IEEE

Trans. Sig. Proc. , 2005. To be published.
4. N. Dyn, D. Levin, and A. Luzzatto, “Exponentials reproducing subdivision schemes,” Found. Comput.

Math. 3(2), 2003.
5. G. Deslauriers and S. Dubuc, “Symmetric iterative interpolation processes,” Constr. Approx. 5, 1989.
6. A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Comm.

Pure Appl. Math. 45(5), 1992.
7. M. Unser and T. Blu, “Cardinal exponential splines: Part I - Theory and filtering algorithms,” IEEE Trans.

Sig. Proc. 51(2), 2004.
8. A. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE

Trans. on Image Processing 1(2), pp. 205–220, 1992.


