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Sampling Signals With Finite Rate of Innovation

Martin Vetterli, Fellow, IEEE Pina Marziliano, and Thierry BjuMMember, IEEE

Abstract—Consider classes of signals that have a finite number ;‘5('5 -nT)
of degrees of freedom per unit of time and call this number the rate
of innovation. Examples of signals with a finite rate of innovation ) wsl(t)
include streams of Diracs (e.g., the Poisson process), nonuniform =(t) h(t) 6 C/D y(nT)
splines, and piecewise polynomials.

Even though these signals are not bandlimited, we show that they

can be sampled uniformly at (or above) the rate of innovation using rig 1. sampling setupe(t) is the continuous-time signali(t) = h(—t)

an appropriate kernel and then be perfectly reconstructed. Thus, s the smoothing kernefi(#) is the filtered signalT is the sampling interval;

we prove sampling theorems for classes of signals and kernels thaty, (+) is the sampled version gf(#); andy(nT), n € Z are the sample values.
generalize the classic “bandlimited and sinc kernel” case. In par- The box C/D stands for continuous-to-discrete transformation and corresponds
ticular, we show how to sample and reconstruct periodic and fi- to reading out the sample valug&2T") from y.(t).

nite-length streams of Diracs, nonuniform splines, and piecewise

polynomials using sinc and Gaussian kernels. For infinite-length . . . . . .
signals with finite local rate of innovation, we show local sampling 1 Ne intermediate signaj,(¢) corresponding to an idealized

and reconstruction based on spline kernels. sampling is given by

The key in all constructions is to identify the innovative part of
a signal (e.g., time instants and weights of Diracs) using an annihi- ys(t) = Z y(nT)6(t — nT). (2
lating or locator filter: a device well known in spectral analysis and nez

error-correction coding. This leads to standard computational pro- ] ) o
cedures for solving the sampling problem, which we show through This setup is shown in Fig. 1.

experimental results. ‘ o When no smoothing kernel is used, we simply haiel’) =
Applications of these new sampling results can be found in signal .,y which is equivalent to (1) with(¢) = §(¢). This simple
processing, communications systems, and biological systems. model for having access to the continuous-time world is typ-
Index Terms—Analog-to-digital conversion, annihilating fil-  jcal for acquisition devices in many areas of science and tech-
ters, generalized sampling, nonbandlimited signals, nonuniform 1,454y including scientific measurements, medical and biolog-
splines, piecewise polynomials, poisson processes, sampling. ical signal processing, and analog-to-digital converters
The key question is, of course, if the samplgsT’) are a
|. INTRODUCTION faithful representation of the original signe(t). If so, how can
e reconstruct(¢) fromy(nT'), and if not, what approximation
we get based on the samplg&T")? This question is at the
eart of signal processing, and the dominant result is the well-

OST continuous-time phenomena can only be se
through sampling the continuous-time waveform, an
typically, the sampling is uniform. Very often, instead of th ) X .
waveform itself, one has only access to a smoothed or filtert gown sampling theorem of Whittaket al, which states that

version of it. This may be due to the physical set up of tHe #(*) is bandlimited, ocX (w) = 0, || > w,,, then samples
measurement or may be by design z(nT) with T < 7 /w,, are sufficient to reconstruat(t) [5],

Calling z(t) the original waveform, its filtered version is[15]’ [18]. g:alli_ngB, which is the b:;ndwﬁjth gf"(t) in Ic;;cles
y(t) = z(t) * h(t), whereh(t) = h(—t) is the convolution persecon g = 2”"’/27,0’ we see thab = 1/ samplels are
kernel. Then, uniform sampling with a sampling inter@l & sufficient representation af(¢). The reconstruction formula

leads to sampleg(nT’) given by is given by

oo

y(nT) = (h(t — nT),z(t)) = / - h(t — nT) x(t) dt. (1) z(t)= Y a(nT) sin0<% —n) ®3)

— o n=—oo

where sin¢t) = sin(xt)/nt. If z(¢) is not bandlimited, con-
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of innovationof a signal and is denoted by. In the bandlimited samples is taken, we can derive sampling theorems. Section V
case above, the rate of innovatiorpis= 1/T = w;, /7. concentrates on local reconstruction schemes. Given that the
Inthe sequel, we are interested in signals that hdinitarate local rate of innovation is bounded, local reconstruction is
of innovation either on intervals or on average. Take a Poiss@ussible, using, for example, spline kernels. In the Appendix, we
process, which generates Diracs with independent and idengview the “annihilating filter” method from spectral analysis
cally distributed (i.i.d.) interarrival times, the distribution beingaind error-correction coding with an extension to multiple zeros.
exponential with probability density functiome™#t. The ex- This method will be used in several of the proofs in the paper.

pected interarrival time is given b/ .. Thus, the rate of inno-
vation isu since, on averagey real numbers per unit of time II. SIGNALS WITH FINITE RATE OF INNOVATION
fully describe the process.

Given a signal with a finite rate of innovation, it seems attracf.-
tive to sample it with a rate gf samples per unit of time. We 10
know it will work with bandlimited signals, but will it work with
a larger class of signals? Thus, the natural questions to pur:

In the Introduction, we informally discussed the intuitive no-
n of signals with finite rate of innovation. Let us introduce
more precisely sets of signals having a finite rate of innovation.
glj)@sider a known function(t) and signals of the form

are the following. _
t—nl
1) What classes of signals of finite rate of innovation can be z(t) = e T 4)
sampled uniquely, in particular, using uniform sampling? neZ

2) What kernelsi(t) allow for such sampling schemes?
3) What algorithms allow the reconstruction of the sign
based on the samples?

f which bandlimited signals [see (3)] are a particular case.
learly, the rate of innovation is = 1/7. There are many
._examples of such signals, for example, whefn) is a scaling
In th_e preseqt paper, we .conce.ntrate on Stfeams of Dir ction in a wavelet multiresolution framework [8], [20] and in
nonuniform splines, and piecewise polynomials. These all proximation theory [17].
signal classes for which we are able to derive exact samplin A more general case appears when we allow arbitrary shifts
theorems under certain conditions. The kernels involved are
sinc, the Gaussian, and the spline kernels. The algorithms, al-
though they are more complex than the standard sinc sampling t—t,
of bandlimited signals, are still reasonable (structured linear a(t) = Z C"‘P< T ) :
systems) but also often involve root finding.
As will become apparent, some of the techniques we usepg, example, wher,, = 1, o(t) = &(t), T = 1/u, and
this paper are borrowed from spectral estimation [16] as W?Ll — t,_, are i.i.d. with exponential density, then we have the
as error-correction coding [1]. In particular, we make use of th&,isson process of rate
annihilating filter method (see Appendices A and B), which is Allowing a set of functions{¢,(t)}»—o... z and arbitrary
standard in high-resolution spectral estimation. The usefuln%ﬁs, we obtain 7
of this method in a signal processing context has been previ-

®)

ne”z

ously pointed out by Ferreira and Vieira [24] and applied to error R t—t,
detection and correction in bandlimited images [3]. In array z(t) = Z chr ©r < T ) . (6)
signal processing, retrieval of time of arrival has been studied, neZ r=0

which is related to one of our problems. In that case, a statj

tical framework using multiple sensors is derived (see, for eE_me_\IIy, We.W'” be considering signals th"’.lt are bu'l.t using a
ample, [14] and [25]) and an estimation problem is solved. fjoninnovative part, for example, a polynomial and an innovative

our case, we assume deterministic signals and derive exact sgﬁﬂ .S’UCh as (5) for nonumform splines or, more ggnerally, 6)
pling formulas. or piecewise polynomials of degrde and arbitrary intervals

The outline of the paper is as follows. Section I formall);'n that casey and ¢, are one-sided power functior§ —

R
defines signal classes with finite rate of innovation treated fax(t, 0)).

the sequel. Section Il considers periodic signals in continuousASsumlng the functiong.(t) are known, it is clear that the

time and derives sampling theorems for streams of Di?acs?nly degrees of freedom in a signaft) as in (6) are the time

nonuniform splines, and piecewise polynomials. These typ@étantstn and the coefficients,,.. Introducing a counting func-

of signals have a finite number of degrees of freedom, and'@" Ca(ta, t").that counts the number O.f degrees of frgedom N

sampling rate that is sufficiently high to capture these degre& ) over the intervalt,, t], we can define the rate of innova-

of freedom, together with appropriate sampling kernels, allof9n » as

perfect reconstruction. Section IV addresses the sampling of 1 ror

finite-length signals having a finite number of degrees of p = lim ;Cx (—575) (1)

freedom using infinitely supported kernels like the sinc kernel

and the Gaussian kernel. Again, if the critical number of Definition 1: A signal with a finite rate of innovation is a
signal whose parametric representation is given in (5) and (6)

IThis is defined in Section Il and is different from the rate used in rate-distoand with a finitep, as defined in (7).
tion theory [2]. Here, rate corresponds to a degree of freedom that is specifiedf \we consider finite Iength or periodic signals of Iength

by real numbers. In rate-distortion theory, the rate corresponds to bits used jn a A
discrete approximation of a continuously valued signal. {h&n the number of degrees of freedom is finite, and the rate of

2We are using the Dirac distribution and all of the operations, includininovation isl/r (0, 7). Note that in the uniform case given
derivatives, must be understood in the distribution sense. in (4), the instants, being predefined, are not degrees of freedom.
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One can also definelacal rate of innovation with respect to The Fourier series coefficienf§[m] are thus given by
a moving window of size. Given a window of size, the local el

; . S 1 ‘
rate of innovation at time is X[m] =~ Z cp e~ e g (13)
T
k=0

1 T T
prlt) = 2C, (= Tt + 7). ®) - 0 .
T 2 2 that s, the linear combination & complex exponentials. Con-
In this case, one is often interested in the maximal local rate $ider now a finite Fourier seried[m|,m = 0,...,K with
Prmaz(T) z-transform

K
Pmax (T) = Itnég( p‘f'(t) (9) A(z) = Z A[m] 27 (14)

m=0

AS T — 00, pmaz(T) tends top. To illustrate the differences ‘
betweenp and p,..., consider again the Poisson process withnd havingk' zeros atu;, = e~*2™/7) that is

expected interarrival timé/;.. The rate of innovatiop is given K1
by 1. However, for any finiter, there is no bound op;,,.. (7). A(z) = H (1 _ i@t /7) [1) _ (15)
The reason for introducing the rate of innovatiois that one

k=0
hopes to be able to “measure” a signal by takirgamples per

unit of time and be able to reconstruct it. We know this to bote thatA[m] is the convolution ofK elementary filters

true in the uniform case given in (4). The main contribution ofith coefficients [1, —e=**™/D] .k = 0,.... K — 1 and
this paper is to show that it is also possible for many casestbft ghetconvoluthn of such a filter with the exponential
interest in the more general cases given by (5) and (6). {e i@mmi/m)} 7 is zero

[1 _e—i(27rtk/‘r):|
Ill. PERIODIC CONTINUOUS-TIME CASE ’

In this section, we consider-periodic signals that are either * [ L, @@/ ] o mHIT/T) gmilamt/T) } =0. (16)
made of Diracs or polynomial pieces. The natural representation ) )

of such signals is through Fourier series Therefore, becausk [m] is the sum o’ exponentials and each

being zeroed out by one of the roots.4fn], it follows that
z(t) = > X[m] O/, (10)

= Alm] * X[m] = 0. a7)
We show that such signals can be recovered uniquely from th‘g]}e filter A[m] is thus called an annihilating filter since it an-

projection onto a subspace of appropriate dimension. The stililates & exponentials [16]. A more detailed discussion of

space’s dimension equals the number of degrees of freedon‘?‘Bf‘ih"aﬂng filters is given in Appendix A. In error-correction

the signal, and we show how to recover the signal from its pr89ding' it is called the error locator polynomial [1]. The pe-

jection. One choice of the subspace is the lowpass approxifiQdic time-domain functioru(t) is obtained by inversion of

tion of the signal that leads to a sampling theorem for periocﬁ%e Fourier series, or equivalently, by evaluatitigy) for = =

=27t/ T
stream of Diracs, nonuniform splines, derivatives of Diracs, aﬁdz( /7). Thus

piecewise polynomials. i 4
a(t) = A(z)|z=e—i(2"’t/7> = H (1 - C_z(Qﬁ(tk —t)/‘l‘)) (18)
A. Stream of Diracs k=0

Consider a stream ok’ Diracs periodized with period, thatis.a(t) haszerosat= t, k € Z.Thus, in the time domain,
z(t) = 3 ,cz Cn 6(t—tn), Wheret, | i = t,+7,andc, 4 = We have the equivalent of (17) ast) - x(t) = 0.
cn, ¥ € Z. This signal has B degrees of freedom per period, Note thatA[m] with K + 1 nonzero coefficients forn =

and thus, the rate of innovation is 0,...,K and thatA[0] = 1 is unique forz(¢) given by (12)
oK with ¢, # 0,k € Z and distinct locations, # t¢,k # £. This
p=—. (11) follows from the uniqueness of the set of roots in (15). Further,
T define the sinc function of bandwidfr- B7, Br], whereB €
The periodic stream of Diracs can be rewritten as R, ashp(t), thatis,hp(t) = Bsind Bt). We are now ready to
X prove a sampling result for periodic streams of Diracs.
= Theorem 1:Considerz(t), which is a periodic stream of
o) = kz=o * an:Z 68 =t = n7) Diracs of period: with K Diracs of weight{cz };—;" and at lo-
P cation{t;} ', as in (12). Take as a sampling kerigj(t) =
_ Z r 1 Z Hi2mm(t—t)/7) B sino(Bt),_whereB is chosen such that it is greater or equal to
e T the rate of innovation given by (11) and samplg:s * x)(¢)
from Poisson's summation formula at vV uniform locationst = n1,n = 0,...,N — 1, where
WS mmtn s\ immise N >2M +1,andM = | Br/2]. Then, the samples
_ —(2mrmity /T (2Zrmt/T
—E;@cw )‘3 - (12) Y = (hp(t—nT),z(t), n=0,...,N—1  (19)

X[m] are a sufficient characterization oft).
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Proof: We first show how to obtain the Fourier series co-

efficients X [m],m = —M, ..., M from the sampleg,,,n =

0,...,N—1.Based onthese Fourier series coefficients, we then

show how to obtain the annihilating filtet[rn], which leads to

found, thus specifying uniquely(t).
1) FindingX[m], |m| < M fromy,,n=0,...,N — L.
Using (10) in (19), we have

the locations of the Diracs. Finally, the weights of the Diracs arf§ Fﬂ

yn = _ X[ml(hp(t —nT),dFm7) (20)
2 .
:ZX[m] HB < 71'7’71) 61(27rrnnT/‘r) (21)
.
M
_ Z X[m] Ci(?ﬂ'rnnT/‘r) (22)

m=—M

whereH is the Fourier transform di (¢). This system
of equations is not invertible wheryT = p/q with p <
N,wherep, g € N. In all other cases, th&¥ equations are
of maximal rankM+1. WhenT is adivisor ofr (¢ = 1),
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Given the locationg; }1—,', we can writeK values

of X[k] as linear combinations of exponentials following
(13). Again, forKk = 3

e—i(47rt0/‘r) e—i(47rt1/‘r) e—i(47rt2/‘r)

Co
l1cL . (26)
C2

In general, usingy, = ¢~*27/7) the system of equa-
tions is given by

1 1 1 1
—— C—i(?ﬂ'tg/‘r) C—i(?ﬂ'tl/‘r) C—i(?ﬂ'tz/‘r)
xp

X[0] 1 1 1

o
X [1] 1 UQ UL U1 c1
B ; . . .
o) L e ] Lo

(27)
which is a Vandermonde system, which always has a so-
lution when thet,’s are distinct. [ |

this is simply the inverse discrete-time Fourier transform an interpretation of the above result is the following. Take

(IDTFT) of X[m].
Finding the coefficients of the filted[m] that annihilates
X[m],m € [-M, M].

We need to solve (17) fad[m]|,m =1, ..., K, given
X[m],m = —M,..., M. For example, pickk = 3,
Br = 2K, andN = 7 to illustrate. Discarding¥[—3],
we have that (17) is equivalent to

2)

Xx[0] X[-1 X[-2]1 [Al] X[1]
X[ X[] X[-1]|- 4[] | =- | X[2]|. (@3)
X[2] X[ X[0] A[3] X[3]

x(t), and project it onto the lowpass subspace corresponding to
its Fourier series coefficients K’ to K. This projection, which
is denoted by(¢), is a unique representationeft). Since itis
lowpass with bandwidth- K 27 /7, K27 /7], it can be sampled
with a sampling period smaller thary2K . Note that step 2 in
the proof required R adjacent coefficients ok [m]. We chose
the ones around the origin for simplicity, but any set will do. In
particular, if the set is of the forfdN — K + 1,/N + K], then
one can use bandpass sampling and reco¢gras well.
Example 1: Consider a periodic stream & — 8 weighted
Diracs with periodr = 1024 and sinc sampling kernel with

In general, at critical sampling, we have a system givdyandwidth[—p, o], (0 = 2K /7), as illustrated in Fig. 2(a)

by
X[0] X[-1] X[-K +1]
X[1] X[0] X[-K +1]
X[K -1 X[K -2 X[0]
Al1] X[1]
ﬁm - X@ o
AK] X[K]

This is a classic Yule—Walker system [4], which in ouf: -

case has a unique solution when there Aredistinct

Diracs inz(¢) because there is a unique annihilating filter.

3) FactoringA(z).
Given the coefficients 14[1], ..
z— transform into its roots

., A[K], we factor its

K-1

H (1 — Uy, zil)

k=0

A(2) (25)

wherew;, = e~127:/7) which leads to thé{ locations
{tehiso -
4) Finding the weights;.

and (b). The lowpass approximation is obtained by filtering
the stream of Diracs with the sampling kernel, as illustrated in
Fig. 2(c). The reconstruction af(¢) from the samples is exact

to machine precision and, thus, is not shown. The annihilating
filter is illustrated in Fig. 3, and it can be seen that the locations
of the Diracs are exactly the roots of the filter. In the third step
of the proof of Theorem 1, there is a factorization step. This can
be avoided by a method that is familiar in the coding literature
and known as the Berlekamp—Massey algorithm [1]. In our
case, it amounts to a spectral extrapolation procedure.

Corollary 1: Given the annihilating filter A[m], m

., K and the spectrunX [m],m = —K,..., K, one can
recover the entire spectrum oft) by the following recursion:

K
> ARX[m—k], m=K+1,K+2,.... (28)
k=1

X[m]

For negativen, useX|[—m] = X*[m] sincex(t) is real.

Proof: The Toeplitz system specifying the annihilating
filter shows that the recursion must be satisfied fomallThis
is a K'th-order recursive difference equation. Such a difference
equation is uniquely specified bi initial conditions, in our
case byX[1],..., X[K], showing that the entire Fourier series
is specified by (28). [ ]
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Fig.2. Stream of Diracs. (a) Periodic streanddf= 8 weighted Diracs with period = 1024. (b) Sinc sampling kernélz (¢). (c) Lowpass approximation(t),
dashed lines are samplg&T"), T' = 32. Sample valueg(nT') = (hg(t — nT'), 2(t)). (d) Fourier series [m] (dB). (e) Central Fourier seridg z[m], m =
—50,...,50 (dB). (f) Central Fourier series of sample valuégm|, m = —50,...,50 (dB).

BTV = 3 5 e 8(t — t,), Wheret, i = t, + 7, and
CntK = Cn, Vn € Z. Thus, the rate of innovation is

(29)

TTT 2K
J p=—.
T

Using (12), we can state that the Fourier series coefficients of

' 2BHD () are X B+ [m] = 1/7 S KL ) ezt Differ-
] entiating (10)R + 1 times shows that these coefficients are

T o 120 256 384 512 ee0 760 = w024 1182

; R+1
X B+ [] = <L27rm> X[m], mezZ  (30)

Fig. 3. Real and imaginary parts of the annihilating filte(t) = T

AR _mizmymy = L, (1 — e~ i@k =8/} The roots of the

annihilating filter are exactly the locations of the Diracs. ) . )
This shows thatX (%+1[m] can be annihilated by a filter

A[m] of lengthK + 1. From Theorem 1, we can recover the

The above recursion is routinely used in error-correctiqiyriodic stream of¢ Diracs from the Fourier series coefficients
coding in order to fill in the error spectrum based on th%'(R+1)[m]7m € [-K, K] and thus follows the periodic
error locator polynomial. In that application, finite fields arg,onyniform spline.
involved, and there is no problem with numerical precision. In Thggrem 2: Consider a periodic nonuniform splinét) with
our case, the real and complex field is involved, and numeric@ério%, containingK pieces of maximum degreR. Take a
stability is an issue. More preciselyz) has zeros on the unit ;¢ sampling kerneh s (#) such thatB is greater or equal to
circle, and the recursion (28) corresponds to convolution WifRe rate of innovation given by (29), and samplg s * z)(t)
1/A(=), that is, a filter with poles on the unit circle. Such & nr uniform locationst — nT,n = 0,...,N — 1, where

filter is marginally stable and will lead to numerical instability.,y ~ 93/ +1,andM = |Br/2]. Then,z(¢) is uniquely
Thus, Corollary 1 is mostly of theoretical interest. repr_esented by the samples

B. Nonuniform Splines Yn = (hp(t —nT),x(), n=0,....N-1.  (31)

In this section, we consider periodic nonuniform splines  Proof: The proof is similar to the proof of Theorem 1.
of periodr. A signal z(¢) is a periodic nonuniform spline of We determine the Fourier seri@qm], || < M from the N
degreeR with knots at{tk}f’:}l € [0,7] if and only if its sampleg,,.,n =0,...,N — 1 exactly as in Step 1 in the proof
(R + 1)th derivative is a periodic stream &f weighted Diracs of Theorem 1.
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Fig. 4. Nonuniform spline. (a) Periodic nonuniform linear spline with= 4 knots or transitions with period = 1024. (b) Sinc sampling kernét z(¢).
(c) Lowpass approximation(t); dashed lines are samplgénT’), I' = 64. Sample valueg(nT) = (hg(t — nT'), z(t)}. (d) Fourier series\[m] (dB).
(e) Central Fourier seried g[m], m = —50, ..., 50 (dB). (f) Central Fourier seri€s, [m], m = —30,...,50 (dB). Reconstruction is within machine precision.

Note that the Fourier series coefficients of the-¢ 1) dif- The corresponding Fourier series coefficients are given by
ferentiated nonuniform spline are given by (30); therefore, the

valuesX[m], |m| < M provide X B+D[m], m € [-M, M]. AiRilc <i27fm>r ci@mm /T g
We substituteX [m] by X (#+D[m] in Steps 2—4 in the proof of = AT ’ '
Theorem 1 and thus obtain the streamidDiracsz(F+1)(¢), (34)
that is, theK locationst;, and K weightscy,. Let éx = (1/7)err (i27/7)" @anduy, = ¢**/7); then, the

The nonuniform spline (see Fig. 4)t) is obtained using (30) Fourier series simplifies to
to get the missind( [m] (thatis,|m| > M + 1) and substituting o1 Re1

these values in (16). X[m] = Z Z T (35)

. . . k=0 »=0
C. Derivative of Diracs !

From Proposition 4 in Appendix A, the filtéd —uz 2~1) 7 an-
%hllates the exponentiab” v}, with » < R—1, and therefore,
e filter defined by

Derivative of Diracs are considered in this section t
set the grounds for the following section on piecewis
polynomial signals. The Diracé function is a distri-
bution function whoserth derivative has the property -

J @) 8Dt — to)dt = (=1)" f0)(to), wheref(t) is r times H 1— gz~ t) (36)
continuously differentiable [9]. k=0

Consider a periodic stream of differentiated Diracs with Ry, poles atz = uj, annihilatesX[m]. The locationg of

the differentiated Diracs are obtained by first finding the annihi-
Z Z 50 (t— t2) (32) lating filter coefficientsA[m], m = 0, ..., K and then finding
the roots ofA(z). The weightsy,., on the other hand, are found

nCZ r=0 ~

< by solving the systemin (35) fon. = 0,..., K — 1.
with the usual periodicity conditions,, = t, + 7 and Theorem 3:Consider a periodic stream of differentiated
CntK,r = Cnr, 0 € L. Diracs z(t) with period =, as in (32). Take as a sampling

Note that there ar& locations and’ = Y"r ' R, weights kernelhp(t) = BsindBt), where B is greater or equal to

that makes at mogt + K degrees of freedom per periedthat the rate of innovatiop given by (33), and samplgp * z)(%)
is, the rate of innovation is at N uniform locationst = nZ,n = 0,...,N — 1, where

N > 2M + 1landM = | B7/2]. Then, the samples
(33) Yn = (hp(t —nT),2(t)), n=0,...,N—1 (37)

p:

3Note thatX [0] is obtained directly. are a sufficient characterization oft).
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Fig. 5. Piecewise polynomial spline. (a) Periodic piecewise linear spline Mite= 4 knots or transitions with period = 1024. (b) Sinc sampling kernel
hz(t). (c) Lowpass approximation(t); dashed lines are samplgg:T), T = 32. Sample valueg(nT) = {hg(t — nT), z(t)). (d) Fourier serieX [rn] (dB).
(e) Central Fourier serie§ z[m], m = —50,...,50 (dB). (f) Central Fourier series of sample valdégm], m = —50,. .., 50 (dB). Reconstruction from the
samples is within machine precision.

Proof: We follow the same steps as in the proof of Thea sinc sampling kernélz(¢) such thatB is greater or equal to
orem 1. From theV samplesy,, with N > 2M + 1, we ob- the rate of innovatiop given by (38), and samplg: 5 * z)(¢t)
tain the valuesX[m], m € [M, M] from which we determine at N uniform locationst = »7,n = 0,...,N — 1, where
the annihilating filter coefficientsi[m],m = 0,...,K.InStep N > 2M + 1, andM = |Br/2|. Then,z(t) is uniquely
3, the annihilating filter is factored as in (36), from which weepresented by the samples

obtain the multiple rootsy, = e “?7%/7) L = 0,... K —

1 and, therefore, thé( locationst,. The K weightsc;,. are yp = (hplt —nT),z(t)), n=0,...,N—1. (39)
found by solving the generalized Vandermonde system in (35)

for ¢, from which we obtaircy, = (7" /(i2x)") é,.. Sim- Proof: The proof follows the same steps as the proof of

ilar to usual Vandermonde matrices, the determinant of the mgheorems 2 and 3.

trix given by the system vanishes only whep = «, for some  First, from the N samplesy,, we obtain the Fourier se-
k # £. This is not our case, and thus, the matrix is nonsingulges coefficients of the periodic piecewise polynomial signal

and, therefore, admits a unique solution. B X[m],m € [-M,M]. Then, using (30), we obtaiaM + 1
Fourier series coefficients of thd?(+ 1) times differentiated
D. Piecewise Polynomials signal, which is a stream of differentiated Diracs. Using

Theorem 3, we are able to recover the stream of differentiated
Similar to the definition of a periodic nonuniform splines, @iracs from X (F+V[m],m ¢ [-M, M]. Similar to the pe-
signalz(t) is a periodic piecewise polynomial with® pieces riodic nonuniform spline, the periodic piecewise polynomial
each of maximum degre if and only if its (R + 1) derivative x(¢) (see Fig. 5) is obtained using (30) to get the missif{g]
is a stream of differentiated Diracs, that s, givends§ ™) (¢) = (thatis,|m| > M + 1) and substituting these values in (1@.
> ez o8 Cnr 600 (¢ — t,,) with the usual periodicity condi-

tions. The degrees of freedom per period Arérom the loca- IV. FINITE-LENGTH SIGNALS WITH EINITE
tions andK = (R + 1)K from the weights; thus, the rate of RATE OF INNOVATION
innovation is . . e . .
A finite-length signal with finite rate of innovatiop clearly
(R+2)K has a finite number of degrees of freedom. The question of in-
p=— (38) terest is as follows: Given a sampling kernel wiitifinite sup-

port, is there dinite set of samplethat uniquely specifies the
By analogy with nonuniform splines, we have the following signal? In the following sections, we will sample signals with fi-
Theorem 4: Consider a periodic piecewise polynomidl) nite number of weighted Diracs with infinite support sampling
with periodr, containingK pieces of maximum degrde. Take kernels such as the sinc and Gaussian.
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A. Sinc Sampling Kernel K,...,N — 1. If we let P(v) = Y, psu*, then this annihi-
Consider a continuous-time signal with a finite number dfiNg €quation is equivalent to
weighted Diracs K B .
K—1 Zmé (=D n y,) =0 (45)
z(t) =Y a bt —ty) (40) =0 [VInk
k=0 S V.p=0 (46)

and the sinc sampling kernel. The sample values are obtaineq,\ﬂ,}/erev

filtering the signal with a sinc sampling kernel. This is equiva: . . N
— <
lent to taking the inner product between a shifted version of ta nontrivial solution whew — & > K and the Ranv) < K.

i d the sianal. that is. — (hn(t T (s h rﬂs?at is, condition C1]. Therefore, (45) can be used to find the
]smctan_ B;“_ns'gg?’ '?h g”__l <TB_(rh; " e)s’t_xo(n)zr’];: aer'rseesKJrl unknownspy, which lead to the( locationst,, since these
.LB( ) = ! O( ), Wi = 1/T. quest €S are the roots of’(u). Once theK locationst;, are determined,
is the following: How many of these samples do we need to r

. . 1e weights of the Diracs, are found by solving the system in

cover the signal? The signal ha&2legrees of freedond’ from g . ; y ) 9 y

. . . (44) forn = 0,..., K — 1. Sincety, # t;,Yk # [, the system
the weights and< from the locations of the Diracs; thug] . . L

lesV > 2/ will b ficient t the sianal. Si admits a solution from condition C2]. ]

ﬁ:rn:g tie revio :Véassss?héciggon(?s{rei?ﬁrmeetr?(;%na'il rém'. Note that the result does not dependBnThis of course
nart previou . structi WIT QUS| s only in theory since in practice, the matix may be
solving two systems of linear equations: one for the locations

the Di VoIV i and for th iahts of th iM-conditioned if 7" is not chosen appropriately. A natural so-
€ biracs nvolving a matriy and one for the weights o e.#ution to this conditioning problem is to take more than the crit-

t[:]';i?”(')%?]lv'ggn%i?sézxiézgfiiﬁiesgswms admit solutions ical number of samples and solve (46) using a singular value
9 N ] decomposition (SVD). This is also the method of choice when
Cl] RanKV) < K,whereV € RV-")x(K4 U isdefined pgjse is present in the signal. The matdx which is used to
by (45). o ] find the weights of the Diracs, is less sensitive to the valug of
C2] RanKA) = K, whereA € R*** is defined by (43). and petter conditioned on average thén
Theorem 5: Given a finite stream oK weighted Diracs and
a sinc sampling kernél(t) with B = 1/7, if conditions C1] B. Gaussian Sampling Kernel

and C2] are satisfied, then thé > 2K samples Consider sampling the same signal as in (40) but, this time,
Yo = (hp(t —nT),z(t)), n=0,..., N—1 (41) With a Gaussian sampling kerne}(¢) = ¢ /27", Similar to
the sinc sampling kernel, the samples are obtained by filtering

isan(N — K)x (K+1) matrix. The system (46) admits

are a sufficient representation of the signal. the signal with a Gaussian kernel. Since there dfeu®known
Proof: The sample values in (41) are equivalent to variables, we show next tha¥ samples withNV > 2K are
K-1 sufficient to represent the signal.
Un = Z C Bsinc(—k — n) Theorem 6: Given a finite stream ol \éveigzhted Diracs and
k=0 a Gaussian sampling kernkl (t) = ¢ /2 If N > 2K,
_Kz—:l ¢ B sin (T4 — an) then the/N sample values
= ) yn = (ha(t = nT), (1)) (47)
N ¢ B sin (%) are sufficient to reconstruct the signal.
=(-1) Z 7(3 — Proof: The sample values are given by
=0 AT 7" .
1= wt 1 N~ g ot 20
o (=1)"y, == Z cx B sin <—’“ c . (42) Yn = Z Ck ©
—
Let us define the degre — 1 Lagrange polynomial;.(u) = _ Z (ck G—t%/%z) entnT/o” =7 /207 g8y
(P(u)/(u — t./T)), whereP(u) = [[r_y (u— tx/T). Mul- =
tiplying both sides of (42) by?(n), we find an expression in DET? /202 42 Ja,?
terms of the interpolating polynomials. If we let S[n] = e /  Yno Gk = G € ¢/27, anduy =
L et*T/7° then (48) is equivalent to
—
) t\ Li(n) K—1
1) P(n)y, = B sin [ 2k 43
- () yn ch Sm(T) 7r (43) S[n]:ZakuZ, n=0,...,N—1. (49)
Y, k=0 v
” [Alx k=0
&Y =A-c. (44) Note that we reduced the expressigjm] to a linear combina-

tion of real exponentialg. SinceN > 2K, the annihilating
Since the right-hand side of (43) is a polynomial of degkee  fjjter method described in Appendix B allows us to determine
1 in the variablen, applying K finite differences makes the ., andu,. In addition, note that the Toeplitz system in (68) has
left-hand side vanish that is, A" ((—1)" P(n)y.) = 0,n = real exponential component§n] = ¢"°/27" y;,,, and therefore,
4Note that thel¢ finite-difference operator plays the same role as the anniti SOIUtiON exists when the number of equations is greater than
lating filter in the previous section. the number of unknowns, that &, — X > K, and the rank of
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(a) (b)

Fig. 6. (a) Hat spline sampling kerng| (¢/T"), T' = 1. (b) Bilevel signal with up to two transitions in an interyal » + 1] sampled with a hat sampling kernel.

the system is equal t&, which is the case by hypothesis. Fur- Proposition 1: A bilevel signalz(t), ¢ > 0 with initial con-

thermore o must be carefully chosen; otherwise, the system dtion a:(t)| _, = lis uniquely determined from the samples
ill conditioned. The locations are then given by yn = {(x(t), Bo(t/T — n)), wherey(t) is the box spline if
o2 Inuy and only if there is at most one transitiog in each interval
= T (50) [nT, (n + 1)T].

Proof: For simplicity, let” = 1, and suppose tha{n) =
L 1. If there are no transitions in the intenjal, » + 1], then the
cp = ay etv/27 (51) sample value ig, = 1. If there is one transition in the interval

[n,n + 1], then the sample value is equaltp = ¢, — n from
ﬁhich we uniquely obtain the transition valag = ¥, + n.

and the weights of the Diracs are simply given by

[

Here, unlike in the sinc case, we have an almost local rec
struction because of the exponential decay of the Gaussian s
pling kernel, which brings us to the next topic.

%_show necessity, suppose there are two transitigns.1 in
e intervalln,n + 1], then the sample value is equalgp =
tr —tr+1 + 1 and is not sufficient to determine both transitions.
Thus, there must be at most one transition in an intéryal+1]
to uniquely define the signal. [ |
Now, consider shifting the bilevel signal by an unknown shift
In this section, we consider the dual problem of Section 'Yz then, there can be two transitions in an interval of lerijth
thatis infinite lengthsignalsz(t), ¢ € R* with afinitelocalrate  ang one box function will not be sufficient to recover the tran-
of innovation and sampling kernels witbmpact suppoffd9].  sijtions. Suppose we double the sampling rate; then, the support
In particular, the B-splines of different degréere considered of the pox sampling kernel is doubled, and we have two sample
[17] valuesy,,, y,+1 covering the intervaln T, (n 4+ 1)T], but these
o + values are identical (see their areas). Therefore, increasing the
Bal®) = (BarxPo)(t), deN (52) sampling rate is still (insufficient. ) °
where the box spline is defined #(¢) = 1 for0 < ¢t < 1 and This brings us to consider a sampling kernel not only with a
0 elsewhere. larger support but with added information. For example, the hat
We develop local reconstruction algorithms that depend @pline function3; () = 1— |¢| for |t| < 1 and O elsewhere leads
moving intervals equal to the size of the support of the sanp the sample values defined by = (3,(¢t/T — n), z(¢)).
pling kernel s The advantage of local reconstruction algorithms Fig. 6 illustrates that there are two sample values covering the
is that their complexity does not depend on the length of theterval [T, (n + 1)T7] from which we can uniquely determine
signal. In this section, we consider bilevel signals but similar the signal.
the previous sections the results can be extended to piecewisBroposition 2: An infinite-length bilevel signalz(¢), with
polynomials. initial condition z(0) = 1, is uniquely determined from the
Let z(t) be an infinite-length continuous-time signal thasamples defined by, = (3.(¢t/T — n),z(t)), where3,(t)
takes on two values 0 and 1 with initial c:onditixmflt)|t=0 =1 s the hat sampling kernel if and only if there are at most two
with a finite local rate of innovatiop. These are called bilevel transitionst,. # ¢; in each interva[nT, (n + 2)T7.
signals and are completely represented by their transition Proof: Again, for simplicity, letZ” = 1, and suppose the

V. INFINITE-LENGTH BILEVEL SIGNALS WITH FINITE
LoCAL RATE OF INNOVATION

valuest,. signal is known fot < n anda:(t)|t=n = 1. First, we show suf-
Suppose a bilevel signal is sampled with a boficiency by showing the existence and uniqueness of a solution.
spline #o(t/T). The sample values obtained agg = Then, we show necessity by a counterexample.

(Bo(t/T — n),x(t)), which correspond to the area occupied
by the signal in the intervadh T, (n + 1)T]. Thus, if there is at
most one transition per box, then we can recover the transition
from the sample. This leads us to the following proposition.

< Similar to the box sampling kernel, the sample values
will depend on the configuration of the transitions in the
interval [n, n + 2]. If there are at most two transitions in
the intervalln, n + 2], then the possible configurations are
5The size of the support ¢f,(t/T) is equal to{d + 1)T. (0,0), (0,2), (0,2), (1,0), (1,1), (2,0), where the first and
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second component indicate the number of transitions in theThe methods rely on separating the innovation in a signal
intervalsn, n+1], [n+1, n+2], respectively. Furthermore, from the rest and identifying the innovative part from the sam-
since the hat sampling kernel is of degree one, we obtgifes only. In particular, the annihilating filter method plays a

for each configuration a quadratic system of equations wikey role in isolating the innovation. Some extensions of these

variablestg, t; results, like to piecewise bandlimited signals, are presented in
n [11] and [21], and more details, including a full treatment of the
Yn =/ z(t)(1+t—n)dt discrete-time case, are available in [10], [22], and [23].
"‘1n+1 To prove the sampling theorems, we assumed deterministic,
+ / 2(t)(1 — (t— n)) dt (53) hoiseless signals. In practice, noise will be present, and this can
n be dealt with by using oversampling and solving the various sys-

nl tems involved using the singular value decomposition (SVD).
Yn+1 :/n s(t)(1+t—(n+1))dt Such techniques are standard, for example, in noisy spectral es-
n+2 timation [16]. Initial investigations using these techniques in our
+/ z(t)(1—(t—(n+1)))dt  (54) sampling problem are promising [13].

+1 It is of also interest to compare our notion of “finite rate

which admits a solution in the given interval. ~ of innovation” with the classic Shannon bandwidth [12]. The
~ As for uniqueness, if, = 1 andy,+1 = 1, then this  Shannon bandwidth finds the dimension of the subspace (per
implies configuration (0,0). unit of time) that allows us to represent the space of signals of

If y, = 1and1/2 < y,41 < 1, then the possible jnterest. For bandpass signals, where Nyquist's rate is too large,
configurations are (0,1),(0,2). By hypothesis, there are ghannon’s bandwidth is the correct notion, as it is for certain
most two transitions in the interval +1, n +3]; therefore, other spread-spectrum signals. For pulse position modulation
if y,1+2 < 1/2,thenthe configurationinthe intervial, n+  (PPM) [7], Shannon’s bandwidth is proportional to the number
2]is (0,1); otherwise, ify,+2 > 1/2, then the configuration of possible positions, whereas the rate of innovation is fixed per

is (0,2). intervals Thus, the rate of innovation coincides with our intu-
If 1/2 <y, < 1andl/2 < y,y1 < 1, thenthisimplies ition for degrees of freedom.

configuration (2,0). This discussion also indicates that an obvious application of
If 1/2 < y,, < 1ando < y,41 < 1/2, then thisimplies our results is in communications systems, like, for example, in

configuration (1,0). ultrawide band communication (UWB). In such a system, a very

= Necessity is shown by counterexample. narrow pulse is generated, and its position is carrying the infor-

~ Consider a bilevel signal with three transitions in thenation. In [6], initial results indicate that a decoder can work
interval [0,2] but with all three in the interval [0,1]. Then,at much lower rate than Nyquist's rate by using our sampling

the quadratic system of equations is results. Finally, filtered streams of Diracs, known as shot noise
1 2 2 4 [7], can also be decoded with low sampling rates while still re-
Yo =35 +ito—t1+t2— 35 + R (55) cove_ring thelexa}ct positions of the_ Diracs. Therefore, we expect
22 the first applications of our sampling results to appear in wide-
y==—5+= (56) band communications.

. . . L Finally, the results presented so far raise a humber of ques-
Wh'ch does not admit a unique but an infinite r_ymbe_r cHons for further research. What other signals with finite rate of

solutions. Thus, there must be at most 2 transitions in §f},,ation can be sampled and perfectly reconstructed? What
interval [0,2]. tools other than the annihilating filter can be used to identify in-

) ) ) B novation, and what other types of innovation can be identified?

The pseudo-code for sampling bilevel signals using thgna are the multidimensional equivalents of the above results,

box and hat functions are given in full detail in [10], [22]. Agng are they computationally feasible? These topics are cur-

stronger condition than the one in Proposition 2 is to requifgntly under investigation. Thus, the connection between sam-

pmaz(2T) < 1/T. In that case, we are ensured that on anyjing theory on the one hand, and spectral analysis and error
interval of length Z’, there are at most two transitions, angyrection coding on the other hand, is quite fruitful.
therefore, the reconstruction is unique. Based on Propositions

1 and 2, we conjecture that using splines of degtea local
rate of innovatiorp, ... ((d + 1)T") < 1/T ensures unicity of
the reconstruction.

APPENDIX A
ANNIHILATING FILTERS

Here, we give a brief overview of annihilating filters (see [16]
VI. CONCLUSION for more details). First, we have the following definition.
Definition 2: A filter A[n] is called an annihilating filter of

We considered signals with finite rate of innovation tha& signalS[n] when

allow uniform sampling after appropriate smoothing and per-
fect reconstruction from the samples. For signals like streams (A+S)n]=0 VaneN (57)

of Diracs, nonuniform splines, and piecewise polynomials, we

were at?|e to derive exact re.CO_nStrUCt'on formulas, even thounghe number of degrees of freedom per interval is 1 or 2, depending if the
these signals are nonbandlimited. amplitude is fixed or free.
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Next, we give annihilating filters for signals that are linear cormand is composed of three parts: First, we need to find the anni-

binations of exponentials. ’
Proposition 3: The signalS[n] = > 1o ¢ ufl, wherec, €
R, ux € C, is annihilated by the filter

K—-1 K
A = [ -2t =" A" (58)
k=0 £=0
Proof: Note that
K
(AxS)[n] =) Al S[n—1] (59)
[Izs’o K-1
=> > e Alup (60)
=0 k=0
K—-1
ch <ZA£]U ) = (61)
k= e e Y —

Aluy)

Thus, A[n] annihilatesS[n]. |
Next, we show that the signal’ «™ is annihilated by a filter
with R poles, where: < R — 1.
Proposition 4: The signalS[n] = n” «™ is annihilated by the
filter

A2y =1 —uz"HE = ER:A[z]z—é. (62)
L=
Proof: Note that 0
(A 8)[n] —;A;A[E]S[n —{ (63)
= i Alf](n — )" un=* (64)
£=0

By differentiatingr times(1 — w 2~ )£, we easily see that

ER:A[Z]K(E—1)~~~~~(£—7’+1)u_é:O. (65)

Thisistruefor = 0,..., R—1.Thus,3"% | A[/] P[{]u=* =0
for all polynomialsP(¢) of degree less than or equal - 1,
in particular, forP[¢] = (n — £)". Thus,A[n] annihilatesS[n].
]

It follows from Proposition 3 and 4 that the ﬂltﬂl‘ o (1
w, 2~ 1)B+L annihilates the signa[n] = S5 e nfup.

APPENDIX B
ANNIHILATING FILTER METHOD

The annihilating filter method consists of finding the values

¢, anduy in

K-1

[n] = chuz, Vnelt

k=0

(66)

hilating filter that involves solving a linear system of equations;
second, we need to find the roots of théransform of the an-
nihilating filter, which is a nonlinear function; third, we must
solve another linear system of equations to find the weights.

1) Finding the annihilating filter.

The filter coefficientsA[¢] in A(z) = A[f] 2~*
must be such that (57) is satisfied or
K
> Al S —£=0, Vnel (67)

£=0

In matrix/vector form, the system in (67) is equivalent to

5[:0] 5[:—1] 5[—:K]

A[0]
S 5[] S[=(K - 1)] Af1] _
5[:1(] S[K:— 1] A[:K]

S[0]

(68)
SupposeV valuesS|[n] are available. Since there ake+

1 unknown filter coefficients, we need at leakt + 1
equations, and thereforé] must be greater or equal to
2K + 1. Define S the appropriate submatrix; then, the
systemS - A = 0 will admit a solution when Rar{i8) =
K.

In practice, this system is solved using an SVD where
the matrixS is decomposed int6 = UXV*. We obtain
that A = V - ex1, Whereeg 4 is a vector with 1
on positionK + 1 and 0 elsewhere. The method can be
adapted to the noisy case by minimiziff§- A ||, in which
case,A is given by the eigenvector associated with the
smallest eigenvalue &7'S.

Finding theuy.

Once the the filter coefficientd[n] are found, then the
valuesu; are simply the roots of the annihilating filter
A(2).

Finding thecy,.

To determine the weights,, it suffices to takeK

equations in (66) and solve the system fqr. Let

2)

3)

n=0,...,K — 1; then, in matrix vector form, we have
the following Vandermonde system:
1 1 - 1
Uo U1 UK -1
u(()z(_n ugz(_n g‘ 11)
co S[0]
¢ S[1]
= (69)
CK_1 S[K — 1]
and has a unique solution when

This concludes the annihilating filter method.
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