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ABSTRACT This model corresponds to the usual physical set up where

) ] ) ) the signal is "seen" through a channel, or passed through a
We consider the problem of sampling signals which are not lowpass filter before sampling.

bandlimited, but still have a finite number of degrees of free- 11,¢ key question we pursue in this paper is thus: for what
dom per unit of time, such as, for example, piecewise poly- signals with finite rate of innovation and what sampling ker-
nomials. We demonstrate that by using an adequate saMpg|s can we perfectly recovett) from regular sampling?
pling kernel and a sampling rate greater or equal to the nuM-agter a definition of signals with finite rate of innovation,
ber of degrees of freedom per unit of time, one can uniquely yye demonstrate a sampling theorem for streams of Diracs
reconstruct such signals. This proves a sampling theorem, g periodic piecewise polynomial signals. We also show

for a wide class of signals beyond bandlimited signals. Ap- |ocal reconstruction algorithms based on splines for some
plications of this sampling theorem can be found in signal simple signals.

processing, communication systems and biological systems.

2. DEFINITIONS
1. INTRODUCTION o )
Let us start by defining the classes of real signals we are

The sampling theorem is pervasive in signal processing [3] cOnsidering in the sequel.
and allows to represent the class of bandlimited signals by y i nition 1 Asignal with finiterate of innovationis afunc-

appr_opriate samples of the sign_al (e.g._ taken at twice thetion of time which allows a parametric representation hav-
maximum frequency). When signals live on a subspaceing a finite number of degrees of freedom over finite win-
spanned by a basis function and its sh{ftgt — nT')} ez, dows of time.

they can be reconstructed from samples derived from inner

products as well. But in general, signals which do not live Definition 2 The rate of innovation p is the average num-
on a specific subspace can only be reconstructed up to theyer of degrees of freedom per unit of time, or, with C,, (to,t1)
projection onto that subspace (e.g. the bandlimited approx-gjving the number of degrees of freedom of (t) over thein-
imation). terval [to, t1],

In this paper, we consider classes of signals which are not

bandlimited nor live on subspaces, yet can be represented p= lim le(— ). @)
through sampling. The key property of these signals is that T—o0

they have a finite number of degrees of freedom per unit of ¢ we consider finite length or periodic signals of length

time, what we call é”_“te rateoflnrjovatlon [4]. i .. T, then the number of degrees of freedom is finite, and
Examples of suph signals are bllt_avel S'Q”a's W'th_a f|n|.te the rate of innovation i$ /7' C, [0, T']. Bandlimited signals
n_umber_ of tran§|t_|ons per unit of tlm_e._ Since the signal is with suppor{—x /T, 7 /T] have arate of innovation af/ T,
discontinuous, it is clearly not bandlimited, yet, because of since they are uniquely specified by samples taken efery
the finite rate of transition, it is possible to derive a sam- seconds. If we consider discrete-time sequences then gen-
pling scheme from which the signal can be perfectly recon- o5 sequences have a (normalized ) rate of innovatidn of

structed.
one degree of freedom per sample).
Instead of sampling the signal(t) directly, we sample the ( g P le)

output ofz(¢) convolved with a kernep(t) = ¢(—t), so Example 1 Poisson process.
that the samples taken at integer multiple§ cdre A Poisson process generates Diracs with independent and
identically distributed (i.i.d.) interarrival times, the distri-
z[n] =< z(t), (t —nT) > . 1) bution being exponential with probability density function

rr
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weF. The expected interarrival time is given by 1/pu. 2K successive components ¥fand this system is always
Thus, the rate of innovationis . solvable. Typically, one uses tl#< central terms oiX,
which correspond to an ideal lowpass versioxofin that

While one can define many parametric signals which havecase,a:[n] can be convolved with an ideal sinc filter that

a finite rate of mpovatlon, m_the s_equel we WI|! conce_ntrate keeps frequencies betweenk’ and K. The result of the
on streams of Diracs and piecewise polynomials which are

| for which ble 10 qi lina th dconvolution can be subsampled by an inteyjeras long as
classes for which we are able 1o give sampling tn€orems and, 1 s 4 givisor of v andA/ is small enough such as to avoid
reconstruction formulae.

aliasing.
Finally, to find theK values{c, };~,' we need to solve the
3. DISCRETE-TIME SIGNALSWITH FINITE RATE Vandermonde system in (5) with = 0, ... , K — 1, which

OF INNOVATION is also always solvable. Putting all together, we have

We will start with the simplest case, namely discrete-time Proposition 1 Consider adiscrete-time periodic signal z[n]
periodic signals. Among them, stream of Diracs are the Of period N containing K* weighted Diracs. Let M be an
most elementary and thus we start with them. More gen-integer divisor of V' satisfying N/M > 2K + 1 and take
erally, piecewise polynomials can be reduced to stream ofthe discrete-time periodized sinc sampling kernel ¢[n] =

Diracs through appropriate derivation, which is done next. 1 f: Wy™", that is, the inverse DTFSof Rect|_j x|
N ’ h -K, .
—K

N
3.1. Stream of Diracs Then the N/M samples
Consider a discrete-time periodic signal ys[l] = < zn],o[n —IM]> 1=0,...,N/M—1(8)
x = (z[0],z[1],... ,z[N —1])T (3) are a sufficient representation of the signal.
containingK’ weighted Diracs at locationg:; } = !, or i IR ml
9 kS k=0 Expanding (8), we gey,[l] = + _ZEKX[—m] Wiy

K-l from which are obtainedv/M value;X[m] sufficient to
en] = > e dln—ngl, (4)  find the locations of the Diracs. See [5] for a detailed proof.
k=0 WhenN/M = 2K + 1 then the number of samples in (8)
whered[n] is the Kroneckeb[n] = 1 if n = 0,0 else. is just1 more than the number of degrees of freedpthat

Call X the discrete-time Fourier series (DTFS) coefficients S: We are very close to “critical sampling".

of x where
3.2. Piecewise Polynomial Signals

K—1
X[m] = Z ck W™, m=0,...,N—-1 (5 Define a discrete-time piecewise polynomial signal oy
k=0 intervals[ny,nk1] and pieces which are polynomials of
maximum degree? on [ng,n;+1 — 1]. Note that this is
more general than integrating a stream/ofDiracs (4),
since for example discontinuities at interval boundaries are
permitted. To extend the above result to piecewise poly-
nomials of maximum degre&, we need to takéR + 1)
first order discrete-time differences, and then apply Propo-

andWy = e 27/N_ X is thus a linear combination of
complex exponentials, each of which can be cancelled with
an appropriate zero at locatid# \*. GivenX, it suffices

to find the annihilating filtéf H = (1, H[1],... , H[K])
satisfying [2]

H+.X = 0. (6) sition 1. Calld[n] = d[n] — d[n — 1] the discrete-time
periodic first order difference, witth[m] = 1 — W} its
This filter H hasz—transformH (z) which factors as DTFS coefficients. Call[n] the discrete-time periodized

sinc kernel of appropriate bandwidth. Then tfe + 1)th

et derivative sinc sampling kernet[n] is given by [n]
_ L lyyne =
H@z) = kl:[o (1 =27 Wy') () d[n] * d[n] * - - - = d[n] x¢[n]. The convolution of the signal
1 Ni . . R‘—;l . . . . .
having zeros alVy*, k = 0,... , K — 1. Hencetofind the 4[] with [n] is equivalent (by associativity of the con-
set of |0cat'0n§"k}k=o it suffices to find the filter coef-  yolution operator) to convolving théR + 1)th (discrete-
ficients{#[k]};._, and then find the zeros @1 (z). Equa-  time) derivative ofz[n] with the sinc kernep|[n]. Now, this

tion (6) leads to a Toeplitz system of equations involving
2In the discrete-time scenario, position is not a "real" degree of free-

1This is also known as the error locator polynomial in error correction dom, since it is an integer. Thus, combinatorial methods can actually work
coding. with fewer "samples" in certain cases [1].




Figure 1: (a) Piecewise lineaR(= 1) signal of periodV =
1024 with K = 6 pieces; (b) Differentiated sinc sampling
kernelyo[n] = d[n]*d[n]xp[n]; (c) Sample valueg[l] =<
z[n], Y[n—IM] > with M = 32; (d) Stream of{ (R+1) =

12 weighted Diracsz? [n] = d[n] * d[n] * z[n].

(R + 1)th derivative,z %+ [n] is a collection of at most
K (R+1) weighted Dirac spikes from whick[r] can be re-
covered (up to polynomials of degree smaller th&nt 1)).
Since we know how to reconstruct®*') [n] from the inner
products with the sinc kernel, we have

Theorem 1 Consider a zero mean discrete-time periodic
piecewise polynomial signal of period V with K pieces of
degree R. Let M beaninteger and adivisor of N such that
N/M > 2K(R+ 1)+ 1. Take a sampling kernel ¢)[n] with
DTFS ¥[m| = (D[m])R+1Rect[,K(RJrl%K(RJrl)}. Then
we can recover the signal fromthe N/M € N samples

ys[l] =< z[n],Y[n—IM]> 1=0,..., N/M—1.(9)

For a proof see [5]. Figure 1 illustrates the reconstruction of
a discrete-time periodic piecewise linddt = 1) signal of
period N = 1024 with K = 6 pieces. We takéV/M = 32

samples. The reconstructed signal is equal to the original

(Fig. 1(a)) within machine precision( 1!,

4. CONTINUOUSTIME SIGNALSWITH FINITE
RATE OF INNOVATION

We derive now the equivalent results but in continuous time,
again building up from stream of Diracs to piecewise poly-
nomial signals.

4.1. Stream of Diracs

Consider a periodic signal(t) of periodr containing K
Diracs at locationgt, }+ ' with ¢, € [0, 7), or

K—-1
z(t) = YD bt —nr—t).

neN k=0

(10)

Consider the continuous-time Fourier series (CTFS) coeffi-
cients ofz(t)
1 P 1 K-1
_/x(t)e—ﬂﬂmt/'r dt = = Z Cr e—i27rmtk/‘r.(11)
T T k=0
2 —

Assume we convolve(t) with a periodic sinc filter of band-
width [- K, K]. This leads to a lowpass approximatig()
given by

y(t) (12)

K .
Z X[m]ez27rmt/‘r‘
m=—K

Consider now sampling(t) at multiples ofl’, wherer /T €
N,

ys[ll = y(T)

K
Z X[m]eiZﬂ'mlT/‘r. (13)
m=—K

Clearly, as long as /T > 2K + 1, (13) can be used to
recoverX[m]. To find thet,’s in (11), we need to find
the annihilating filted = (1, H[1], H[2],... , H[K]) such
that

H=x. X

0. (14)

K
Consider thez—transform ofH, or H(z) = > H[l] 2™
=0
which factorizes into

K-1

H(iz) = J[(-2""%)

k=0

(15)

and we find

e—zQTrtk/‘r7

Zy, (16)

that is, theK locations{t;}+_'. The system to solve in
(14) is the same Toeplitz system that we considered in the
previous section. Similarly, a Vandermonde system then
gives the valuegcy }1—,'. Therefore we can state:

Proposition 2 Consider a continuous-time periodic stream
of K weighted Diracswith period  and a periodic sinc sam-
pling kernel of bandwidth [— K, K]. The streamof Diracsis
uniquely defined by taking 7/7" € N samples y;[!] defined
in (13), with7/T > 2K + 1.

The proofis found in [5].

4.2. Piecewise Polynomial Signals

Without getting into details at this point, we simply mimic
the approach shown in the discrete-time case. The CTFS of
the sampling kernel needs to have a factorization

(D))" @[m]

(17)

U[m]



where D[m] = i2wm is the CTFS of the derivative and An obvious question is: What happens when going to sam-
®[m] is the appropriatdiect function. Thus,¥[m] is the pling kernels with larger support? Consider the linear spline
CTFS of a bandlimitedR + 1)th derivative. The simplest or the hat functiorp, (¢) = 1 — |¢] if |¢| < 1,0 otherwise .
form of the result appears for piecewise polynomials of de-
gree R which have(R — 1) continuous derivatives (e.g.
piecewise linear and continuous). The first factor in (17)
leads to thg R + 1)th derivative ofz(t), which can be re-
covered from sampling as shown in the previous subsection,
and thus [5] When going to higher order splines, necessity carries over.
Sufficiency, on the other hand requires to solve higher order
polynomial equations, which becomes difficult. The details
of the proofs are found in [5].

Proposition 4 Abilevel signal x(t) is uniquely determined
from the samples z[n] obtained using the hat sampling ker-
nel 1 (t) with T = 1 in (1) if and only if there are at most
two transitions ¢; # t; in eachinterval [n,n + 2.

Theorem 2 Consider a continuous-time periodic piecewise
polynomial signal, z(t), with period + and K pieces of max-
imum degree R, belonging to ¢! and having zero mean.
Consider a sampling kernel asin (17) with a Rect of width
[-K,K]. If /T > 2K + 1 then z(t) can be uniquely re-
covered fromthe 7/T" € N samples Here we just mention that when sampling piecewise polyno-
mial signals using the box sampling kernel not only are the
ysll] =< =(t),¢(t —1T)> 1=0,...,7/T—1. (18)  transition values unknown but the polynomial coefficients
as well and so we need to increase the sampling rate by
4.3. Finitelength signals R + 2 whereR is the degree of the polynomial. An itera-

. _ _ S ~tive algorithm for piecewise constant and piecewise linear
Itis possible to consider using infinitely supported sampling sjgnals is given in [5].

kernels (like the sinc or the Gaussian kernel) to sample fi-
nite length signals which are piecewise polynomial. Then,
a finite number of samples allows to reconstruct the signal.
The techniques, while similar in spirit, are more complex
and we refer to [5] for details.

5.2. Piecewise Polynomial Signals

6. CONCLUSION

' In this paper, we have shown that piecewise polynomials
with a rate of innovation op can essentially be sampled
with an appropriate sampling kernel (e.g. sinc kernel) with
5. LOCAL RECONSTRUCTION ALGORITHMS a sampling period” < 1/p and can be perfectly recovered

from these samples. This extends the idea of uniform sam-

The methods seen so far require global information to re- pling to a wider class than the classical, bandlimited signals.

construct the signal, or the signal has to be of finite length. For example, piecewise bandlimited signals are treated in

A guestion of interest is to see under which conditions a [6].

local reconstruction scheme is possible. To explore this,
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