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ABSTRACT

We consider sampling discrete-time periodic signals
which are piecewise bandlimited, that is, a signal that
is the sum of a bandlimited signal with a piecewise
polynomial signal containing a finite number of tran-
sitions. These signals are not bandlimited and thus
the Shannon1 sampling theorem for bandlimited signals
can not be applied. In this paper, we derive sampling
and reconstruction schemes based on those developed
in [1, 6, 7] for piecewise polynomial signals which take
into account the extra degrees of freedom due to the
bandlimitedness.

1. INTRODUCTION

Sampling of bandlimited signals has been a subject of
interest to the sampling community for more than half
a century [4]. The well-known sampling theorem [2]
states that a continuous-time signal x(t) bandlimited
to [−ωm, ωm] is uniquely represented by a uniform set
of samples x[n] = x(nT ) taken T seconds apart, if the
sampling rate is greater or equal to the bandwidth of
the signal, that is, 2π/T ≥ 2ωm. But not all signals
are bandlimited. Recall the definition of bandlimited.

Definition 1 B−bandlimited signal.
A discrete-time periodic signal x[n] with period N is
B−bandlimited if the discrete-time Fourier series coef-
ficients X [k] are nonzero inside the band [−B,B] and
zero outside the band [−B,B], that is,

X [k] =




N−1∑
n=0

x[n] e−i2πnk/N k ∈ [−B,B]

0 k �∈ [−B,B]
(1)

with k ∈ Z, B ∈ N

In [1, 6, 7] sampling theorems for particular non-
bandlimited signals namely streams of Diracs and
piecewise polynomial signals were given. These signals

1also due to Kotelnikov, Whittaker

belong to a certain class of signals which have a finite
rate of innovation ρ, that is, the number of degrees of
freedom per unit of time is finite. Discrete-time peri-
odic bandlimited signals of period N also have a finite
rate of innovation, that is, ρ = (2B + 1)/N .
In this paper we are interested in signals that would
have been bandlimited if it were not for spikes or dis-
continuities in certain locations, see Figure 1.
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Figure 1: (a) Bandlimited signal with 4 spikes; (b) Ban-
dlimited signal with 3 discontinuities.

These signals are defined as being the sum of a ban-
dlimited signal with a stream of Diracs, in the simplest
case, or with a piecewise polynomial signal. Formally
we have the following

Definition 2 Discrete-time piecewise bandlimited sig-
nal.
Let xB be a discrete-time periodic B−bandlimited sig-
nal of period N with corresponding DTFS coefficients
XB such that XB[m] = 0 ∀m �∈ [−B,B]. Let xPP

be a discrete-time periodic piecewise polynomial signal
of period N of zero mean and with K pieces each piece
of maximum degree R. Then a piecewise bandlimited
signal x is defined by

x = xB + xPP (2)

with corresponding DTFS coefficients defined by

X [m] =
{

XB[m] +XPP [m] if m ∈ [−B,B]
XPP [m] if m �∈ [−B,B] . (3)



The bandlimited signal with 3 discontinuities illus-
trated in Figure 1 (b) is obtained by adding a piecewise
constant signal with 3 discontinuities in Figure 2 (c) to
a bandlimited signal in Figure 2 (a). From Figure 2 (f)
the piecewise bandlimited signal is evidently not ban-
dlimited.
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Figure 2: (a) Discrete-time periodic bandlimited signal
xB of period N = 256; (b) |DTFS| of bandlimited
signal with B = 15 (c) Discrete-time periodic piecewise
constant signal with K = 3 pieces of period N = 256;
(d) |DTFS| of piecewise constant signal; (e) Discrete-
time periodic bandlimited piecewise constant signal; (f)
|DTFS| of bandlimited piecewise constant signal.

It follows that discrete-time piecewise bandlimited sig-
nals also have a finite rate of innovation and sampling
methods will be given in Section 3. We begin by in-
troducing sampling theorems for streams of Diracs and
piecewise polynomial signals in Section 2.

2. SAMPLING DISCRETE-TIME STREAMS
OF DIRACS AND PIECEWISE

POLYNOMIAL SIGNALS

Consider a discrete-time piecewise polynomial signal
where each piece is of maximum degree R. By differen-
tiating R + 1 times we obtain a stream of Diracs. We
begin by recalling the results given in [1, 6, 7] on sam-
pling streams of Diracs, followed by those on sampling
piecewise polynomial signals.

2.1. Discrete-time stream of Diracs

Consider a discrete-time periodic stream of K weighted
Diracs at locations {n0, n1, . . . , nK−1}, with respective
weights {c0, c1, . . . , cK−1} and of period N

xD[n] =
K−1∑
k=0

ck δ[n− nk], n = 0, . . . , N − 1(4)

where δ[n] is the Kronecker delta and equal to 1 if n = 0
and 0 if n �= 0. The corresponding discrete-time Fourier
series (DTFS) coefficients are defined by

XD[m] =
K−1∑
k=0

ck Wnkm
N , m = 0, . . . , N − 1 (5)

where WN = e−i2π/N is the N−th root of unity. From
Figure 3 (b) the stream of K = 15 weighted Diracs
with period N = 256 illustrated in Figure 3 (a) is ev-
idently not bandlimited. Consider filtering the stream
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Figure 3: (a) Discrete-time periodic stream of K = 15
weighted Diracs; (b) —DTFS— of stream of Diracs.

of Diracs xD[n] with a lowpass filter ϕ̃K [n] = ϕK [−n]
whose bandwidth is [−K,K]

y[n] = xD[n] ∗c ϕ̃K [n], n = 0, . . . , N − 1 (6)

and then sample the filtered signal by an integer value
M which is also a divisor of N . In [1, 6, 7] we have
shown that we can uniquely recover the stream of
Diracs from the samples ys[l] = y[lM ]. We recall the
following



Theorem 1 Consider a discrete-time periodic signal
xD[n] of period N containing K weighted Diracs. Let
M be an integer divisor of N satisfying N/M ≥ 2K +
1. Consider the discrete-time periodic sinc sampling

kernel ϕK [n] = 1
N

K∑
m=−K

W−mn
N , that is, the inverse

DTFS of the Rect[−K,K]. Then the N/M ∈ N samples
defined by

ys[l] =< xD[n], ϕK [n− lM ] >circ, l = 0, . . . , N/M − 1
(7)

are a sufficient representation of the signal.

The proof of Theorem 1 consists in first showing that
2K contiguous DTFS coefficients XD[m] with m ∈
[−K,K] are sufficient to determine the stream of K
weighted Diracs and then showing that the N/M sam-
ples ys[l] are a sufficient representation of the 2K spec-
tral values XD[m] with m ∈ [−K,K]. Here we just
summarize the important steps in the proof.
The stream of weighted Diracs is determined by its K
locations and associated weights. To determine the lo-
cations it is sufficient to find an annihilating filter [3],
that is, a filter H = (1, H [1], . . . , H[K]) such that

(H ∗XD)[m] = 0, ∀m = 0, . . . , N − 1. (8)

The z−transform of the annihilating filter is H(z) =
K∑

l=0

H [l] z−l with H [0] = 1 and can be factored as fol-

lows

H(z) =
K−1∏
k=0

(1− z−1 Wnk

N ). (9)

The locations {nk}K−1
k=0 of the Diracs are given by the

roots of H(z). The weights {ck}K−1
k=0 on the other hand

are obtained by solving the VandermondeK×K system
of equations in (5) with m = 0, . . . ,K − 1.
The 2K DTFS coefficients XD[m],m ∈ [−K,K] of the
stream of Diracs are given by

Ys[m] =
1
M

XD[m], m = 0, . . . , N/M − 1 (10)

where

Ys[m] =
N/M−1∑

l=0

ys[l]W lm
N/M , m = 0, . . . , N/M − 1

(11)

are the DTFS coefficients of the sample values ys[l], l =
0, . . . , N/M − 1 with N/M ≥ 2K, see Figure 4. Hence
we are able to sample and reconstruct a discrete-time
periodic stream of Diracs.

2.2. Discrete-time piecewise polynomial signals

Consider a discrete-time periodic piecewise polynomial
signal xPP [n] of period N with K pieces each of maxi-
mum degree R and with zero mean. Suppose a discrete-
time difference operator d[n] = δ[n]−δ[n−1] is applied
R + 1 times to the piecewise polynomial signal. The
DTFS of the differentiated signal xR+1

PP [n] is

X
(R+1)
PP [m] = (D[m])R+1 XPP [m], m = 0, . . . , N − 1

(12)

where D[m] = 1−Wm
N is the DTFS of the discrete-time

difference operator. This results in putting to zero all
the polynomial pieces. Suppose there are discontinu-
ities between the pieces, then K transitions can lead
to at most K(R + 1) weighted Diracs. From Theo-
rem 1 we can uniquely recover the K(R+1) Diracs from
2K(R + 1) contiguous DTFS coefficients X(R+1)[k] of
the differentiated signal (which is a stream of Diracs).
The piecewise polynomial signal is then reconstructed
by applying the inverse discrete-time difference opera-
tor R+1 times on the stream of weighted Diracs. The
discrete-time difference operator d[n] is a singular op-
erator (since D[0] = 0) and so we define the inverse
discrete-time difference operator as D−1[m] = 0 for
m = 0 andD−1[m] = (1−Wm

N )−1 form = 1, . . . , N−1.
Hence instead of using the sinc sampling kernel ϕK [n]
we will use the differentiated sinc sampling kernel de-
fined by

ψ[n] = (d ∗ d ∗ · · · ∗ d︸ ︷︷ ︸
R+1

∗ϕK(R+1))[n] (13)

which has at least R + 1 zeros at the origin z = 1 and
a larger bandwidth. The DTFS coefficients of ψ[n] are

Ψ[m] = (1−Wm
N )R+1 Φ[m], m = 0, . . . , N − 1

(14)

where Φ[m] is the Rect[−K(R+1),K(R+1)] function. This
is summarized in the following

Theorem 2 Consider a discrete-time periodic piece-
wise polynomial signal xPP [n] of period N with K
pieces of degree R and with zero mean. Let M be an
integer and a divisor of N such that N/M ≥ 2K(R +
1) + 1. Take a sampling kernel ψ[n] with DTFS coeffi-
cients defined in (14). Then we can recover the signal
from the N/M ∈ N samples

ys[l] =< xPP [n], ψ[n− lM ] >, l = 0, . . . , N/M − 1.
(15)

The details of the proof can be found in [1, 6, 7].
Hence we are able to sample and reconstruct a discrete-
time periodic piecewise polynomial signal. We are now
ready to investigate piecewise bandlimited signals.
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Figure 4: X [k] is the DTFS of stream of Diracs xD , Y [k] is the DTFS of filtered signal, y = xD ∗c ϕ̃K , Ys[k] is
the DTFS of sample values ys[l] =< x[n], ϕK [n− lM ] >, l = 0, . . . , N/M − 1.

3. SAMPLING DISCRETE-TIME
PIECEWISE BANDLIMITED SIGNALS

In this section we derive a sampling and reconstruc-
tion scheme for piecewise bandlimited signals. We show
that these are simply applications of the methods de-
scribed for streams of Diracs and piecewise polynomial
signals in Section 2. We look in detail the discrete-time
case and give the result for the continuous-time case.

3.1. Discrete-time periodic piecewise bandlim-
ited signals

First we consider sampling a discrete-time periodic
B−bandlimited signal of period N with K weighted
Diracs, that is,

x = xB + xD. (16)

From Section 2.1 we can recover the K weighted Diracs
from 2K contiguous frequency values XD. Since the
DTFS coefficients of the bandlimited signal, XB, are
equal to zero outside of the band [−B,B], we have that
the DTFS coefficients of the signal outside of the band
[−B,B] are exactly equal to the DTFS coefficients of
the stream of Diracs, that is,

X [m] = XD[m], m �∈ [−B,B]. (17)

Therefore in order to recover the stream of Diracs it is
sufficient to take 2K DTFS coefficients X [m] outside
of the band [−B,B], for instance in [B + 1, B + 2K]
see Figure 5. Suppose we have the DTFS of the signal
X [m], with m ∈ [−2K − B,B + 2K] then the DTFS
of the bandlimited signal are obtained by subtracting
XD[m] from X [m] for m ∈ [−B,B] and thus giving the
bandlimited signal xB .

Corollary 1 Consider a discrete-time periodic
B−bandlimited signal of period N with K weighted
Diracs, x = xB + xD . Let ϕB+2K [n] be discrete-time
periodic sinc sampling kernel. Let M be an integer
divisor of N , and let N/M ≥ 2(B + 2K) + 1 then the
samples

ys[l] =< x[n], ϕB+2K [n− lM ] >, l = 0, . . . , N/M − 1
(18)

are a sufficient representation of x.

Proof: The proof is done in two steps. First we
show that the DTFS coefficients X [m],m ∈ [−2K −
B,B+2K] are sufficient to determine the bandlimited
signal with Diracs. Second we must show that N/M
samples are sufficient to determine the DTFS coeffi-
cients X [m],m ∈ [−2K −B,B + 2K].



k

XB

XD

�B � 2K �B B B + 2K

jX[k]j

Figure 5: XB is the DTFS of B-bandlimited signal xB, XD is the DTFS of the discrete-time periodic stream of K
weighted Diracs xD.

1. Consider the following spectral values X [m],m ∈
[−2K −B,B + 2K] then from Definition 2

X [m]=
{

XB[m] +XD[m] m ∈ [0, B]
XD[m] m ∈ [B + 1, B + 2K] .(19)

From Theorem 1 the stream of K weighted Diracs
xD are perfectly recovered from 2K contiguous
DTFS XD[m] = X [m],m ∈ [B + 1, B + 2K] . On
the other hand the 2B+1 spectral components of
the bandlimited signal are given by

XB[k] = (X [m]−XD[k]), k ∈ [−B,B]. (20)

giving the bandlimited signal xB . Thus the ban-
dlimited signal with spikes is x = xB + xD.

2. In the same way as Theorem 1 the spectral compo-
nents of the signal are obtained from the spectral
components of the sample values Ys[m],

X [m] = M Ys[m], m ∈ [−2K −B,B + 2K].
(21)

The result found in Corollary 1 can be generalized
to discrete-time periodic piecewise bandlimited sig-
nals. Recall that to reconstruct a discrete-time periodic
piecewise polynomial signal we needed 2K(R+1) con-
tiguous spectral values. It follows that we can sample
the discrete-time periodic piecewise bandlimited sig-
nal using a discrete-time periodic differentiated sinc
sampling kernel ψ as defined in (13) with bandwidth
[−2K(R+ 1)−B,B + 2K(R+ 1)].

Corollary 2 Consider a piecewise bandlimited signal
x as defined in Definition 2. Let ψ[n] be the (R +
1)th differentiated sinc sampling kernel with bandwidth
[−2K(R+1)−B,B+2K(R+1)]. Let M be an integer

divisor of N , and let N/M ≥ 2(B + 2K(R + 1)) + 1
then the samples

ys[l] =< x[n], ψ[n− lM ] >, l = 0, . . . , N/M − 1
(22)

are a sufficient representation of x.

Proof: The proof follows from Corollary 1 and
Theorem 2. In this case 2K(R+ 1) spectral values

XPP [m] = X [m], m ∈ [B + 1, B + 2K(R+ 1)]
(23)

are sufficient to recover the piecewise polynomial xPP .
The bandlimited signal is recovered from the 2B + 1
spectral components

XB[m] = X [m]−XPP [m], m ∈ [−B,B]. (24)

Thus the piecewise bandlimited signal as defined in
Definition 2 is recovered x = xB + xPP . We are able
to determine the 2(B+2K(R+1))+ 1 spectral values
of the signal from the DTFS of the sample values since

Ys[m] =
1
M

(1 −W−m
N )R+1 X [m],m ∈ [0, B + 2K(R+ 1)].

(25)

Figure 6 illustrates the different steps in the sam-
pling and the reconstruction of a bandlimited plus a
piecewise constant signal using the following

Algorithm 1 Reconstruction of piecewise bandlimited
signals.
Require: N,M,N/M,B,R ∈ N;

Calculate the samples

ys[l] =< x[n], ψ[n− lM ] >, l = 0, . . . , N/M − 1,

with N/M ≥ 2(2K(R+ 1) +B) + 1;
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Figure 6: (a) Piecewise bandlimited signal, x = xPP +
xB , with K = 3, B = 15, R = 0, N = 256;
(b) Differentiated sinc sampling kernel, ψ[n] = d[n] ∗
ϕB+2K(R+1)[n], bandlimited to 2K(R + 1) + B = 21
(c) Sample values ys[l] =< x[n], ψ[n − lM ] >, l =
0, . . . , N/M − 1, M = 4; (d) |DTFS| of sample val-
ues; Reconstruction error is 10−13.

Calculate the DTFS

X [m],m ∈ [−2K(R+ 1)−B,B + 2K(R+ 1)]

from the DTFS of samples ys[l]

−→ XPP [m] = X [m],m ∈ [B + 1, B + 2K(R+ 1)];

Solve for H the linear system of equations

(H ∗XPP )[m] = 0,m ∈ [B + 1, B + 2K(R+ 1)];

Find xPP using H;
Calculate

XB[m] = X [m]−XPP [m], m ∈ [−B,B];

Find xB from XB;
The reconstruction is

x = xB + xPP .

4. CONCLUSION

In this paper, we recalled sampling theorems for a
specific class of non bandlimited signals in particular,

discrete-time periodic streams of Diracs and discrete-
time periodic piecewise polynomials. We extended
these sampling results to discrete-time piecewise ban-
dlimited signals, that is, signals composed of a ban-
dlimited signal with a stream of Diracs and the more
general case with a piecewise polynomial signal. Sam-
pling theorems for continuous-time piecewise bandlim-
ited signals will naturally follow and is a topic under
investigation.
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