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Sampling Signals With Finite Rate of Innovation
Martin Vetterli, Fellow, IEEE, Pina Marziliano, and Thierry Blu, Member, IEEE

Abstract—Consider classes of signals that have a finite number
of degrees of freedom per unit of time and call this number the rate
of innovation. Examples of signals with a finite rate of innovation
include streams of Diracs (e.g., the Poisson process), nonuniform
splines, and piecewise polynomials.

Even though these signals are not bandlimited, we show that they
can be sampled uniformly at (or above) the rate of innovation using
an appropriate kernel and then be perfectly reconstructed. Thus,
we prove sampling theorems for classes of signals and kernels that
generalize the classic “bandlimited and sinc kernel” case. In par-
ticular, we show how to sample and reconstruct periodic and fi-
nite-length streams of Diracs, nonuniform splines, and piecewise
polynomials using sinc and Gaussian kernels. For infinite-length
signals with finite local rate of innovation, we show local sampling
and reconstruction based on spline kernels.

The key in all constructions is to identify the innovative part of
a signal (e.g., time instants and weights of Diracs) using an annihi-
lating or locator filter: a device well known in spectral analysis and
error-correction coding. This leads to standard computational pro-
cedures for solving the sampling problem, which we show through
experimental results.

Applications of these new sampling results can be found in signal
processing, communications systems, and biological systems.

Index Terms—Analog-to-digital conversion, annihilating fil-
ters, generalized sampling, nonbandlimited signals, nonuniform
splines, piecewise polynomials, poisson processes, sampling.

I. INTRODUCTION

M OST continuous-time phenomena can only be seen
through sampling the continuous-time waveform, and

typically, the sampling is uniform. Very often, instead of the
waveform itself, one has only access to a smoothed or filtered
version of it. This may be due to the physical set up of the
measurement or may be by design.

Calling the original waveform, its filtered version is
, where is the convolution

kernel. Then, uniform sampling with a sampling interval
leads to samples given by

(1)
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Fig. 1. Sampling setup:x(t) is the continuous-time signal;~h(t) = h(�t)
is the smoothing kernel;y(t) is the filtered signal;T is the sampling interval;
y (t) is the sampled version ofy(t); andy(nT ),n 2 are the sample values.
The box C/D stands for continuous-to-discrete transformation and corresponds
to reading out the sample valuesy(nT ) from y (t).

The intermediate signal corresponding to an idealized
sampling is given by

(2)

This setup is shown in Fig. 1.
When no smoothing kernel is used, we simply have

, which is equivalent to (1) with . This simple
model for having access to the continuous-time world is typ-
ical for acquisition devices in many areas of science and tech-
nology, including scientific measurements, medical and biolog-
ical signal processing, and analog-to-digital converters.

The key question is, of course, if the samples are a
faithful representation of the original signal . If so, how can
we reconstruct from , and if not, what approximation
do we get based on the samples ? This question is at the
heart of signal processing, and the dominant result is the well-
known sampling theorem of Whittakeret al., which states that
if is bandlimited, or , then samples

with are sufficient to reconstruct [5],
[15], [18]. Calling , which is the bandwidth of in cycles
per second ( ), we see that sample/s are
a sufficient representation of . The reconstruction formula
is given by

sinc (3)

where sinc . If is not bandlimited, con-
volution with sinc (an ideal lowpass filter with
support ) allows us to apply sampling and recon-
struction of , which is the lowpass approximation of .
This restriction of to the interval provides
the best approximation in the least squares sense ofin the
sinc space [18].

A possible interpretation of the interpolation formula (3) is
the following. Any real bandlimited signal can be seen as having

degrees of freedom per unit of time, which is the number of
samples per unit of time that specify it. In the present paper, this
number of degrees of freedom per unit of time is called therate
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of innovationof a signal1 and is denoted by. In the bandlimited
case above, the rate of innovation is .

In the sequel, we are interested in signals that have afinite rate
of innovation, either on intervals or on average. Take a Poisson
process, which generates Diracs with independent and identi-
cally distributed (i.i.d.) interarrival times, the distribution being
exponential with probability density function . The ex-
pected interarrival time is given by . Thus, the rate of inno-
vation is since, on average, real numbers per unit of time
fully describe the process.

Given a signal with a finite rate of innovation, it seems attrac-
tive to sample it with a rate of samples per unit of time. We
know it will work with bandlimited signals, but will it work with
a larger class of signals? Thus, the natural questions to pursue
are the following.

1) What classes of signals of finite rate of innovation can be
sampled uniquely, in particular, using uniform sampling?

2) What kernels allow for such sampling schemes?
3) What algorithms allow the reconstruction of the signal

based on the samples?
In the present paper, we concentrate on streams of Diracs,

nonuniform splines, and piecewise polynomials. These are
signal classes for which we are able to derive exact sampling
theorems under certain conditions. The kernels involved are the
sinc, the Gaussian, and the spline kernels. The algorithms, al-
though they are more complex than the standard sinc sampling
of bandlimited signals, are still reasonable (structured linear
systems) but also often involve root finding.

As will become apparent, some of the techniques we use in
this paper are borrowed from spectral estimation [16] as well
as error-correction coding [1]. In particular, we make use of the
annihilating filter method (see Appendices A and B), which is
standard in high-resolution spectral estimation. The usefulness
of this method in a signal processing context has been previ-
ously pointed out by Ferreira and Vieira [24] and applied to error
detection and correction in bandlimited images [3]. In array
signal processing, retrieval of time of arrival has been studied,
which is related to one of our problems. In that case, a statis-
tical framework using multiple sensors is derived (see, for ex-
ample, [14] and [25]) and an estimation problem is solved. In
our case, we assume deterministic signals and derive exact sam-
pling formulas.

The outline of the paper is as follows. Section II formally
defines signal classes with finite rate of innovation treated in
the sequel. Section III considers periodic signals in continuous
time and derives sampling theorems for streams of Diracs,2

nonuniform splines, and piecewise polynomials. These types
of signals have a finite number of degrees of freedom, and a
sampling rate that is sufficiently high to capture these degrees
of freedom, together with appropriate sampling kernels, allows
perfect reconstruction. Section IV addresses the sampling of
finite-length signals having a finite number of degrees of
freedom using infinitely supported kernels like the sinc kernel
and the Gaussian kernel. Again, if the critical number of

1This is defined in Section II and is different from the rate used in rate-distor-
tion theory [2]. Here, rate corresponds to a degree of freedom that is specified
by real numbers. In rate-distortion theory, the rate corresponds to bits used in a
discrete approximation of a continuously valued signal.

2We are using the Dirac distribution and all of the operations, including
derivatives, must be understood in the distribution sense.

samples is taken, we can derive sampling theorems. Section V
concentrates on local reconstruction schemes. Given that the
local rate of innovation is bounded, local reconstruction is
possible, using, for example, spline kernels. In the Appendix, we
review the “annihilating filter” method from spectral analysis
and error-correction coding with an extension to multiple zeros.
This method will be used in several of the proofs in the paper.

II. SIGNALS WITH FINITE RATE OF INNOVATION

In the Introduction, we informally discussed the intuitive no-
tion of signals with finite rate of innovation. Let us introduce
more precisely sets of signals having a finite rate of innovation.
Consider a known function and signals of the form

(4)

of which bandlimited signals [see (3)] are a particular case.
Clearly, the rate of innovation is . There are many
examples of such signals, for example, when is a scaling
function in a wavelet multiresolution framework [8], [20] and in
approximation theory [17].

A more general case appears when we allow arbitrary shifts
or

(5)

For example, when , , , and
are i.i.d. with exponential density, then we have the

Poisson process of rate.
Allowing a set of functions and arbitrary

shifts, we obtain

(6)

Finally, we will be considering signals that are built using a
noninnovative part, for example, a polynomial and an innovative
part such as (5) for nonuniform splines or, more generally, (6)
for piecewise polynomials of degree and arbitrary intervals
(in that case, and are one-sided power functions

).
Assuming the functions are known, it is clear that the

only degrees of freedom in a signal as in (6) are the time
instants and the coefficients . Introducing a counting func-
tion that counts the number of degrees of freedom in

over the interval , we can define the rate of innova-
tion as

(7)

Definition 1: A signal with a finite rate of innovation is a
signal whose parametric representation is given in (5) and (6)
and with a finite , as defined in (7).

If we consider finite length or periodic signals of length,
then the number of degrees of freedom is finite, and the rate of
innovation is . Note that in the uniform case given
in (4), the instants, being predefined, are not degrees of freedom.
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One can also define alocal rate of innovation with respect to
a moving window of size . Given a window of size , the local
rate of innovation at time is

(8)

In this case, one is often interested in the maximal local rate or

(9)

As , tends to . To illustrate the differences
between and , consider again the Poisson process with
expected interarrival time . The rate of innovation is given
by . However, for any finite , there is no bound on .

The reason for introducing the rate of innovationis that one
hopes to be able to “measure” a signal by takingsamples per
unit of time and be able to reconstruct it. We know this to be
true in the uniform case given in (4). The main contribution of
this paper is to show that it is also possible for many cases of
interest in the more general cases given by (5) and (6).

III. PERIODIC CONTINUOUS-TIME CASE

In this section, we consider–periodic signals that are either
made of Diracs or polynomial pieces. The natural representation
of such signals is through Fourier series

(10)

We show that such signals can be recovered uniquely from their
projection onto a subspace of appropriate dimension. The sub-
space’s dimension equals the number of degrees of freedom of
the signal, and we show how to recover the signal from its pro-
jection. One choice of the subspace is the lowpass approxima-
tion of the signal that leads to a sampling theorem for periodic
stream of Diracs, nonuniform splines, derivatives of Diracs, and
piecewise polynomials.

A. Stream of Diracs

Consider a stream of Diracs periodized with period ,
, where , and

. This signal has 2 degrees of freedom per period,
and thus, the rate of innovation is

(11)

The periodic stream of Diracs can be rewritten as

from Poisson's summation formula

(12)

The Fourier series coefficients are thus given by

(13)

that is, the linear combination of complex exponentials. Con-
sider now a finite Fourier series with
-transform

(14)

and having zeros at , that is

(15)

Note that is the convolution of elementary filters
with coefficients and
that the convolution of such a filter with the exponential

is zero

(16)

Therefore, because is the sum of exponentials and each
being zeroed out by one of the roots of , it follows that

(17)

The filter is thus called an annihilating filter since it an-
nihilates exponentials [16]. A more detailed discussion of
annihilating filters is given in Appendix A. In error-correction
coding, it is called the error locator polynomial [1]. The pe-
riodic time-domain function is obtained by inversion of
the Fourier series, or equivalently, by evaluating for

. Thus

(18)

that is, has zeros at . Thus, in the time domain,
we have the equivalent of (17) as

Note that with nonzero coefficients for
and that is unique for given by (12)

with and distinct locations . This
follows from the uniqueness of the set of roots in (15). Further,
define the sinc function of bandwidth , where

as , that is, sinc . We are now ready to
prove a sampling result for periodic streams of Diracs.

Theorem 1: Consider , which is a periodic stream of
Diracs of period with Diracs of weight and at lo-
cation , as in (12). Take as a sampling kernel

sinc , where is chosen such that it is greater or equal to
the rate of innovation given by (11) and sample
at uniform locations , where

, and . Then, the samples

(19)

are a sufficient characterization of .



1420 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

Proof: We first show how to obtain the Fourier series co-
efficients from the samples

. Based on these Fourier series coefficients, we then
show how to obtain the annihilating filter , which leads to
the locations of the Diracs. Finally, the weights of the Diracs are
found, thus specifying uniquely .

1) Finding from .
Using (10) in (19), we have

(20)

(21)

(22)

where is the Fourier transform of . This system
of equations is not invertible when with

, where . In all other cases, the equations are
of maximal rank . When is a divisor of ,
this is simply the inverse discrete-time Fourier transform
(IDTFT) of .

2) Finding the coefficients of the filter that annihilates
.

We need to solve (17) for , given
. For example, pick ,

, and to illustrate. Discarding ,
we have that (17) is equivalent to

(23)

In general, at critical sampling, we have a system given
by

...

...
...

(24)

This is a classic Yule–Walker system [4], which in our
case has a unique solution when there aredistinct
Diracs in because there is a unique annihilating filter.

3) Factoring .
Given the coefficients 1, , we factor its

– transform into its roots

(25)

where , which leads to the locations
.

4) Finding the weights .

Given the locations , we can write values
of as linear combinations of exponentials following
(13). Again, for

(26)

In general, using , the system of equa-
tions is given by

...
...

...
...

...

(27)
which is a Vandermonde system, which always has a so-
lution when the ’s are distinct.

An interpretation of the above result is the following. Take
, and project it onto the lowpass subspace corresponding to

its Fourier series coefficients to . This projection, which
is denoted by , is a unique representation of . Since it is
lowpass with bandwidth , it can be sampled
with a sampling period smaller than . Note that step 2 in
the proof required 2 adjacent coefficients of . We chose
the ones around the origin for simplicity, but any set will do. In
particular, if the set is of the form , then
one can use bandpass sampling and recoveras well.

Example 1: Consider a periodic stream of weighted
Diracs with period and sinc sampling kernel with
bandwidth , ( ), as illustrated in Fig. 2(a)
and (b). The lowpass approximation is obtained by filtering
the stream of Diracs with the sampling kernel, as illustrated in
Fig. 2(c). The reconstruction of from the samples is exact
to machine precision and, thus, is not shown. The annihilating
filter is illustrated in Fig. 3, and it can be seen that the locations
of the Diracs are exactly the roots of the filter. In the third step
of the proof of Theorem 1, there is a factorization step. This can
be avoided by a method that is familiar in the coding literature
and known as the Berlekamp–Massey algorithm [1]. In our
case, it amounts to a spectral extrapolation procedure.

Corollary 1: Given the annihilating filter
and the spectrum , one can

recover the entire spectrum of by the following recursion:

(28)

For negative , use since is real.
Proof: The Toeplitz system specifying the annihilating

filter shows that the recursion must be satisfied for all. This
is a th-order recursive difference equation. Such a difference
equation is uniquely specified by initial conditions, in our
case by , showing that the entire Fourier series
is specified by (28).
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Fig. 2. Stream of Diracs. (a) Periodic stream ofK = 8 weighted Diracs with period� = 1024. (b) Sinc sampling kernelh (t). (c) Lowpass approximationy(t),
dashed lines are samplesy(nT ), T = 32. Sample valuesy(nT ) = hh (t� nT ); x(t)i. (d) Fourier seriesX[m] (dB). (e) Central Fourier seriesH [m];m =
�50; . . . ; 50 (dB). (f) Central Fourier series of sample valuesY [m];m = �50; . . . ; 50 (dB).

Fig. 3. Real and imaginary parts of the annihilating filtera(t) =
A(z)j = 1� e . The roots of the
annihilating filter are exactly the locations of the Diracs.

The above recursion is routinely used in error-correction
coding in order to fill in the error spectrum based on the
error locator polynomial. In that application, finite fields are
involved, and there is no problem with numerical precision. In
our case, the real and complex field is involved, and numerical
stability is an issue. More precisely, has zeros on the unit
circle, and the recursion (28) corresponds to convolution with

, that is, a filter with poles on the unit circle. Such a
filter is marginally stable and will lead to numerical instability.
Thus, Corollary 1 is mostly of theoretical interest.

B. Nonuniform Splines

In this section, we consider periodic nonuniform splines
of period . A signal is a periodic nonuniform spline of
degree with knots at if and only if its
( )th derivative is a periodic stream of weighted Diracs

, where , and
. Thus, the rate of innovation is

(29)

Using (12), we can state that the Fourier series coefficients of
are . Differ-

entiating (10) times shows that these coefficients are

(30)

This shows that can be annihilated by a filter
of length . From Theorem 1, we can recover the

periodic stream of Diracs from the Fourier series coefficients
and thus follows the periodic

nonuniform spline.
Theorem 2: Consider a periodic nonuniform spline with

period , containing pieces of maximum degree. Take a
sinc sampling kernel such that is greater or equal to
the rate of innovation given by (29), and sample
at uniform locations , where

, and . Then, is uniquely
represented by the samples

(31)

Proof: The proof is similar to the proof of Theorem 1.
We determine the Fourier series from the

samples exactly as in Step 1 in the proof
of Theorem 1 .
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Fig. 4. Nonuniform spline. (a) Periodic nonuniform linear spline withK = 4 knots or transitions with period� = 1024. (b) Sinc sampling kernelh (t).
(c) Lowpass approximationy(t); dashed lines are samplesy(nT ), T = 64. Sample valuesy(nT ) = hh (t � nT ); x(t)i. (d) Fourier seriesX[m] (dB).
(e) Central Fourier seriesH [m];m = �50; . . . ; 50 (dB). (f) Central Fourier seriesY [m];m = �50; . . . ; 50 (dB). Reconstruction is within machine precision.

Note that the Fourier series coefficients of the ( ) dif-
ferentiated nonuniform spline are given by (30); therefore, the
values provide .
We substitute by in Steps 2–4 in the proof of
Theorem 1 and thus obtain the stream ofDiracs ,
that is, the locations and weights .

The nonuniform spline (see Fig. 4) is obtained using (30)
to get the missing (that is, ) and substituting
these values in (10).3

C. Derivative of Diracs

Derivative of Diracs are considered in this section to
set the grounds for the following section on piecewise
polynomial signals. The Dirac function is a distri-
bution function whose th derivative has the property

, where is times
continuously differentiable [9].

Consider a periodic stream of differentiated Diracs

(32)

with the usual periodicity conditions and
.

Note that there are locations and weights
that makes at most degrees of freedom per period, that
is, the rate of innovation is

(33)

3Note thatX[0] is obtained directly.

The corresponding Fourier series coefficients are given by

(34)
Let and ; then, the
Fourier series simplifies to

(35)

From Proposition 4 in Appendix A, the filter an-
nihilates the exponential , with , and therefore,
the filter defined by

(36)

with poles at annihilates . The locations of
the differentiated Diracs are obtained by first finding the annihi-
lating filter coefficients and then finding
the roots of . The weights , on the other hand, are found
by solving the system in (35) for .

Theorem 3: Consider a periodic stream of differentiated
Diracs with period , as in (32). Take as a sampling
kernel sinc , where is greater or equal to
the rate of innovation given by (33), and sample
at uniform locations , where

and . Then, the samples

(37)

are a sufficient characterization of .
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Fig. 5. Piecewise polynomial spline. (a) Periodic piecewise linear spline withK = 4 knots or transitions with period� = 1024. (b) Sinc sampling kernel
h (t). (c) Lowpass approximationy(t); dashed lines are samplesy(nT ), T = 32. Sample valuesy(nT ) = hh (t�nT ); x(t)i. (d) Fourier seriesX[m] (dB).
(e) Central Fourier seriesH [m];m = �50; . . . ; 50 (dB). (f) Central Fourier series of sample valuesY [m];m = �50; . . . ; 50 (dB). Reconstruction from the
samples is within machine precision.

Proof: We follow the same steps as in the proof of The-
orem 1. From the samples with , we ob-
tain the values from which we determine
the annihilating filter coefficients . In Step
3, the annihilating filter is factored as in (36), from which we
obtain the multiple roots

and, therefore, the locations . The weights are
found by solving the generalized Vandermonde system in (35)
for , from which we obtain . Sim-
ilar to usual Vandermonde matrices, the determinant of the ma-
trix given by the system vanishes only when for some

. This is not our case, and thus, the matrix is nonsingular
and, therefore, admits a unique solution.

D. Piecewise Polynomials

Similar to the definition of a periodic nonuniform splines, a
signal is a periodic piecewise polynomial with pieces
each of maximum degree if and only if its ( ) derivative
is a stream of differentiated Diracs, that is, given by

with the usual periodicity condi-
tions. The degrees of freedom per period arefrom the loca-
tions and from the weights; thus, the rate of
innovation is

(38)

By analogy with nonuniform splines, we have the following
Theorem 4: Consider a periodic piecewise polynomial

with period , containing pieces of maximum degree. Take

a sinc sampling kernel such that is greater or equal to
the rate of innovation given by (38), and sample
at uniform locations , where

, and . Then, is uniquely
represented by the samples

(39)

Proof: The proof follows the same steps as the proof of
Theorems 2 and 3.

First, from the samples , we obtain the Fourier se-
ries coefficients of the periodic piecewise polynomial signal

. Then, using (30), we obtain
Fourier series coefficients of the ( ) times differentiated
signal, which is a stream of differentiated Diracs. Using
Theorem 3, we are able to recover the stream of differentiated
Diracs from . Similar to the pe-
riodic nonuniform spline, the periodic piecewise polynomial

(see Fig. 5) is obtained using (30) to get the missing
(that is, ) and substituting these values in (10).

IV. FINITE-LENGTH SIGNALS WITH FINITE

RATE OF INNOVATION

A finite-length signal with finite rate of innovation clearly
has a finite number of degrees of freedom. The question of in-
terest is as follows: Given a sampling kernel withinfinite sup-
port, is there afinite set of samplesthat uniquely specifies the
signal? In the following sections, we will sample signals with fi-
nite number of weighted Diracs with infinite support sampling
kernels such as the sinc and Gaussian.
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A. Sinc Sampling Kernel

Consider a continuous-time signal with a finite number of
weighted Diracs

(40)

and the sinc sampling kernel. The sample values are obtained by
filtering the signal with a sinc sampling kernel. This is equiva-
lent to taking the inner product between a shifted version of the
sinc and the signal, that is, , where

sinc , with . The question that arises
is the following: How many of these samples do we need to re-
cover the signal? The signal has 2degrees of freedom: from
the weights and from the locations of the Diracs; thus,
samples will be sufficient to recover the signal. Sim-
ilar to the previous cases, the reconstruction method will require
solving two systems of linear equations: one for the locations of
the Diracs involving a matrix and one for the weights of the
Diracs involving a matrix . These systems admit solutions if
the following conditions are satisfied.

C1] Rank , where is defined
by (45).

C2] Rank , where is defined by (43).
Theorem 5: Given a finite stream of weighted Diracs and

a sinc sampling kernel with , if conditions C1]
and C2] are satisfied, then the samples

(41)

are a sufficient representation of the signal.
Proof: The sample values in (41) are equivalent to

sinc

(42)

Let us define the degree Lagrange polynomial
, where . Mul-

tiplying both sides of (42) by , we find an expression in
terms of the interpolating polynomials.

(43)

(44)

Since the right-hand side of (43) is a polynomial of degree
in the variable , applying finite differences makes the

left-hand side vanish,4 that is,

4Note that theK finite-difference operator plays the same role as the annihi-
lating filter in the previous section.

. If we let , then this annihi-
lating equation is equivalent to

(45)

(46)

where is an matrix. The system (46) admits
a nontrivial solution when and the Rank ,
that is, condition C1]. Therefore, (45) can be used to find the

unknowns , which lead to the locations since these
are the roots of . Once the locations are determined,
the weights of the Diracs are found by solving the system in
(44) for . Since , the system
admits a solution from condition C2].

Note that the result does not depend on. This of course
holds only in theory since in practice, the matrix may be
ill-conditioned if is not chosen appropriately. A natural so-
lution to this conditioning problem is to take more than the crit-
ical number of samples and solve (46) using a singular value
decomposition (SVD). This is also the method of choice when
noise is present in the signal. The matrix, which is used to
find the weights of the Diracs, is less sensitive to the value of
and better conditioned on average than.

B. Gaussian Sampling Kernel

Consider sampling the same signal as in (40) but, this time,
with a Gaussian sampling kernel . Similar to
the sinc sampling kernel, the samples are obtained by filtering
the signal with a Gaussian kernel. Since there are 2unknown
variables, we show next that samples with are
sufficient to represent the signal.

Theorem 6: Given a finite stream of weighted Diracs and
a Gaussian sampling kernel . If ,
then the sample values

(47)

are sufficient to reconstruct the signal.
Proof: The sample values are given by

(48)

If we let , , and
, then (48) is equivalent to

(49)

Note that we reduced the expression to a linear combina-
tion of real exponentials . Since , the annihilating
filter method described in Appendix B allows us to determine

and . In addition, note that the Toeplitz system in (68) has
real exponential components , and therefore,
a solution exists when the number of equations is greater than
the number of unknowns, that is, , and the rank of
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Fig. 6. (a) Hat spline sampling kernel� (t=T ), T = 1. (b) Bilevel signal with up to two transitions in an interval[n; n+1] sampled with a hat sampling kernel.

the system is equal to , which is the case by hypothesis. Fur-
thermore, must be carefully chosen; otherwise, the system is
ill conditioned. The locations are then given by

(50)

and the weights of the Diracs are simply given by

(51)

Here, unlike in the sinc case, we have an almost local recon-
struction because of the exponential decay of the Gaussian sam-
pling kernel, which brings us to the next topic.

V. INFINITE-LENGTH BILEVEL SIGNALS WITH FINITE

LOCAL RATE OF INNOVATION

In this section, we consider the dual problem of Section IV,
that is,infinite lengthsignals with a finitelocal rate
of innovation and sampling kernels withcompact support[19].
In particular, the B-splines of different degreeare considered
[17]

(52)

where the box spline is defined by for and
0 elsewhere.

We develop local reconstruction algorithms that depend on
moving intervals equal to the size of the support of the sam-
pling kernel.5 The advantage of local reconstruction algorithms
is that their complexity does not depend on the length of the
signal. In this section, we consider bilevel signals but similar to
the previous sections the results can be extended to piecewise
polynomials.

Let be an infinite-length continuous-time signal that
takes on two values 0 and 1 with initial condition
with a finite local rate of innovation. These are called bilevel
signals and are completely represented by their transition
values .

Suppose a bilevel signal is sampled with a box
spline . The sample values obtained are

, which correspond to the area occupied
by the signal in the interval . Thus, if there is at
most one transition per box, then we can recover the transition
from the sample. This leads us to the following proposition.

5The size of the support of� (t=T ) is equal to(d + 1)T .

Proposition 1: A bilevel signal with initial con-
dition is uniquely determined from the samples

, where is the box spline if
and only if there is at most one transition in each interval

.
Proof: For simplicity, let , and suppose that

. If there are no transitions in the interval , then the
sample value is . If there is one transition in the interval

, then the sample value is equal to from
which we uniquely obtain the transition value .
To show necessity, suppose there are two transitions, in
the interval , then the sample value is equal to

and is not sufficient to determine both transitions.
Thus, there must be at most one transition in an interval
to uniquely define the signal.

Now, consider shifting the bilevel signal by an unknown shift
; then, there can be two transitions in an interval of length,

and one box function will not be sufficient to recover the tran-
sitions. Suppose we double the sampling rate; then, the support
of the box sampling kernel is doubled, and we have two sample
values , covering the interval , but these
values are identical (see their areas). Therefore, increasing the
sampling rate is still insufficient.

This brings us to consider a sampling kernel not only with a
larger support but with added information. For example, the hat
spline function for and 0 elsewhere leads
to the sample values defined by .

Fig. 6 illustrates that there are two sample values covering the
interval from which we can uniquely determine
the signal.

Proposition 2: An infinite-length bilevel signal , with
initial condition , is uniquely determined from the
samples defined by , where
is the hat sampling kernel if and only if there are at most two
transitions in each interval .

Proof: Again, for simplicity, let , and suppose the
signal is known for and . First, we show suf-
ficiency by showing the existence and uniqueness of a solution.
Then, we show necessity by a counterexample.

Similar to the box sampling kernel, the sample values
will depend on the configuration of the transitions in the
interval . If there are at most two transitions in
the interval , then the possible configurations are
(0,0), (0,1), (0,2), (1,0), (1,1), (2,0), where the first and
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second component indicate the number of transitions in the
intervals , , respectively. Furthermore,
since the hat sampling kernel is of degree one, we obtain
for each configuration a quadratic system of equations with
variables ,

(53)

(54)

which admits a solution in the given interval.
As for uniqueness, if and , then this

implies configuration (0,0).
If and , then the possible

configurations are (0,1),(0,2). By hypothesis, there are at
most two transitions in the interval ; therefore,
if , then the configuration in the interval

is (0,1); otherwise, if , then the configuration
is (0,2).

If and , then this implies
configuration (2,0).

If and , then this implies
configuration (1,0).

Necessity is shown by counterexample.
Consider a bilevel signal with three transitions in the

interval [0,2] but with all three in the interval [0,1]. Then,
the quadratic system of equations is

(55)

(56)

which does not admit a unique but an infinite number of
solutions. Thus, there must be at most 2 transitions in an
interval [0,2].

The pseudo-code for sampling bilevel signals using the
box and hat functions are given in full detail in [10], [22]. A
stronger condition than the one in Proposition 2 is to require

. In that case, we are ensured that on any
interval of length 2 , there are at most two transitions, and
therefore, the reconstruction is unique. Based on Propositions
1 and 2, we conjecture that using splines of degree, a local
rate of innovation ensures unicity of
the reconstruction.

VI. CONCLUSION

We considered signals with finite rate of innovation that
allow uniform sampling after appropriate smoothing and per-
fect reconstruction from the samples. For signals like streams
of Diracs, nonuniform splines, and piecewise polynomials, we
were able to derive exact reconstruction formulas, even though
these signals are nonbandlimited.

The methods rely on separating the innovation in a signal
from the rest and identifying the innovative part from the sam-
ples only. In particular, the annihilating filter method plays a
key role in isolating the innovation. Some extensions of these
results, like to piecewise bandlimited signals, are presented in
[11] and [21], and more details, including a full treatment of the
discrete-time case, are available in [10], [22], and [23].

To prove the sampling theorems, we assumed deterministic,
noiseless signals. In practice, noise will be present, and this can
be dealt with by using oversampling and solving the various sys-
tems involved using the singular value decomposition (SVD).
Such techniques are standard, for example, in noisy spectral es-
timation [16]. Initial investigations using these techniques in our
sampling problem are promising [13].

It is of also interest to compare our notion of “finite rate
of innovation” with the classic Shannon bandwidth [12]. The
Shannon bandwidth finds the dimension of the subspace (per
unit of time) that allows us to represent the space of signals of
interest. For bandpass signals, where Nyquist’s rate is too large,
Shannon’s bandwidth is the correct notion, as it is for certain
other spread-spectrum signals. For pulse position modulation
(PPM) [7], Shannon’s bandwidth is proportional to the number
of possible positions, whereas the rate of innovation is fixed per
interval.6 Thus, the rate of innovation coincides with our intu-
ition for degrees of freedom.

This discussion also indicates that an obvious application of
our results is in communications systems, like, for example, in
ultrawide band communication (UWB). In such a system, a very
narrow pulse is generated, and its position is carrying the infor-
mation. In [6], initial results indicate that a decoder can work
at much lower rate than Nyquist’s rate by using our sampling
results. Finally, filtered streams of Diracs, known as shot noise
[7], can also be decoded with low sampling rates while still re-
covering the exact positions of the Diracs. Therefore, we expect
the first applications of our sampling results to appear in wide-
band communications.

Finally, the results presented so far raise a number of ques-
tions for further research. What other signals with finite rate of
innovation can be sampled and perfectly reconstructed? What
tools other than the annihilating filter can be used to identify in-
novation, and what other types of innovation can be identified?
What are the multidimensional equivalents of the above results,
and are they computationally feasible? These topics are cur-
rently under investigation. Thus, the connection between sam-
pling theory on the one hand, and spectral analysis and error
correction coding on the other hand, is quite fruitful.

APPENDIX A
ANNIHILATING FILTERS

Here, we give a brief overview of annihilating filters (see [16]
for more details). First, we have the following definition.

Definition 2: A filter is called an annihilating filter of
a signal when

(57)

6The number of degrees of freedom per interval is 1 or 2, depending if the
amplitude is fixed or free.
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Next, we give annihilating filters for signals that are linear com-
binations of exponentials.

Proposition 3: The signal , where
, , is annihilated by the filter

(58)

Proof: Note that

(59)

(60)

(61)

Thus, annihilates .
Next, we show that the signal is annihilated by a filter

with poles, where .
Proposition 4: The signal is annihilated by the

filter

(62)

Proof: Note that

(63)

(64)

By differentiating times , we easily see that

(65)

This is true for . Thus,
for all polynomials of degree less than or equal to ,
in particular, for . Thus, annihilates .

It follows from Proposition 3 and 4 that the filter
annihilates the signal .

APPENDIX B
ANNIHILATING FILTER METHOD

The annihilating filter method consists of finding the values
and in

(66)

and is composed of three parts: First, we need to find the anni-
hilating filter that involves solving a linear system of equations;
second, we need to find the roots of the-transform of the an-
nihilating filter, which is a nonlinear function; third, we must
solve another linear system of equations to find the weights.

1) Finding the annihilating filter.
The filter coefficients in

must be such that (57) is satisfied or

(67)

In matrix/vector form, the system in (67) is equivalent to

...
...

...

...
...

. . .

...
...

...

...

(68)
Suppose values are available. Since there are

unknown filter coefficients, we need at least
equations, and therefore, must be greater or equal to

. Define the appropriate submatrix; then, the
system will admit a solution when Rank

.
In practice, this system is solved using an SVD where

the matrix is decomposed into . We obtain
that , where is a vector with 1
on position and 0 elsewhere. The method can be
adapted to the noisy case by minimizing , in which
case, is given by the eigenvector associated with the
smallest eigenvalue of .

2) Finding the .
Once the the filter coefficients are found, then the

values are simply the roots of the annihilating filter
.

3) Finding the .
To determine the weights , it suffices to take

equations in (66) and solve the system for. Let
; then, in matrix vector form, we have

the following Vandermonde system:

...
...

...

...
...

(69)

and has a unique solution when

(70)

This concludes the annihilating filter method.
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