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ABSTRACT

We consider the problem of sampling signals which are not
bandlimited, but still have a finite number of degrees of free-
dom per unit of time, such as, for example, piecewise poly-
nomials. We demonstrate that by using an adequate sam-
pling kernel and a sampling rate greater or equal to the num-
ber of degrees of freedom per unit of time, one can uniquely
reconstruct such signals. This proves a sampling theorem
for a wide class of signals beyond bandlimited signals. Ap-
plications of this sampling theorem can be found in signal
processing, communication systems and biological systems.

1. INTRODUCTION

The sampling theorem is pervasive in signal processing [3]
and allows to represent the class of bandlimited signals by
appropriate samples of the signal (e.g. taken at twice the
maximum frequency). When signals live on a subspace
spanned by a basis function and its shiftsf'(t� nT )gn2Z,
they can be reconstructed from samples derived from inner
products as well. But in general, signals which do not live
on a specific subspace can only be reconstructed up to the
projection onto that subspace (e.g. the bandlimited approx-
imation).
In this paper, we consider classes of signals which are not
bandlimited nor live on subspaces, yet can be represented
through sampling. The key property of these signals is that
they have a finite number of degrees of freedom per unit of
time, what we call afinite rate of innovation [4].
Examples of such signals are bilevel signals with a finite
number of transitions per unit of time. Since the signal is
discontinuous, it is clearly not bandlimited, yet, because of
the finite rate of transition, it is possible to derive a sam-
pling scheme from which the signal can be perfectly recon-
structed.
Instead of sampling the signalx(t) directly, we sample the
output ofx(t) convolved with a kernel~'(t) = '(�t), so
that the samples taken at integer multiples ofT are

x[n] =< x(t); '(t � nT ) > : (1)

This model corresponds to the usual physical set up where
the signal is "seen" through a channel, or passed through a
lowpass filter before sampling.
The key question we pursue in this paper is thus: for what
signals with finite rate of innovation and what sampling ker-
nels can we perfectly recoverx(t) from regular sampling?
After a definition of signals with finite rate of innovation,
we demonstrate a sampling theorem for streams of Diracs
and periodic piecewise polynomial signals. We also show
local reconstruction algorithms based on splines for some
simple signals.

2. DEFINITIONS

Let us start by defining the classes of real signals we are
considering in the sequel.

Definition 1 A signal with finite rate of innovation is a func-
tion of time which allows a parametric representation hav-
ing a finite number of degrees of freedom over finite win-
dows of time.

Definition 2 The rate of innovation � is the average num-
ber of degrees of freedom per unit of time, or, withCx(t0; t1)
giving the number of degrees of freedom of x(t) over the in-
terval [t0; t1],

� = lim
T!1

1

T
Cx(�

T

2
;
T

2
): (2)

If we consider finite length or periodic signals of length
T , then the number of degrees of freedom is finite, and
the rate of innovation is1=T Cx[0; T ]. Bandlimited signals
with support[��=T; �=T ] have a rate of innovation of1=T ,
since they are uniquely specified by samples taken everyT
seconds. If we consider discrete-time sequences then gen-
eral sequences have a (normalized ) rate of innovation of1
(one degree of freedom per sample).

Example 1 Poisson process.
A Poisson process generates Diracs with independent and
identically distributed (i.i.d.) interarrival times, the distri-
bution being exponential with probability density function



� e��t. The expected interarrival time is given by 1=�.
Thus, the rate of innovation is �.

While one can define many parametric signals which have
a finite rate of innovation, in the sequel we will concentrate
on streams of Diracs and piecewise polynomials which are
classes for which we are able to give sampling theorems and
reconstruction formulae.

3. DISCRETE-TIME SIGNALS WITH FINITE RATE
OF INNOVATION

We will start with the simplest case, namely discrete-time
periodic signals. Among them, stream of Diracs are the
most elementary and thus we start with them. More gen-
erally, piecewise polynomials can be reduced to stream of
Diracs through appropriate derivation, which is done next.

3.1. Stream of Diracs

Consider a discrete-time periodic signal

x = (x[0]; x[1]; : : : ; x[N � 1])T (3)

containingK weighted Diracs at locationsfnkg
K�1
k=0 , or

x[n] =

K�1X
k=0

ck �[n� nk]; (4)

where�[n] is the Kronecker�[n] = 1 if n = 0; 0 else.
CallX the discrete-time Fourier series (DTFS) coefficients
of x where

X [m] =

K�1X
k=0

ckW
nkm
N ; m = 0; : : : ; N � 1 (5)

andWN = e�i2�=N . X is thus a linear combination of
complex exponentials, each of which can be cancelled with
an appropriate zero at locationW nk

N . GivenX, it suffices
to find the annihilating filter1 H = (1; H [1]; : : : ; H [K])
satisfying [2]

H �c X = 0: (6)

This filterH hasz�transformH(z) which factors as

H(z) =

K�1Y
k=0

(1� z�1Wnk
N ) (7)

having zeros atW nk
N ; k = 0; : : : ;K � 1. Hence to find the

set of locationsfnkg
K�1
k=0 it suffices to find the filter coef-

ficientsfH [k]gKk=1 and then find the zeros ofH(z). Equa-
tion (6) leads to a Toeplitz system of equations involving

1This is also known as the error locator polynomial in error correction
coding.

2K successive components ofX and this system is always
solvable. Typically, one uses the2K central terms ofX,
which correspond to an ideal lowpass version ofx. In that
case,x[n] can be convolved with an ideal sinc filter that
keeps frequencies between�K andK. The result of the
convolution can be subsampled by an integerM , as long as
M is a divisor ofN andM is small enough such as to avoid
aliasing.
Finally, to find theK valuesfckg

K�1
k=0 we need to solve the

Vandermonde system in (5) withm = 0; : : : ;K� 1, which
is also always solvable. Putting all together, we have

Proposition 1 Consider a discrete-time periodic signal x[n]
of period N containing K weighted Diracs. Let M be an
integer divisor of N satisfying N=M � 2K + 1 and take
the discrete-time periodized sinc sampling kernel '[n] =

1
N

KP
m=�K

W�mn
N , that is, the inverse DTFS of Rect[�K;K].

Then the N=M samples

ys[l] = < x[n]; '[n� lM ] > l = 0; : : : ; N=M�1 (8)

are a sufficient representation of the signal.

Expanding (8), we getys[l] = 1
N

KP
m=�K

X [�m]Wml
N=M

from which are obtainedN=M valuesX [m] sufficient to
find the locations of the Diracs. See [5] for a detailed proof.
WhenN=M = 2K + 1 then the number of samples in (8)
is just1 more than the number of degrees of freedom2, that
is, we are very close to "critical sampling".

3.2. Piecewise Polynomial Signals

Define a discrete-time piecewise polynomial signal byK
intervals [nk; nk+1] and pieces which are polynomials of
maximum degreeR on [nk; nk+1 � 1]. Note that this is
more general than integrating a stream ofK Diracs (4),
since for example discontinuities at interval boundaries are
permitted. To extend the above result to piecewise poly-
nomials of maximum degreeR, we need to take(R + 1)
first order discrete-time differences, and then apply Propo-
sition 1. Call d[n] = �[n] � �[n � 1] the discrete-time
periodic first order difference, withD[m] = 1 � Wm

N its
DTFS coefficients. Call'[n] the discrete-time periodized
sinc kernel of appropriate bandwidth. Then the(R + 1)th
derivative sinc sampling kernel [n] is given by [n] =
d[n] � d[n] � � � � � d[n]| {z }

R+1

�'[n]: The convolution of the signal

x[n] with  [n] is equivalent (by associativity of the con-
volution operator) to convolving the(R + 1)th (discrete-
time) derivative ofx[n] with the sinc kernel'[n]. Now, this

2In the discrete-time scenario, position is not a "real" degree of free-
dom, since it is an integer. Thus, combinatorial methods can actually work
with fewer "samples" in certain cases [1].
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Figure 1: (a) Piecewise linear (R = 1) signal of periodN =
1024 with K = 6 pieces; (b) Differentiated sinc sampling
kernel, [n] = d[n]�d[n]�'[n]; (c) Sample valuesys[l] =<
x[n];  [n�lM ] >withM = 32; (d) Stream ofK(R+1) =
12 weighted Diracs,x(2)[n] = d[n] � d[n] � x[n].

(R + 1)th derivative,x(R+1)[n] is a collection of at most
K(R+1)weighted Dirac spikes from whichx[n] can be re-
covered (up to polynomials of degree smaller than(R+1)).
Since we know how to reconstructx(R+1)[n] from the inner
products with the sinc kernel, we have

Theorem 1 Consider a zero mean discrete-time periodic
piecewise polynomial signal of period N with K pieces of
degreeR. Let M be an integer and a divisor of N such that
N=M � 2K(R+1)+ 1. Take a sampling kernel  [n] with
DTFS 	[m] = (D[m])R+1Rect[�K(R+1);K(R+1)]. Then
we can recover the signal from the N=M 2 N samples

ys[l] =< x[n];  [n� lM ] > l = 0; : : : ; N=M�1: (9)

For a proof see [5]. Figure 1 illustrates the reconstruction of
a discrete-time periodic piecewise linear(R = 1) signal of
periodN = 1024 with K = 6 pieces. We takeN=M = 32
samples. The reconstructed signal is equal to the original
(Fig. 1(a)) within machine precision,10�11.

4. CONTINUOUS-TIME SIGNALS WITH FINITE
RATE OF INNOVATION

We derive now the equivalent results but in continuous time,
again building up from stream of Diracs to piecewise poly-
nomial signals.

4.1. Stream of Diracs

Consider a periodic signalx(t) of period� containingK
Diracs at locationsftkg

K�1
k=0 with tk 2 [0; �), or

x(t) =
X
n2N

K�1X
k=0

ck �(t� n� � tk): (10)

Consider the continuous-time Fourier series (CTFS) coeffi-
cients ofx(t)

X [m]=
1

�

�Z
0

x(t)e�i2�mt=� dt =
1

�

K�1X
k=0

ck e
�i2�mtk=� :(11)

Assume we convolvex(t) with a periodic sinc filter of band-
width [�K;K]. This leads to a lowpass approximationy(t)
given by

y(t) =

KX
m=�K

X [m]ei2�mt=� : (12)

Consider now samplingy(t) at multiples ofT , where�=T 2
N,

ys[l] = y(lT ) =
KX

m=�K

X [m]ei2�mlT=� : (13)

Clearly, as long as�=T � 2K + 1, (13) can be used to
recoverX [m]. To find thetk’s in (11), we need to find
the annihilating filterH = (1; H [1]; H [2]; : : : ; H [K]) such
that

H �cX = 0: (14)

Consider thez�transform ofH, or H(z) =
KP
l=0

H [l] z�l

which factorizes into

H(z) =

K�1Y
k=0

(1� z�1Zk) (15)

and we find

Zk = e�i2�tk=� ; (16)

that is, theK locationsftkg
K�1
k=0 . The system to solve in

(14) is the same Toeplitz system that we considered in the
previous section. Similarly, a Vandermonde system then
gives the valuesfckg

K�1
k=0 . Therefore we can state:

Proposition 2 Consider a continuous-time periodic stream
of K weighted Diracs with period � and a periodic sinc sam-
pling kernel of bandwidth [�K;K]. The stream of Diracs is
uniquely defined by taking �=T 2 N samples ys[l] defined
in (13), with �=T � 2K + 1.

The proof is found in [5].

4.2. Piecewise Polynomial Signals

Without getting into details at this point, we simply mimic
the approach shown in the discrete-time case. The CTFS of
the sampling kernel needs to have a factorization

	[m] = (D[m])R+1 �[m] (17)



whereD[m] = i2�m is the CTFS of the derivative and
�[m] is the appropriateRect function. Thus,	[m] is the
CTFS of a bandlimited(R + 1)th derivative. The simplest
form of the result appears for piecewise polynomials of de-
greeR which have(R � 1) continuous derivatives (e.g.
piecewise linear and continuous). The first factor in (17)
leads to the(R + 1)th derivative ofx(t), which can be re-
covered from sampling as shown in the previous subsection,
and thus [5]

Theorem 2 Consider a continuous-time periodic piecewise
polynomial signal, x(t), with period � andK pieces of max-
imum degree R, belonging to CR�1 and having zero mean.
Consider a sampling kernel as in (17) with a Rect of width
[�K;K]. If �=T � 2K + 1 then x(t) can be uniquely re-
covered from the �=T 2 N samples

ys[l] =< x(t);  (t � lT ) > l = 0; : : : ; �=T � 1: (18)

4.3. Finite length signals

It is possible to consider using infinitely supported sampling
kernels (like the sinc or the Gaussian kernel) to sample fi-
nite length signals which are piecewise polynomial. Then,
a finite number of samples allows to reconstruct the signal.
The techniques, while similar in spirit, are more complex,
and we refer to [5] for details.

5. LOCAL RECONSTRUCTION ALGORITHMS

The methods seen so far require global information to re-
construct the signal, or the signal has to be of finite length.
A question of interest is to see under which conditions a
local reconstruction scheme is possible. To explore this,
we consider the simplest piecewise polynomial, namely the
bilevel signal. We then use��splines of varying degrees as
local sampling kernels.

5.1. Bilevel Signals

Define a bilevel signal as a continuous-time signalx(t) =
0 or 1; t 2 R

+ , with x(0) = 1. Consider first the box spline
'0(t) = 1 if 0 � t < 1; 0 otherwise. Supposex(n) = 1
and there is a transitiontk in [n; n + 1]. Then the sample
valueys[n] =< x(t); '0(t � n) >= tk � n which implies
that the transitiontk = ys[n] + n. This leads us to the
following proposition.

Proposition 3 A bilevel signal x(t) is uniquely determined
from the samples ys[n] =< x(t); '0(t � n) if and only if
there is at most one transition tk in each interval [n; n+1].

Sufficiency was shown above and necessity can be shown
by counterexample, see [5].

An obvious question is: What happens when going to sam-
pling kernels with larger support? Consider the linear spline
or the hat function'1(t) = 1� jtj if jtj < 1; 0 otherwise .

Proposition 4 A bilevel signal x(t) is uniquely determined
from the samples x[n] obtained using the hat sampling ker-
nel '1(t) with T = 1 in (1) if and only if there are at most
two transitions ti 6= tj in each interval [n; n+ 2].

When going to higher order splines, necessity carries over.
Sufficiency, on the other hand requires to solve higher order
polynomial equations, which becomes difficult. The details
of the proofs are found in [5].

5.2. Piecewise Polynomial Signals

Here we just mention that when sampling piecewise polyno-
mial signals using the box sampling kernel not only are the
transition values unknown but the polynomial coefficients
as well and so we need to increase the sampling rate by
R + 2 whereR is the degree of the polynomial. An itera-
tive algorithm for piecewise constant and piecewise linear
signals is given in [5].

6. CONCLUSION

In this paper, we have shown that piecewise polynomials
with a rate of innovation of� can essentially be sampled
with an appropriate sampling kernel (e.g. sinc kernel) with
a sampling periodT � 1=� and can be perfectly recovered
from these samples. This extends the idea of uniform sam-
pling to a wider class than the classical, bandlimited signals.
For example, piecewise bandlimited signals are treated in
[6].
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